Strumenti Utente

Strumenti Sito


geospatialanalytics:gsa:start

Differenze

Queste sono le differenze tra la revisione selezionata e la versione attuale della pagina.

Link a questa pagina di confronto

Entrambe le parti precedenti la revisioneRevisione precedente
Prossima revisione
Revisione precedente
geospatialanalytics:gsa:start [25/11/2024 alle 10:09 (13 mesi fa)] – [Calendar] Luca Pappalardogeospatialanalytics:gsa:start [02/12/2025 alle 09:57 (11 giorni fa)] (versione attuale) – [Calendar] Mirco Nanni
Linea 1: Linea 1:
-====== 783AA Geospatial Analytics A.A. 2024/25 ======+====== 783AA Geospatial Analytics A.A. 2025/26 ======
  
 ===Instructors:=== ===Instructors:===
   * **Luca Pappalardo**   * **Luca Pappalardo**
     * [[luca.pappalardo@isti.cnr.it]]     * [[luca.pappalardo@isti.cnr.it]]
-    * KDD Laboratory, ISTI-CNR, Pisa+    * KDD Laboratory, ISTI-CNR and Scuola Normale Superiore, Pisa
     * [[http://www-kdd.isti.cnr.it]]     * [[http://www-kdd.isti.cnr.it]]
  
Linea 12: Linea 12:
     * [[http://www-kdd.isti.cnr.it]]     * [[http://www-kdd.isti.cnr.it]]
  
-===Tutors:=== +===Teaching assistants:=== 
-  * **Giuliano Cornacchia**, PhD studentUniversity of Pisa +  * **Giuliano Cornacchia**, Postdoc researcherISTI-CNR 
-  * **Giovanni Mauro**, PhD studentUniversity of Pisa +  * **Giovanni Mauro**, Postdoc researcherScuola Normale Superiore 
-  * **Daniele Gambetta**, PhD student, University of Pisa+
  
 ===== Hours and Rooms ===== ===== Hours and Rooms =====
 ^  Day of Week  ^  Hour  ^  Room  ^  ^  Day of Week  ^  Hour  ^  Room  ^ 
-Thursday   | 14:00 - 16:00  |  Room Fib L1  |  +Monday   | 16:00 - 18:00  |  Room Fib L1  |  
-Friday  14:00 - 16:00  |  Room Fib C1  +Tuesday  16:00 - 18:00  |  Room Fib M1  
  
-  * Beginning of lectures: 21 September 2023 +  * Beginning of lectures: 15 September 2025 
-  * End of lectures: 7 December 2023 +  * End of lectures: 16 December 2025
-  * Possible lessons recovered: 8–15 December 2023+
  
-__**The lectures will be only in presence and will NOT be live-streamed**__+__**The lectures will be only in person and will NOT be live-streamed**__
  
- 
-====== News and communications ====== 
- 
-__No lesson__ on November 21st and 22nd 
- 
-**APPELLI**: The dates of the exams are the following (remember to register for the appello in time): 
-  * January 16th, 14:00 
-  * February 7th, 09:00 
- 
-__No lesson__ on October 31st; 
-  
-__No lessons__ on October 10 and 11 (because of the evento "Orientamento studenti") 
  
 ====== Learning goals ====== ====== Learning goals ======
Linea 55: Linea 42:
   * Digital spatial and mobility data   * Digital spatial and mobility data
   * Preprocessing mobility data   * Preprocessing mobility data
-  * Privacy issues in mobility data 
   * Individual and collective mobility laws   * Individual and collective mobility laws
   * Next-location and flow prediction   * Next-location and flow prediction
Linea 61: Linea 47:
   * Applications   * Applications
  
-===== Module 1: Spatial and Mobility Data Analysis =====+===== Module 1: Data Analysis =====
  
   * Fundamentals of Geographical Information Systems   * Fundamentals of Geographical Information Systems
Linea 69: Linea 55:
     * Spatial Tessellations     * Spatial Tessellations
     * Flows     * Flows
-    * **Practice**: Python packages for geospatial analysis (Shapely, GeoPandas, folium, scikit-mobility)+    * **Practice**
   * Digital spatial and mobility data    * Digital spatial and mobility data 
     * Mobile Phone Data      * Mobile Phone Data 
Linea 75: Linea 61:
     * Social media data      * Social media data 
     * Other data (POIs, Road Networks, etc.)     * Other data (POIs, Road Networks, etc.)
-    * **Practice**: reading and exploring spatial and mobility datasets in Python+    * **Practice**
   * Preprocessing mobility data    * Preprocessing mobility data 
     * filtering compression      * filtering compression 
Linea 81: Linea 67:
     * trajectory segmentation      * trajectory segmentation 
     * trajectory similarity and clustering     * trajectory similarity and clustering
-    * **Practice**: data preprocessing with scikit-mobility+    * **Practice**
  
-===== Module 2: Mobility Patterns and Laws =====+===== Module 2: Patterns and Laws =====
  
-  * individual mobility laws/patterns +  * individual mobility laws 
-  * collective mobility laws/patterns +  * collective mobility laws 
-  * Practice: analyze mobility data with Python+  * mobility pattern mining 
 +  * **Practice**
  
-===== Module 3: Predictive and Generative Models =====+===== Module 3: Models =====
  
   * Prediction   * Prediction
Linea 98: Linea 85:
     * Trajectory generation     * Trajectory generation
     * Flow generation     * Flow generation
-  * Practice: mobility prediction and generation in Python+  * **Practice**
  
-===== Module 4: Applications ===== 
- 
-  * Urban segregation models 
-  * Routing and navigation apps 
-  * Traffic simulation with SUMO 
  
  
Linea 111: Linea 93:
  
 ^ ^ Day  ^ Topic ^ Slides/Code  ^ Material ^ Teacher| ^ ^ Day  ^ Topic ^ Slides/Code  ^ Material ^ Teacher|
-|1. |19.09  14:00-16:00| Introduction to the Course | **[slides]** {{ :geospatialanalytics:gsa:00_-_about_the_course_24_25.pdf | About the course}}; **[slides]** {{ :geospatialanalytics:gsa:01_-_introduction_24_25.pdf | Introduction to Geospatial Analytics}}  | **[book chapter]** [[ https://archive.org/details/kang-tsung-chang-introduction-to-geographic-information-systems-2019-mc-graw-hill-libgen.lc/page/15/mode/2up | Introduction to geographic information systems]], Chapter 1; **[paper]** [[https://arxiv.org/pdf/1710.00004.pdf | Human Mobility: Models and Applications]], Section 1| Pappalardo | +|1. |**15/09**, 16:00-18:00, Fib L1| Introduction to the Course | **[slides]** {{ :geospatialanalytics:gsa:lesson_0_-_about_the_course.pdf | About the course}}  {{ :geospatialanalytics:gsa:lesson_01_-_introduction.pdf | Introduction to Geospatial Analytics and Human Mobility}}| **[book chapter]** [[ https://archive.org/details/kang-tsung-chang-introduction-to-geographic-information-systems-2019-mc-graw-hill-libgen.lc/page/15/mode/2up | Introduction to geographic information systems]], Chapter 1; **[paper]** [[https://arxiv.org/pdf/1710.00004.pdf | Human Mobility: Models and Applications]], Section 1 | L. Pappalardo, M. Nanni 
-|2. |20.09  14:00-16:00| Fundamental Concepts (theory)| **[slides]** {{ :geospatialanalytics:gsa:02_-_fundamental_concepts_24_25.pdf | Fundamental Concepts}} | **[book chapter]** [[ https://archive.org/details/kang-tsung-chang-introduction-to-geographic-information-systems-2019-mc-graw-hill-libgen.lc/page/15/mode/2up | Introduction to geographic information systems]], Chapter 2 (Coordinate Systems); **[paper]** [[https://arxiv.org/abs/2012.02825 | A survey of deep learning for human mobility]], Section 2.1, Appendix A; [[https://saylordotorg.github.io/text_essentials-of-geographic-information-systems/s08-02-vector-data-models.html | Essentials of Geographic Information Systems,Chapter 4, Section 4.2 (Vector Data Models)]]; **[video]** [[https://www.youtube.com/watch?v=HnWNhyxyUHg | Intro to coordinate systems and UTM projection]] | Pappalardo | +|2. |**16.09**  16:00-18:00 Fib M1| Fundamental Concepts | **[slides]** {{ :geospatialanalytics:gsa:lesson_02_-_fundamental_concepts.pdf | Fundamental concepts}} | **[book chapter]** [[ https://archive.org/details/kang-tsung-chang-introduction-to-geographic-information-systems-2019-mc-graw-hill-libgen.lc/page/15/mode/2up | Introduction to geographic information systems]], Chapter 2 (Coordinate Systems); **[video]** [[https://www.youtube.com/watch?v=HnWNhyxyUHg | Intro to coordinate systems and UTM projection]] | L. Pappalardo | 
-|3. |26.09  14:00-16:00| Fundamental Concepts (practice)| **[code]** [[https://github.com/jonpappalord/geospatial_analytics/tree/main/2024/1-%20Fundamental%20Concepts Introduction to shapely, geopandas, folium, and scikit-mobility]] | **[book chapter]** [[ https://autogis-site.readthedocs.io/en/latest/notebooks/L1/geometric-objects.html Automating GIS-processes, Lesson 1 (Shapely and geometric objects)]]; **[article]** [[ https://www.learndatasci.com/tutorials/geospatial-data-python-geopandas-shapely/ Analyze Geospatial Data in Python: GeoPandas and Shapely]]; **[paper]** [[https://www.jstatsoft.org/article/view/v103i04 | scikit-mobility: a Python library for the AnalysisGeneration, and Risk Assessment of Mobility Data]], Sections 1, 2; | Mauro | +|3. |**29.09**  16:00-18:00 Fib L1| Fundamental Concepts II | **[slides]** {{ :geospatialanalytics:gsa:lesson_02_-_fundamental_concepts.pdf Fundamental concepts}} | **[paper]** [[https://arxiv.org/abs/2012.02825 A survey of deep learning for human mobility]], Section 2.1, Appendix A | L. Pappalardo | 
-|4. |27.09  14:00-16:00| Spatial Data Analysis I (theory) | **[slides]** {{ :geospatialanalytics:gsa:03_-_spatial_data_analysis_24_25.pdf | Spatial Data Analysis I}} | **[book chapter]** [[ https://archive.org/details/kang-tsung-chang-introduction-to-geographic-information-systems-2019-mc-graw-hill-libgen.lc/page/15/mode/2up | Introduction to geographic information systems]], Sect. 3.1, 3.3, 4.1-4.3, 4.7, 8.5, Chapter 11; **[book chapter]** [[ https://mgimond.github.io/Spatial | Intro to GIS and Spatial Analysis]], Chapter 11, 13; **[book section]** [[ https://doi.org/10.1007/978-0-387-35973-1_446 | Encyclopedia of GIS: Geary’s C]] | Nanni | +|4. |**30.09**  16:00-18:00 Fib M1| Practical session on Fundamental Concepts | **[code]**{{ :geospatialanalytics:gsa:gsa1.zip | Notebook}} |  | LPappalardoG. Mauro | 
-|5. |03.10  14:00-16:00| Spatial Data Analysis II (theory) | **[slides]** {{ :geospatialanalytics:gsa:03bis_-_spatial_data_analysis_24_25_v1.pdf | Spatial Data Analysis II}} | **[book chapter]** [[ https://archive.org/details/kang-tsung-chang-introduction-to-geographic-information-systems-2019-mc-graw-hill-libgen.lc/page/15/mode/2up | Introduction to geographic information systems]], Chapter 15; **[book chapter]** [[ https://mgimond.github.io/Spatial | Intro to GIS and Spatial Analysis]], Chapter 14; **[book section]** [[ https://sustainability-gis.readthedocs.io/en/latest/ | Spatial data science for sustainable development]], Tutorial 3 (Spatial Regression); **[paper]** [[ https://doi.org/10.1007/s10619-019-07278-7 | Spatial co-location patterns]], Sect. 3.1; **[paper]** [[ https://www.lri.fr/~sebag/Examens/Ester_KDD98.pdf | Trend Detection in Spatial Databases ]], Sect. 4 | Nanni | +|5. |**06.10**  16:00-18:00 Fib L1| Spatial Data Analysis I | **[slides]** {{ :geospatialanalytics:gsa:03_-_spatial_data_analysis_25_26.pdf |Spatial Data Analysis I}} | **[book chapter]** [[ https://archive.org/details/kang-tsung-chang-introduction-to-geographic-information-systems-2019-mc-graw-hill-libgen.lc/page/15/mode/2up | Introduction to geographic information systems]], Sect. 3.1, 3.3, 4.1-4.3, 4.7, 8.5, Chapter 11; **[book chapter]** [[ https://mgimond.github.io/Spatial | Intro to GIS and Spatial Analysis]], Chapter 11, 13; **[book section]** [[ https://doi.org/10.1007/978-0-387-35973-1_446 | Encyclopedia of GIS: Geary’s C]] | M. Nanni | 
-|6. |04.10  14:00-16:00| Spatial Data Analysis II (practice) | **[code]** [[https://github.com/jonpappalord/geospatial_analytics/tree/main/2024/2-%20Spatial%20Data%20Analysis | Spatial Analysis exercises]]  | [[https://pysal.org/pysal/|PySALPython Spatial Analysis Library]]; [[https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html|Scikit-learn KNeighborsRegressor]]; [[https://geostat-framework.readthedocs.io/projects/pykrige/en/stable/|PyKrige]] | Nanni | +|6. |**07.10**  16:00-18:00 Fib M1| Spatial Data Analysis II | **[slides]** {{ :geospatialanalytics:gsa:03bis_-_spatial_data_analysis_25_26.pdf | Spatial Data Analysis II}} | **[book chapter]** [[ https://archive.org/details/kang-tsung-chang-introduction-to-geographic-information-systems-2019-mc-graw-hill-libgen.lc/page/15/mode/2up | Introduction to geographic information systems]], Chapter 15; **[book chapter]** [[ https://mgimond.github.io/Spatial | Intro to GIS and Spatial Analysis]], Chapter 14; **[book section]** [[ https://sustainability-gis.readthedocs.io/en/latest/ | Spatial data science for sustainable development]], Tutorial 3 (Spatial Regression); **[paper]** [[ https://doi.org/10.1007/s10619-019-07278-7 | Spatial co-location patterns]], Sect. 3.1; **[paper]** [[ https://www.lri.fr/~sebag/Examens/Ester_KDD98.pdf | Trend Detection in Spatial Databases ]], Sect. 4 | M. Nanni | 
-|7. |17.10  14:00-16:00| Geographic and Mobility data (theory) | **[slides]** {{ :geospatialanalytics:gsa:04-_spatial_and_mobility_data.pdf | Geographic and Mobility Data}} | **[paper]** [[ https://arxiv.org/abs/2012.02825 | A survey of deep learning for human mobility ]], Appendix C.1, C.2, C.3; **[paper]** [[ https://epjdatascience.springeropen.com/articles/10.1140/epjds/s13688-021-00284-9 | Evaluation of home detection algorithms on mobile phone data using individual-level ground truth ]], Section 1 "Introduction", Section 2 "Mobile phone datasets"; **[paper]** [[ https://epjdatascience.springeropen.com/articles/10.1140/epjds/s13688-015-0046-0 | A survey of results on mobile phone datasets analysis ]], Section 1 "Introduction", Section 3 "Adding space - geographical networks"; **[paper]** [[ https://www.kdd.org/exploration_files/June_2019_-_1._Urban_Human_Mobility,_Data_Drive_Modeling_and_Prediction_.pdf | Urban Human Mobility: Data-Driven Modeling and Prediction]], Section 2.2 "Popular Urban Data"; | Pappalardo | +|7. |13.10  16:00-18:00 Fib L1Practical session on Spatial Data Analysis | **[code]** {{ :geospatialanalytics:gsa:gsa_spatial_patterns_13oct_2025.ipynb.zip Notebook}}  M. Nanni, G. Cornacchia 
-|8. | 18.10 14:00-16:00| Geographic and Mobility data (practice) | **[code]** [[https://github.com/jonpappalord/geospatial_analytics/blob/main/2024/3-%20Mobility%20Data/practice_CDR_GPS.ipynb | Exerciseconverting a GPS trace into CDR one]] | **[paper]** [[https://www.jstatsoft.org/article/view/v103i04 scikit-mobility: a Python library for the Analysis, Generation, and Risk Assessment of Mobility Data]], Section 4 "Plotting"; **[video]** [[ https://www.youtube.com/watch?v=FjJZsaHHuvw scikit-mobility data module]]; **[tutorial]** [[https://geoffboeing.com/2016/11/osmnx-python-street-networks/OSMnx: Python for Street Networks]]; **[paper]** [[ https://www.sciencedirect.com/science/article/pii/S0198971516303970?via%3Dihub | OSMnx: New methods for acquiring, constructinganalyzing, and visualizing complex street networks]]; **[book chapter]** [[ https://automating-gis-processes.github.io/CSC/notebooks/L3/retrieve_osm_data.html | Intro to Python GIS, Retrieving OpenStreetMap data ]]; | Cornacchia|  +|8. |14:10  16:00-18:00 Fib M1| Mobility Data I | **[slides]** {{ :geospatialanalytics:gsa:04-_spatial_and_mobility_data_25_26_1_.pdf | Mobility Data}} | **[paper]** [[ https://arxiv.org/abs/2012.02825 | A survey of deep learning for human mobility ]], Appendix C.1, C.2, C.3; **[paper]** [[ https://epjdatascience.springeropen.com/articles/10.1140/epjds/s13688-021-00284-9 | Evaluation of home detection algorithms on mobile phone data using individual-level ground truth ]], Section 1 "Introduction", Section 2 "Mobile phone datasets"; **[paper]** [[ https://epjdatascience.springeropen.com/articles/10.1140/epjds/s13688-015-0046-0 | A survey of results on mobile phone datasets analysis ]], Section 1 "Introduction", Section 3 "Adding space - geographical networks"; | L. Pappalardo | 
-|9. | 24.10 14:00-16:00| Data Preprocessing (theory) | **[slides]** {{ :geospatialanalytics:gsa:05_-_preprocessing_-_light.pdf |Data Preprocessing}} | **[paper]** [[https://journals.sagepub.com/doi/pdf/10.1177/15501477211050729?download=true|Review and classification of trajectory summarisation algorithms: From compression to segmentation]]; **[paper]** [[http://www2.ipcku.kansai-u.ac.jp/~yasumuro/M_InfoMedia/paper/Douglas73.pdf|Algorithms for the reduction of the number of points required to represent a digitized line or its caricature (Douglas-Peucker)]]; **[paper]** [[https://www.researchgate.net/publication/314207447_A_Trajectory_Segmentation_Map-Matching_Approach_for_Large-Scale_High-Resolution_GPS_Data|A Trajectory Segmentation Map-Matching Approach for Large-Scale, High-Resolution GPS Data]]; **[paper]** [[https://www.ismll.uni-hildesheim.de/lehre/semSpatial-10s/script/6.pdf|Hidden Markov Map Matching Through Noise and Sparseness]] | Cornacchia|  +|9. |20.10  16:00-18:00 Fib L1| Mobility Data II | **[slides]** {{ :geospatialanalytics:gsa:04-_spatial_and_mobility_data_25_26_1_.pdf | Mobility Data}} | **[paper]** [[ https://www.kdd.org/exploration_files/June_2019_-_1._Urban_Human_Mobility,_Data_Drive_Modeling_and_Prediction_.pdf | Urban Human Mobility: Data-Driven Modeling and Prediction]], Section 2.2 "Popular Urban Data"; | L. Pappalardo | 
-|10. | 25.10 14:00-16:00| Data Preprocessing (practice) **[code]** [[https://github.com/jonpappalord/geospatial_analytics/blob/main/2024/4-%20Preprocessing/practice_preprocessing.ipynb Exerciseimplementing speed-based noise filtering]] | | Cornacchia| +|10. |21.10  16:00-18:00 Fib M1Practical session on Mobility Data | **[code]**{{ :geospatialanalytics:gsa:gsa_cdr_and_gps_20oct_2025.ipynb.zip Notebook}}  LPappalardoG. Cornacchia | 
-|12. | 07.11 14:00-16:00| Individual Mobility Patterns (theory) | **[slides]** {{ :geospatialanalytics:gsa:06_-_individual_models_1_compressed.pdf | Individual mobility patterns}} | **[paper]** [[ https://www.nature.com/articles/nature04292 | The scaling laws of human travel]]; **[paper]** [[ https://www.nature.com/articles/nature06958 | Understanding individual human mobility patterns]];  **[paper]** [[https://arxiv.org/pdf/1710.00004.pdf | Human Mobility: Models and Applications]], Sections 3.1 and 4; **[paper]** [[ https://www.nature.com/articles/ncomms9166 | Returners and Explorers dichotomy in Human Mobility]]; **[paper]** [[ https://barabasi.com/f/310.pdf | Limits of predictability in human mobility]]; **[paper]** [[ https://www.nature.com/articles/nphys1760 | Modelling the scaling properties of human mobility]]; | Pappalardo|  +|11. |27.10  16:00-18:00 Fib L1| Preprocessing | **[slides]** {{ :geospatialanalytics:gsa:05_-_preprocessing_25_26.pdf |Data Preprocessing}} | **[paper]** [[https://journals.sagepub.com/doi/pdf/10.1177/15501477211050729?download=true|Review and classification of trajectory summarisation algorithms: From compression to segmentation]]; **[paper]** [[http://www2.ipcku.kansai-u.ac.jp/~yasumuro/M_InfoMedia/paper/Douglas73.pdf|Algorithms for the reduction of the number of points required to represent a digitized line or its caricature (Douglas-Peucker)]]; **[paper]** [[https://www.researchgate.net/publication/314207447_A_Trajectory_Segmentation_Map-Matching_Approach_for_Large-Scale_High-Resolution_GPS_Data|A Trajectory Segmentation Map-Matching Approach for Large-Scale, High-Resolution GPS Data]]; **[paper]** [[https://www.ismll.uni-hildesheim.de/lehre/semSpatial-10s/script/6.pdf|Hidden Markov Map Matching Through Noise and Sparseness]] | M. Nanni 
-|13. | 08.11 14:00-16:00| Individual Mobility Patterns (practice) | {{ :geospatialanalytics:gsa:practice_individual_measures.zip | Practice session on individual measures}} | | Mauro| +|12. |28.10  16:00-18:00 Fib M1| Preprocessing II |   | MNanni | 
-|14. | 14.11 14:00-16:00| Individual and Collective Mobility models (theory) | {{ :geospatialanalytics:gsa:07_-_mobility_models.pdf | Human Mobility Models}} | **[paper]** [[ https://arxiv.org/abs/1710.00004 |Modelling the scaling properties of human mobility]]; **[paper]** [[https://arxiv.org/pdf/1710.00004.pdf | Human Mobility: Models and Applications]]; **[paper]** [[https://www.nature.com/articles/nature10856|A universal model for mobility and migration patterns]]; **[paper]** [[https://arxiv.org/abs/1506.04889|Systematic comparison of trip distribution laws and models]]: **[paper]** [[https://www.nature.com/articles/s41467-021-26752-4|A Deep Gravity model for mobility flows generation]] | Pappalardo| +|13. |03.11  16:00-18:00 Fib L1Practical session on Preprocessing   | M. Nanni, G. Cornacchia | 
-|15. | 15.11 14:00-16:00| Individual and Collective Mobility models (practice) | | | Mauro | +|14. |04.11  16:00-18:00 Fib M1| Individual Mobility Laws | **[slides]** {{ :geospatialanalytics:gsa:lesson_06_-_individual_mobility_laws.pdf | Individual mobility patterns}} | **[paper]** [[ https://www.nature.com/articles/nature04292 | The scaling laws of human travel]]; **[paper]** [[ https://www.nature.com/articles/nature06958 | Understanding individual human mobility patterns]];  **[paper]** [[https://arxiv.org/pdf/1710.00004.pdf | Human Mobility: Models and Applications]], Sections 3.1 and 4; **[paper]** [[ https://www.nature.com/articles/ncomms9166 | Returners and Explorers dichotomy in Human Mobility]]; **[paper]** [[ https://barabasi.com/f/310.pdf | Limits of predictability in human mobility]]; **[paper]** [[ https://www.nature.com/articles/nphys1760 | Modelling the scaling properties of human mobility]]; | Pappalardo|  
-|16. | 28.11 14:00:16:00| Guest lecture | | | [[ https://www.riccardodiclemente.com/| Riccardo Di Clemente]]| +|15. |10.11  16:00-18:00 Fib L1| Mobility Models I | {{ :geospatialanalytics:gsa:lesson_07_-_mobility_models.pdf |}} | **[paper]** [[ https://arxiv.org/abs/1710.00004 |Modelling the scaling properties of human mobility]]; **[paper]** [[https://arxiv.org/pdf/1710.00004.pdf | Human Mobility: Models and Applications]] (Section 4.1); | L. Pappalardo | 
-|17. | 29.11 14:00:16:00| Mobility pattern mining | | Nanni| +|16. |11.11  16:00-18:00 Fib M1| Practical session on Individual Mobility Laws and Models |  |  | L. Pappalardo, G. Mauro | 
-|18. | 05.12 14:00:16:00| Next-location prediction | | | Nanni | +|17. |17.11  16:00-18:00 Fib L1| Mobility Models II | **[slides]** {{ :geospatialanalytics:gsa:lesson_07_-_mobility_models.pdf | Collective Mobility models}} |  **[paper]** [[https://arxiv.org/pdf/1710.00004.pdf | Human Mobility: Models and Applications]] (Section 4.2); **[paper]** [[https://www.nature.com/articles/nature10856|A universal model for mobility and migration patterns]]; **[paper]** [[https://arxiv.org/abs/1506.04889|Systematic comparison of trip distribution laws and models]]: **[paper]** [[https://www.nature.com/articles/s41467-021-26752-4|A Deep Gravity model for mobility flows generation]] | L. Pappalardo | 
-|19. | 06.12 14:00:16:00| Mobility pattern mining and next-location prediction (practice) | | | Cornacchia |+|18. |18.11  16:00-18:00 Fib M1Practical session on Collective Mobility Laws and Models   L. Pappalardo, G. Mauro | 
 +|19. |24.11  16:00-18:00 Fib L1Mobility Pattern Mining I **[slides]** {{ :geospatialanalytics:gsa:08_-_mobility_patterns_25_26.pdf |Mobility Patterns}} **[paper]** [[https://arxiv.org/abs/2303.05012v2|Spatio-Temporal Trajectory Similarity Measures: A Comprehensive Survey and Quantitative Study]], Sections 1-2-3 | M. Nanni 
 +|20. |25.11  16:00-18:00 Fib M1| Mobility Pattern Mining II |  | **[paper]** [[https://dl.acm.org/doi/10.1145/1183471.1183479|Computing longest duration flocks in trajectory data]], Section 1; **[paper]** [[https://arxiv.org/abs/1002.0963v1|Discovery of Convoys in Trajectory Databases]], Section 3; **[paper]** [[https://doi.org/10.1007/11535331_21|On Discovering Moving Clusters in Spatio-temporal Data]], Sections 1, 2, 4.1; **[paper]** [[https://dl.acm.org/doi/10.1145/1281192.1281230|Trajectory pattern mining]], Section 3; **[paper]** [[https://arxiv.org/abs/2003.0135|DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis]], Section II M. Nanni | 
 +|21. |01.12  16:00-18:00 Fib L1| Next-location prediction | **[slides]** {{ :geospatialanalytics:gsa:09_-_location_prediction_25_26.pdf |Next Location Prediction}} | **[paper]** [[https://ieeexplore.ieee.org/document/8570749|Mobility Prediction: A Survey on State-of-the-Art Schemes and Future Applications]], Sections I-IV; **[book chapter]** [[https://web.stanford.edu/~jurafsky/slp3/A.pdf|Speech and Language Processing]], Chapter A - Hidden Markov Models; **[paper]** {{:geospatialanalytics:gsa:mcleod_1996_do_fielders_know_where_to_go_to_catch_the_ball_or_only_how_to_get_there.pdf |Do Fielders Know Where to Go to Catch the Ball...?}} | Nanni | 
 + 
 +|22. |02.12  16:00-18:00 Fib M1Practical session on Mobility Pattern Mining and Next-location Prediction  **[library doc]** [[https://hmmlearn.readthedocs.io/en/latest/|HMMlearn library]] M. Nanni, G. Mauro | 
 + 
 + 
 + 
 ==== Previous Geospatial Analytics websites ==== ==== Previous Geospatial Analytics websites ====
 +  * [[geospatialanalytics:gsa:gsa2024|]]
   * [[geospatialanalytics:gsa:gsa2023|]]   * [[geospatialanalytics:gsa:gsa2023|]]
   * [[geospatialanalytics:gsa:gsa2022|]]   * [[geospatialanalytics:gsa:gsa2022|]]
  
geospatialanalytics/gsa/start.1732529360.txt.gz · Ultima modifica: 25/11/2024 alle 10:09 (13 mesi fa) da Luca Pappalardo

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki