Web Mining ed Analisi delle Reti Sociali

Modelli di generazione delle reti

Dino Pedreschi Dipartimento di Informatica Università di Pisa www.di.unipi.it/~pedre

Social Network Analysis

- Social Network Introduction
- Statistics and Probability Theory
- Models of Social Network Generation
- Mining on Social Network
- Summary

Some Models of Network Generation

- Random graphs (Erdös-Rényi models):
 - gives few components and small diameter
 - does not give high clustering and heavy-tailed degree distributions
 - is the mathematically most well-studied and understood model
- Watts-Strogatz models:
 - give few components, small diameter and high clustering
 - does not give heavy-tailed degree distributions
- Scale-free Networks:
 - gives few components, small diameter and heavy-tailed distribution
 - does not give high clustering
- *Hierarchical networks:*
 - few components, small diameter, high clustering, heavy-tailed
- Affiliation networks:
 - models group-actor formation

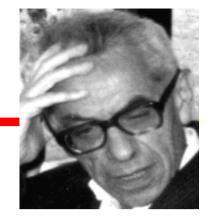
Models of Social Network Generation

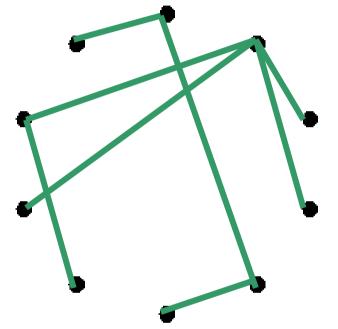
- Random Graphs (Erdös-Rényi models) _____
- Watts-Strogatz models
- Scale-free Networks

The Erdös-Rényi (ER) Model (Random Graphs)

- All edges are *equally probable and* appear *independently*
- NW size N > 1 and probability p: *distribution G(N,p)*
 - each edge (u,v) chosen to appear with probability p
 - N(N-1)/2 trials of a biased coin flip
- The usual *regime of interest* is when $p \sim 1/N$, N is large
 - e.g. p = 1/2N, p = 1/N, p = 2/N, p=10/N, p = log(N)/N, etc.
 - in expectation, each vertex will have a "small" number of neighbors
 - will then examine what happens when N \rightarrow infinity
 - can thus study properties of *large networks* with *bounded degree*
- Degree distribution of a typical G drawn from G(N,p):
 - draw G according to G(N,p); look at a random vertex u in G
 - what is Pr[deg(u) = k] for any fixed k?
 - *Poisson distribution* with mean $I = p(N-1) \sim pN$
 - Sharply concentrated; *not* heavy-tailed
- Especially easy to generate NWs from G(N,p)

Erdös-Rényi Model (1960)





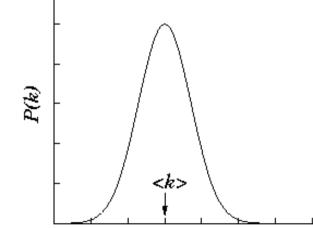
Connect with probability p p=1/6N=10 $\langle k \rangle \sim 1.5$

Pál Erdös (1913-1996)

Poisson distribution

- Random

- Democratic



Data Mining: Concepts and Techni

A Closely Related Model

- For any fixed m <= N(N-1)/2, define distribution G(N,m):
 - choose uniformly at random from all graphs with exactly m edges
 - G(N,m) is "like" G(N,p) with p = m/(N(N-1)/2)
 ~ 2m/N^2
 - this intuition can be made precise, and is correct
 - if m = cN then $p = 2c/(N-1) \sim 2c/N$
 - mathematically trickier than G(N,p)

Another Closely Related Model

- *Graph process* model:
 - start with N vertices and no edges
 - at each time step, add a *new* edge
 - choose new edge randomly from among all missing edges
- Allows study of the *evolution* or *emergence* of properties:
 - as the number of edges m grows in relation to N
 - equivalently, as p is increased
- For all of these models:
 - high probability ← → "almost all" large graphs of a given density

Evolution of a Random Network

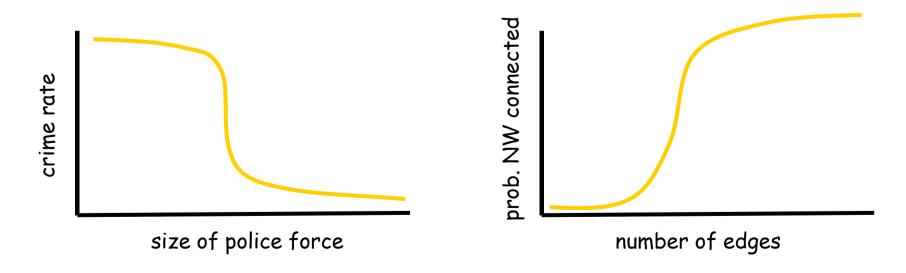
- We have a large number n of vertices
- We start randomly adding edges one at a time
- At what time t will the network:
 - have at least one "large" connected component?
 - have a single connected component?
 - have "small" diameter?
 - have a "large" clique?
 - have a "large" chromatic number?
- How gradually or suddenly do these properties appear?

Recap

- Model G(N,p):
 - select each of the possible edges independently with prob. p
 - expected total number of edges is pN(N-1)/2
 - expected degree of a vertex is p(N-1)
 - degree will obey a Poisson distribution (*not* heavy-tailed)
- Model G(N,m):
 - select exactly m of the N(N-1)/2 edges to appear
 - all sets of m edges equally likely
- Graph process model:
 - starting with no edges, just keep adding one edge at a time
 - always choose next edge randomly from among all missing edges
- Threshold or tipping for (say) connectivity:
 - fewer than m(N) edges \rightarrow graph almost certainly *not* connected
 - more than m(N) edges \rightarrow graph almost certainly *is* connected
 - made formal by examining limit as N \rightarrow infinity

Combining and Formalizing Familiar Ideas

- Explaining *universal behavior* through statistical models
 - our models will always generate *many* networks
 - *almost all* of them will share certain properties (universals)
- Explaining *tipping* through incremental growth
 - we gradually add edges, or gradually increase edge probability p
 - many properties will emerge very suddenly during this process



Monotone Network Properties

- Often interested in *monotone* graph properties:
 - Iet G have the property
 - add edges to G to obtain G'
 - then G' *must* have the property also
- Examples:
 - G is connected
 - G has diameter <= d (*not* exactly d)
 - G has a clique of size >= k (not exactly k)
 - G has chromatic number >= c (not exactly c)
 - G has a matching of size >= m
 - d, k, c, m may depend on NW size N (How?)
- Difficult to study emergence of non-monotone properties as the number of edges is increased
 - what would it mean?

Formalizing Tipping: Thresholds for Monotone Properties

- Consider Erdos-Renyi G(N,m) model
 - select m edges at random to include in G
- Let P be some *monotone* property of graphs
 - $P(G) = 1 \rightarrow G$ has the property
 - $P(G) = 0 \rightarrow G$ does not have the property
- Let m(N) be some function of NW size N
 - formalize idea that property P appears "suddenly" at m(N) edges
- Say that m(N) is a *threshold function for P* if:
 - Iet m'(N) be any function of N
 - look at *ratio* r(N) = m'(N)/m(N) as $N \rightarrow$ infinity
 - if $r(N) \rightarrow 0$: probability that P(G) = 1 in $G(N,m'(N)): \rightarrow 0$
 - if $r(N) \rightarrow infinity$: probability that P(G) = 1 in G(N,m'(N)): $\rightarrow 1$
- A *purely structural* definition of tipping
 - tipping results from incremental increase in *connectivity*

So Which Properties Tip?

- Just about *all* of them!
- The following properties all have threshold functions:
 - having a "giant component"
 - being connected
 - having a perfect matching (N even)
 - having "small" diameter
- With remarkable consistency (N = 50):
 - giant component ~ 40 edges, connected ~ 100, small diameter ~ 180

Ever More Precise...

- Connected component of size > N/2:
 - threshold function is m(N) = N/2 (or $p \sim 1/N$)
 - note: full connectivity *impossible*
- Fully connected:
 - threshold function is $m(N) = (N/2)\log(N)$ (or $p \sim \log(N)/N$)
 - NW remains *extremely sparse*: only ~ log(N) edges per vertex
- Small diameter:
 - threshold is m(N) ~ N^(3/2) for *diameter 2* (or p ~ 2/sqrt(N))
 - fraction of possible edges still ~ $2/sqrt(N) \rightarrow 0$
 - generate very small worlds

Other Tipping Points?

- Perfect matchings
 - consider only even N
 - threshold function: $m(N) = (N/2)\log(N)$ (or $p \sim \log(N)/N$)
 - same as for connectivity!
- Cliques
 - k-clique threshold is m(N) = (1/2)N^(2 2/(k-1)) (p ~ 1/N^(2/k-1))
 - edges appear immediately; triangles at N/2; etc.
- Coloring
 - k colors required just as k-cliques appear

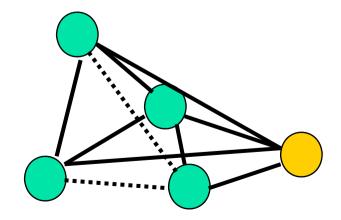
Erdos-Renyi Summary

- A model in which all connections are *equally likely*
 - each of the N(N-1)/2 edges chosen randomly & independently
- As we add edges, a *precise sequence* of events unfolds:
 - graph acquires a giant component
 - graph becomes connected
 - graph acquires small diameter
- Many properties appear very suddenly (tipping, thresholds)
- All statements are *mathematically precise*
- But is this how natural networks form?
- If not, which aspects are unrealistic?
 - may all edges are *not* equally likely!

The Clustering Coefficient of a Network

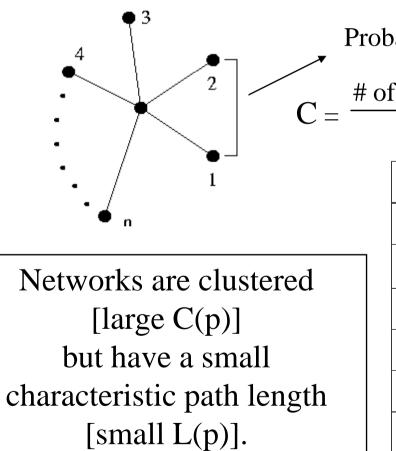
- Let nbr(u) denote the set of neighbors of u in a graph
 - all vertices v such that the edge (u,v) is in the graph
- The clustering coefficient of u:
 - let k = |nbr(u)| (i.e., number of neighbors of u)
 - choose(k,2): max possible # of edges between vertices in nbr(u)
 - c(u) = (actual # of edges between vertices in nbr(u))/choose(k,2)
 - 0 <= c(u) <= 1; measure of *cliquishness* of u's neighborhood
- Clustering coefficient of a graph:
 - average of c(u) over all vertices u

k = 4choose(k,2) = 6 c(u) = 4/6 = 0.666...



The Clustering Coefficient of a Network

Clustering: My friends will likely know each other!



Probability to be connected C \gg p

of links between 1,2,...n neighbors

n(n-1)/2

Network	С	C _{rand}	L	N
WWW	0.1078	0.00023	3.1	153127
Internet	0.18-0.3	0.001	3.7-3.76	3015- 6209
Actor	0.79	0.00027	3.65	225226
Coauthorship	0.43	0.00018	5.9	52909
Metabolic	0.32	0.026	2.9	282
Foodweb	0.22	0.06	2.43	134
C. elegance	0.28	0.05	2.65	282

Erdos-Renyi: Clustering Coefficient

- Generate a network G according to G(N,p)
- Examine a "typical" vertex u in G
 - choose u at random among all vertices in G
 - what do we expect c(u) to be?
- Answer: exactly p!
- In G(N,m), expect c(u) to be 2m/N(N-1)
- Both cases: c(u) entirely determined by *overall* density
- Baseline for comparison with "more clustered" models
 - Erdos-Renyi has *no bias* towards clustered or local edges

Models of Social Network Generation

- Random Graphs (Erdös-Rényi models)
- Watts-Strogatz models
- Scale-free Networks

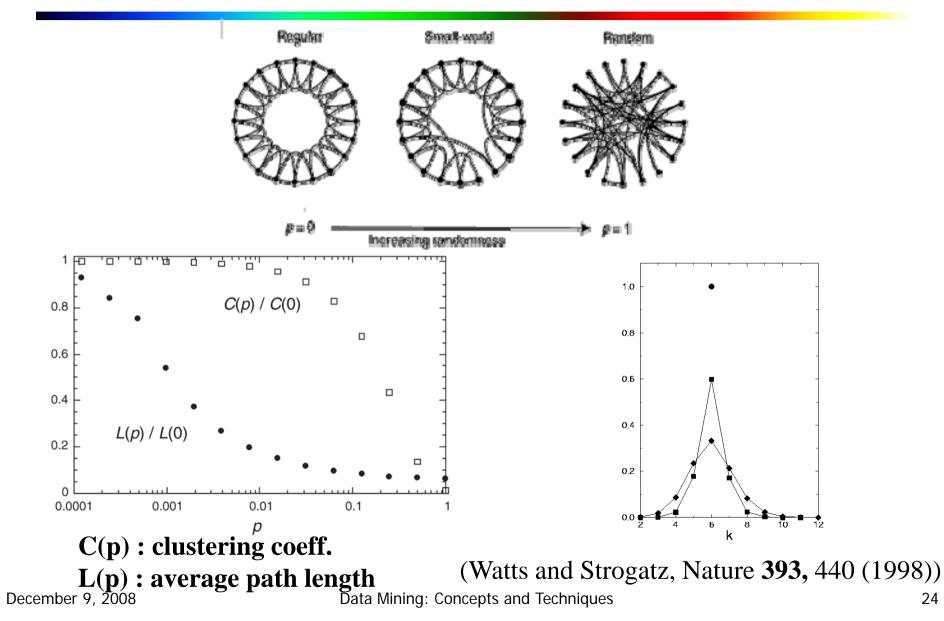
Caveman and Solaria

- Erdos-Renyi:
 - sharing a common neighbor makes two vertices *no more likely* to be directly connected than two very "distant" vertices
 - every edge appears entirely *independently* of existing structure
- But in many settings, the *opposite* is true:
 - you tend to meet new friends through your old friends
 - two web pages pointing to a third might share a topic
 - two companies selling goods to a third are in related industries
- Watts' *Caveman* world:
 - *overall* density of edges is low
 - but two vertices with a common neighbor are likely connected
- Watts' Solaria world
 - overall density of edges low; no special bias towards local edges
 - "like" Erdos-Renyi

Making it (Somewhat) Precise: the α -model

- The α -model has the following parameters or "knobs":
 - N: *size* of the network to be generated
 - k: the *average degree* of a vertex in the network to be generated
 - p: the *default probability* two vertices are connected
 - α: adjustable parameter dictating bias towards local connections
- For any vertices u and v:
 - define m(u,v) to be the number of common neighbors (so far)
- Key quantity: the *propensity* R(u,v) of u to connect to v
 - if m(u,v) >= k, R(u,v) = 1 (share too many friends *not* to connect)
 - if m(u,v) = 0, R(u,v) = p (no mutual friends \rightarrow no bias to connect)
 - else, $R(u,v) = p + (m(u,v)/k)^{\alpha} (1-p)$
- Generate NW incrementally
 - using R(u,v) as the edge probability; details omitted
- Note: α = infinity is "like" Erdos-Renyi (but not exactly)

Watts-Strogatz Model



Small Worlds and Occam's Razor

- For small α , should generate large clustering coefficients
 - we "programmed" the model to do so
 - Watts claims that proving precise statements is hard...
- But we do *not* want a new model for every little property
 - Erdos-Renyi \rightarrow small diameter
 - α -model \rightarrow high clustering coefficient
- In the interests of *Occam's Razor*, we would like to find
 - a single, simple model of network generation...
 - ... that *simultaneously* captures *many* properties
- Watt's small world: small diameter and high clustering

Meanwhile, Back in the Real World...

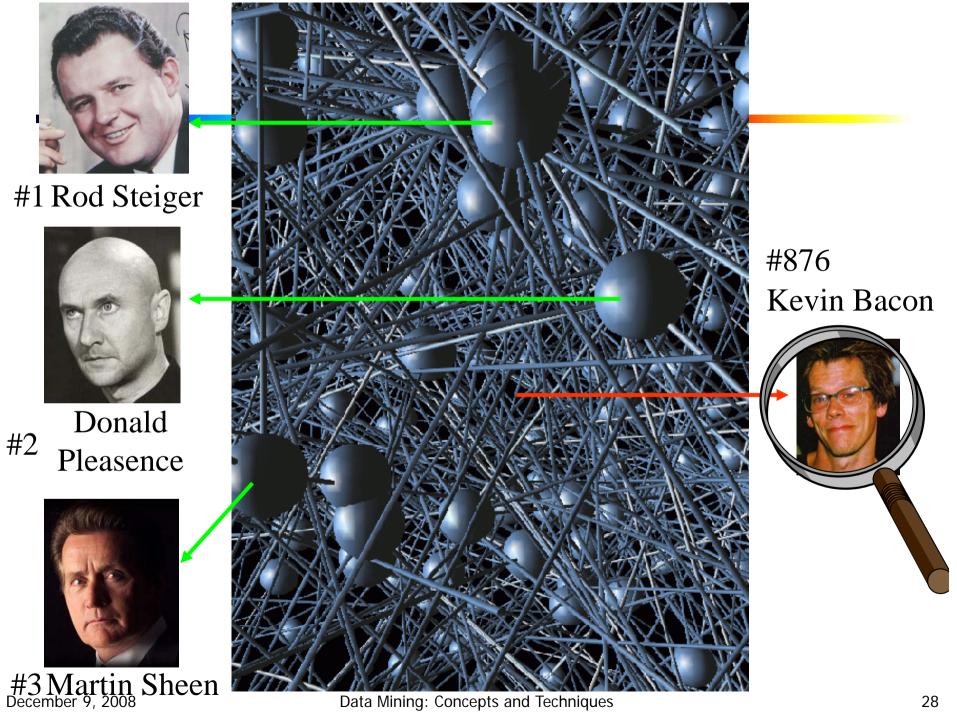
- Watts examines three real networks as case studies:
 - the Kevin Bacon graph
 - the Western states power grid
 - the C. elegans nervous system
- For each of these networks, he:
 - computes its size, diameter, and clustering coefficient
 - compares diameter and clustering to *best* Erdos-Renyi approx.
 - shows that the *best* α -model approximation is better
 - important to be "fair" to each model by finding best fit
- Overall moral:
 - If we care only about diameter and clustering, α is better than p

Case 1: Kevin Bacon Graph

- Vertices: actors and actresses
- Edge between u and v if they appeared in a film together

. . .

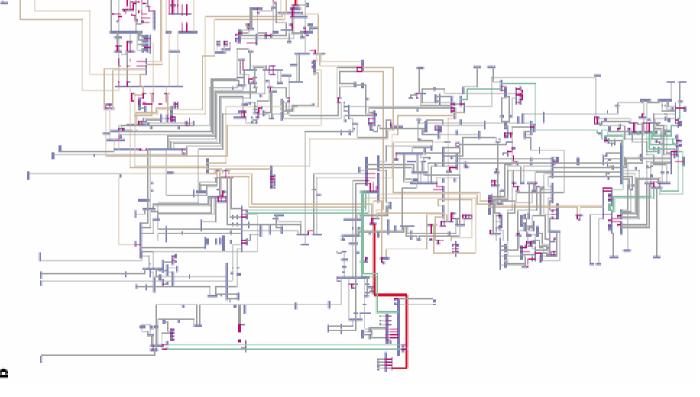
	Rank	Name	Average distance	# of movies	# of links
Kevin Bacon No. of movies : 46	1	Rod Steiger	2.537527	112	2562
	2	Donald Pleasence	2.542376	180	2874
	3	Martin Sheen	2.551210	136	3501
	4	Christopher Lee	2.552497	201	2993
No. of actors : 1811	5	Robert Mitchum	2.557181	136	2905
Average separation: 2.79	6	Charlton Heston	2.566284	104	2552
	7	Eddie Albert	2.567036	112	3333
Is Kevin Bacon the most	8	Robert Vaughn	2.570193	126	2761
	9	Donald Sutherland	2.577880	107	2865
	10	John Gielgud	2.578980	122	2942
	11	Anthony Quinn	2.579750	146	2978
connected actor?	12	James Earl Jones	2.584440	112	3787
	•••				
<i>NO!</i>	876	Kevin Bacon	2.786981	46	1811



Data Mining: Concepts and Techniques

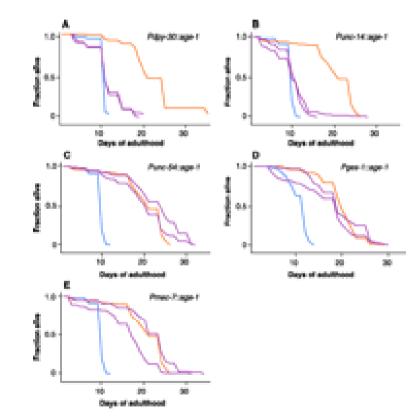
Case 2: New York State Power Grid

- Vertices: generators and substations
- Edges: high-voltage power transmission lines and transformers
- Line thickness and color indicate the voltage level
 - Red 765 kV, 500 kV; brown 345 kV; green 230 kV; grey 138 kV



Case 3: C. Elegans Nervous System

- Vertices: neurons in the C. elegans worm
- Edges: axons/synapses between neurons



Two More Examples

- M. Newman on scientific collaboration networks
 - coauthorship networks in several distinct communities
 - differences in degrees (papers per author)
 - empirical verification of
 - giant components
 - small diameter (mean distance)
 - high clustering coefficient
- Alberich et al. on the Marvel Universe
 - *purely fictional* social network
 - two characters linked if they appeared together in an issue
 - "empirical" verification of
 - heavy-tailed distribution of degrees (issues and characters)
 - giant component
 - rather *small* clustering coefficient

One More (Structural) Property...

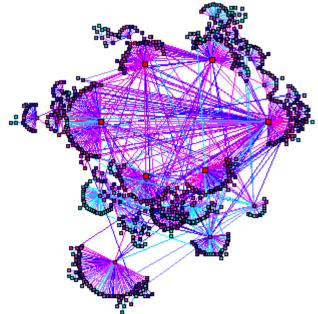
- A properly tuned α -model can *simultaneously* explain
 - small diameter
 - high clustering coefficient
- But what about heavy-tailed degree distributions?
 - α -model and simple variants will *not* explain this
 - intuitively, no "bias" towards large degree evolves
 - all vertices are created equal
- Can concoct many *bad* generative models to explain
 - generate NW according to Erdos-Renyi, reject if tails not heavy
 - describe *fixed* NWs with heavy tails
 - all connected to v1; N/2 connected to v2; etc.
 - not clear we can get a precise power law
 - not modeling *variation*
 - why would the world evolve this way?
- As always, we want a "natural" model

Models of Social Network Generation

- Random Graphs (Erdös-Rényi models)
- Watts-Strogatz models
- Scale-free Networks

World Wide Web

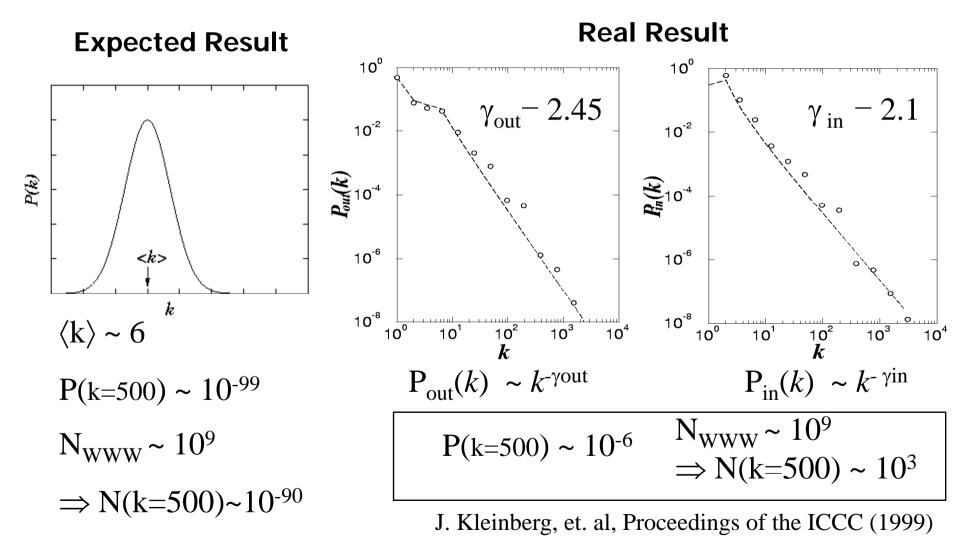
Nodes: WWW documents Links: URL links 800 million documents (S. Lawrence, 1999)



ROBOT: collects all URL's found in a document and follows them recursively

R. Albert, H. Jeong, A-L Barabasi, Nature, **401** 130 (1999) Data Mining: Concepts and Techniques 34

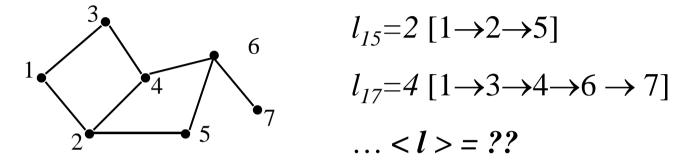
World Wide Web



December 9, 2008

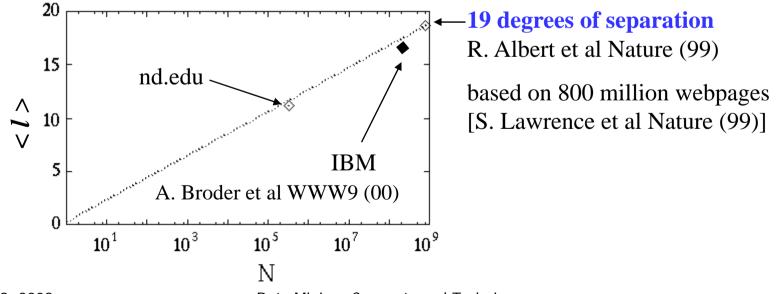
Data Mining: Concepts and Techniques

World Wide Web



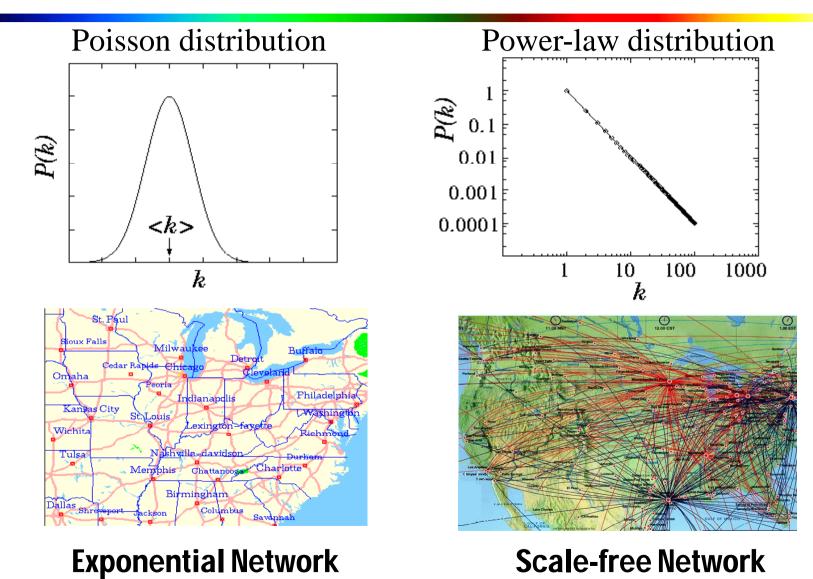
• Finite size scaling: create a network with N nodes with $P_{in}(k)$ and $P_{out}(k)$

< l > = 0.35 + 2.06 log(N)



Data Mining: Concepts and Techniques

What does that mean?



Scale-free Networks

- The number of nodes (N) is not fixed
 - Networks continuously expand by additional new nodes
 - WWW: addition of new nodes
 - Citation: publication of new papers
- The attachment is not uniform
 - A node is linked with higher probability to a node that already has a large number of links
 - WWW: new documents link to well known sites (CNN, Yahoo, Google)
 - Citation: Well cited papers are more likely to be cited again

Scale-Free Networks

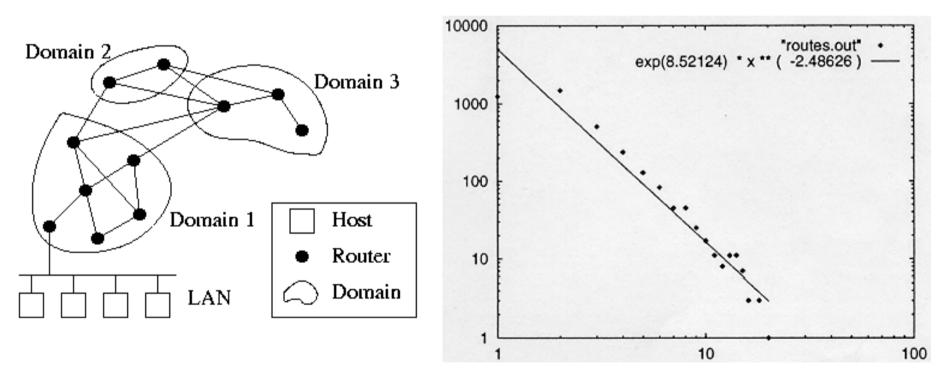
- Start with (say) two vertices connected by an edge
- For i = 3 to N:
 - for each 1 <= j < i, d(j) = degree of vertex j so far</p>
 - Iet Z = S d(j) (sum of all degrees so far)
 - add new vertex i with k edges back to {1, ..., i-1}:
 - i is connected back to j with probability d(j)/Z
- Vertices j with high degree are likely to get more links!
- "Rich get richer"
- Natural model for many processes:
 - hyperlinks on the web
 - new business and social contacts
 - transportation networks
- Generates a power law distribution of degrees
 - exponent depends on value of k

Scale-Free Networks

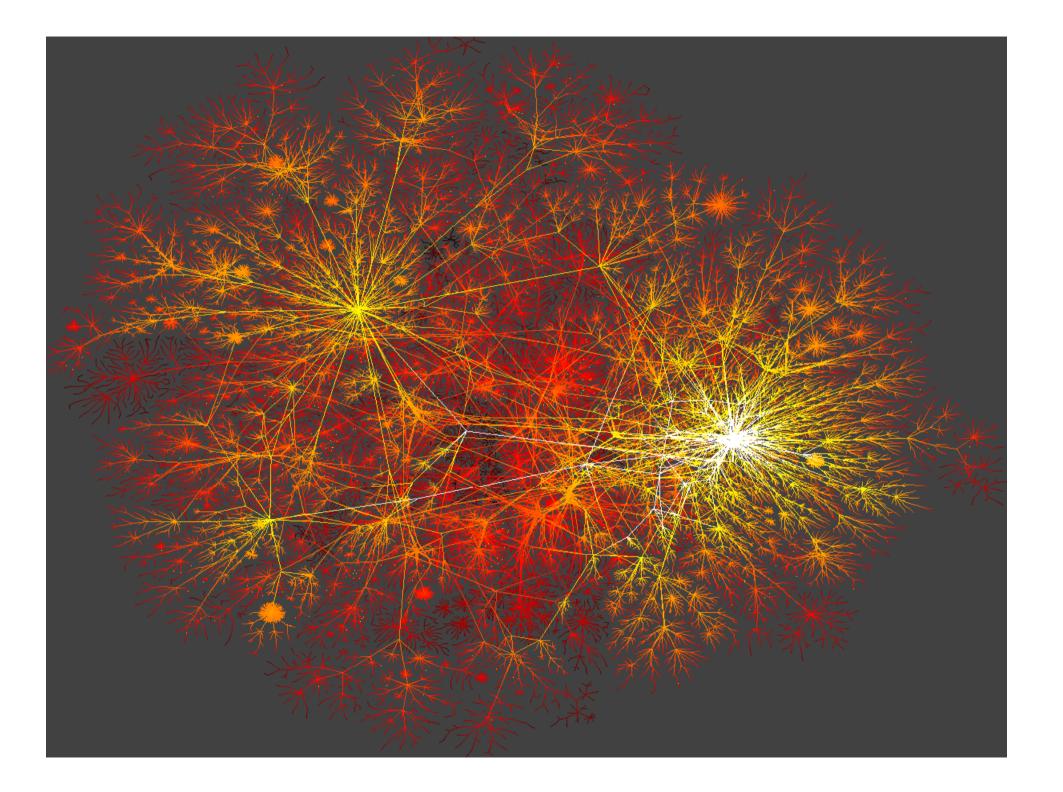
- Preferential attachment explains
 - heavy-tailed degree distributions
 - small diameter (~log(N), via "hubs")
- Will *not* generate high clustering coefficient
 - no bias towards local connectivity, but towards hubs

Case1: Internet Backbone

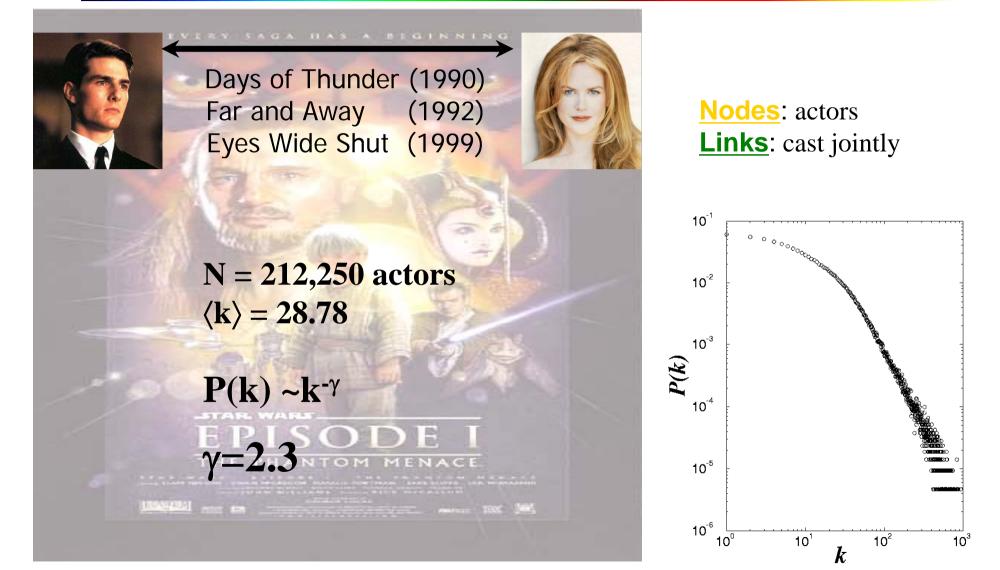
Nodes: computers, routers Links: physical lines



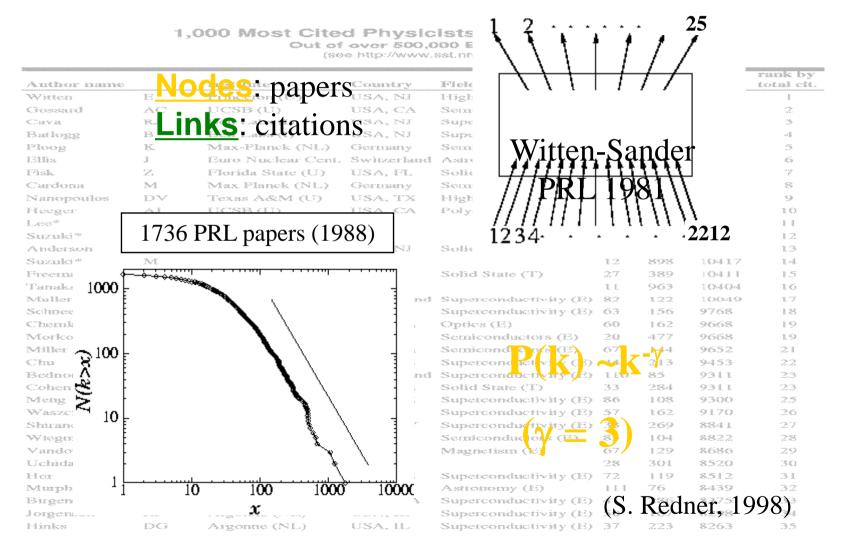
(Faloutsos, Faloutsos and Faloutsos, 1999)



Case2: Actor Connectivity

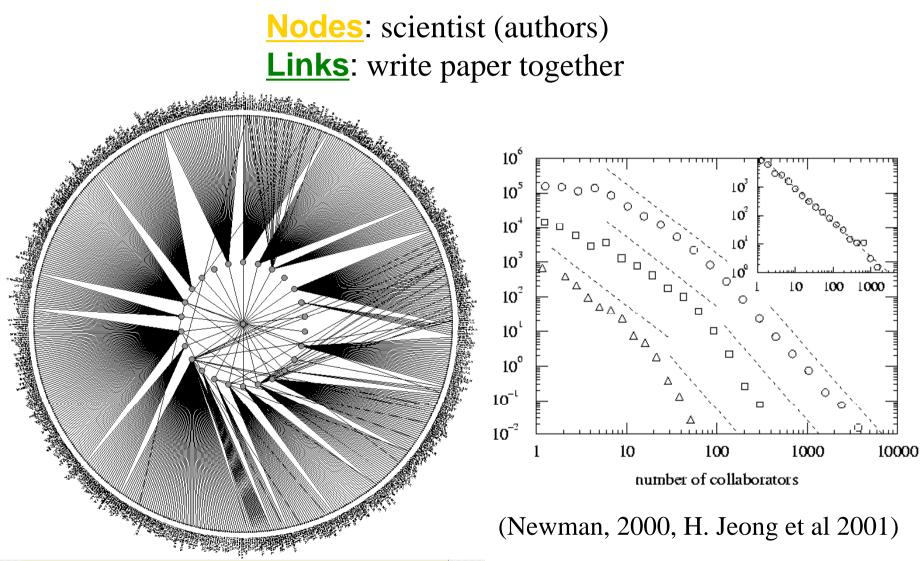


Case 3: Science Citation Index

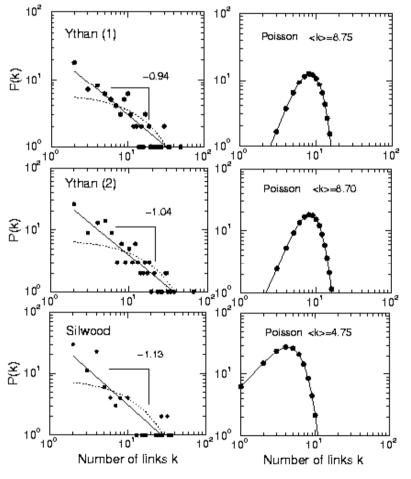


* citation total may be skewed because of multiple authors with the same name

Case 4: Science Coauthorship

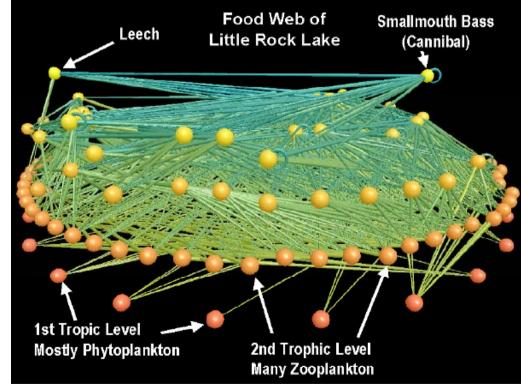


Case 5: Food Web



R. Sole (cond-mat/0011195)

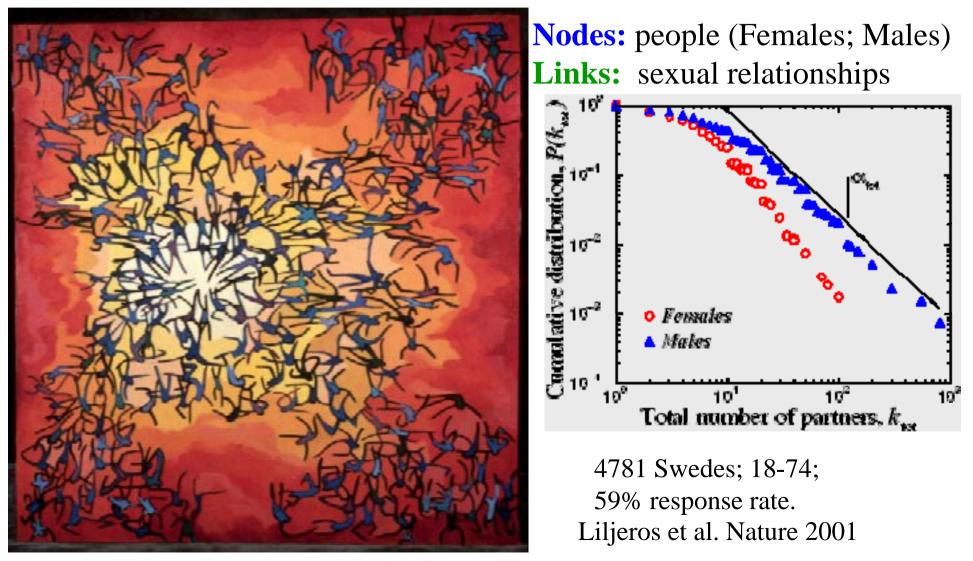
Nodes: trophic species Links: trophic interactions



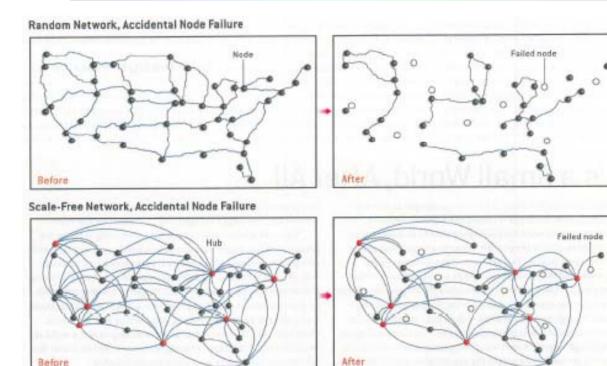
R.J. Williams, N.D. Martinez Nature (2000)

Data Mining: Concepts and Techniques

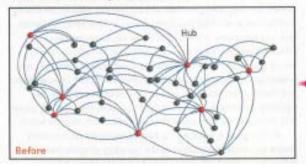
Case 6: Sex-Web

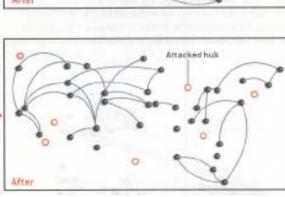


Robustness of Random vs. Scale-Free Networks



Scale-Free Network, Attack on Hubs





The accidental failure of a number of nodes in a random network can fracture the system into noncommunicating islands.

- Scale-free networks are more robust in the face of such failures.
- Scale-free networks are highly vulnerable to a coordinated attack against their hubs.