Real networks vs random networks

Analisi di reti sociali - Aprile 2011

RANDOM NETWORK MODEL

Pául Erdös (1913-1996)

Erdös-Rényi model (1960)

Connect with probability p

p=<mark>1/6</mark> N=10 ⟨k⟩ ~ 1.5

RANDOM NETWORK MODEL

Definition: A **random graph** is a graph of N labeled nodes where each pair of nodes is connected by a preset probability **p**.

The probability to form a *particular* graph **G(N,L)** is

$$P(G(N,L)) = p^{L}(1-p)^{\frac{N(N-1)}{2}-L}$$

That is, each graph **G(N,L)** appears with probability **P(G(N,L))**.

N=10

p=1/6

P(L): the probability to have a network of exactly L links

$$P(L) = \begin{pmatrix} N \\ 2 \\ L \end{pmatrix} p^{L} (1-p)^{\frac{N(N-1)}{2}-L}$$

•The average number of links <*L*> in a random graph

$$=\sum_{L=0}^{\frac{N(N-1)}{2}}LP(L)=p\frac{N(N-1)}{2} < k>=2L/N=p(N-1)$$

•The standard deviation

$$\sigma^2 = p(1-p)\frac{N(N-1)}{2}$$

P(L): the probability to have exactly L links in a network of N nodes and probability p:

Binomial distributio

DEGREE DISTRIBUTION OF A RANDOM GRAPH

$$<\!k\!>=\!p(N\!-\!1) \qquad \qquad \sigma_k^2 = p(1-p)(N\!-\!1)$$
$$\frac{\sigma_k}{<\!k\!>} = \left[\frac{1-p}{p}\frac{1}{(N\!-\!1)}\right]^{1/2} \approx \frac{1}{(N\!-\!1)^{1/2}}$$

As the network size increases, the distribution becomes increasingly narrow—we are increasingly confident that the degree of a node is in the vicinity of <k>.

Random graphs tend to have a tree-like topology with almost constant node degrees.

- nr. of first neighbors:
- nr. of second neighbors:
- •nr. of neighbours at distance d:
- estimate maximum distance:

$$N_{1} \cong \langle \mathbf{k} \rangle$$
$$N_{2} \cong \langle \mathbf{k} \rangle^{2}$$
$$N_{d} \cong \langle \mathbf{k} \rangle^{d}$$

$$l + \sum_{l=1}^{l_{max}} \langle k \rangle^{i} = N \qquad l_{max} = \frac{\log N}{\log \langle k \rangle}$$

Network	Size	(k)	1	I, and	С	Crand	Reference	Nr
www, site level, undir	153127	35.21	3.1	3.35	0.1078	0.00023	Adamic, 1999	1
Internet, domain level	3015-6209	3.52-4.11	3.7-3.76	6.36-6.18	0.18-0.3	0.001	Yook e al., 2001a, Pastor-Satorras et al., 2001	2
Movie actors	225226	61	3.65	2.99	0.79	0.00027	Watts and Strogatz, 1998	З
LANL co-authorship	52909	9.7	5.9	4.79	0.43	1.8 x 10 ⁻⁺	Newman, 2001a, 2001b, 2001c	4
MEDLINE eo-authorship	1520251	18.1	4.6	4.91	0.066	1.1 x 10 ⁻⁵	Newman, 2001a, 2001b, 2001c	5
SPIRES co-authorship	56627	173	4.0	2.12	0.726	0.003	Newman, 2001a, 2001b, 2001c	6
NCSTRL co-authorship	11994	3.59	97	7.34	0.496	3 x 10"	Newman, 2001a, 2001b, 2001c	7
Math. co-authorship	70975	3.9	9.5	8.2	0.59	5.4 x 10 ⁻⁶	Barabasi et al, 2001	В
Neurosci. co-authorship	209293	11.5	6	5.01	0.76	55×10 ⁻¹	Barabasi et al, 2001	9
E. coli, sustrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner and Fell, 2000	10
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner and Fell, 2000	11
Ythan estuary food web	134	87	2.43	2.26	0.22	0.06	Montova and Sole, 2000	12
Silwood Park food web	154	4.75	3.40	3.23	0.15	0.03	Montova and Sole, 2000	13
Words, co-occurrence	460902	70.13	2.67	3.03	0.437	0.0001	Ferrer i Cancho and Sole. 2001	14
Words, synonyms	22311	13.48	4.5	3.84	0.7	0.0005	Yook et al. 2001b	15
Power grid	4941	2.67	18.7	12.4	0.08	0.005	Watts and Strogatz, 1998	16
C.Elegans	282	14	2.65	2.25	0.28	0.05	Watts and Strogatz, 1998	17

Given the huge differences in scope, size, and average degree, the agreement is excellent.

Degree distribution

Binomial, Poisson (exponential tails)

Clustering coefficient

Vanishing for large network sizes

Average distance among nodes

Logarithmically small

Are real networks like random graphs?

ARE REAL NETWORKS LIKE RANDOM GRAPHS?

As quantitative data about real networks became available, we can compare their topology with the predictions of random graph theory.

Note that once we have N and <k> for a random network, from it we can derive every measurable property. Indeed, we have:

Average path length:

$$< l_{rand} > \approx \frac{\log N}{\log \langle k \rangle}$$

Clustering Coefficient:

$$C_{rand} = p = \frac{\langle k \rangle}{N}$$

Degree Distribution:

$$P_{rand}(k) \cong C_{N-1}^{k} p^{k} (1-p)^{N-1-k}$$
$$P(k) = e^{-\langle k \rangle} \frac{\langle k \rangle^{k}}{k!}$$

PATH LENGTHS IN REAL NETWORKS

CLUSTERING COEFFICIENT

THE DEGREE DISTRIBUTION

Prediction:

$$P_{rand}(k) \cong C_{N-1}^{k} p^{k} (1-p)^{N-1-k}$$

Data:

 $P(k) \approx k^{-\gamma}$

- (c) Coauthorship, high energy physics;
- (d) Coauthorship, neuroscience

(b)

As quantitative data about real networks became available, we can compare their topology with the predictions of random graph theory.

Note that once we have N and <k> for a random network, from it we can derive every measurable property. Indeed, we have:

Average path length:

Clustering Coefficient:

tening coemcient.

Degree Distribution:

Social network as Small World

Analisi di reti sociali - Aprile 2011

Six Degrees of Kevin Bacon

Origins of a small-world idea:

- Bacon number:
 - Create a network of Hollywood actors
 - Connect two actors if they coappeared in the movie
 - Bacon number: number of steps to Kevin Bacon
- As of Dec 2007, the highest (finite) Bacon number reported is 8
- Only approx. 12% of all actors cannot be linked to Bacon

9/22/2010

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis

Analisi di reti sociali - Aprile 2011

The Small-world experiment

- What is the typical shortest path length between any two people?
 - Experiment on the global friendship network
 - Can't measure, need to probe explicitly
- The Small-world experiment [Stanley Milgram '67]
 - Picked 300 people at random
 - Ask them to get a letter to a by passing it through friends to a stockbroker in Boston
- How many steps does it take?

The Small-world experiment

64 chains completed:

 6.2 on the average, thus "6 degrees of separation"

Further observations:

- People what owned stock
 had shortest paths to the stockbroker than random people: 5.4 vs. 5.7
- People from the Boston area have even closer paths: 4.4

Milgram: Further observations

- People use different networks: Boston vs. occupation
- Criticism:
 - Funneling:

- 31 of 64 chains passed through 1 of 3 people ass their final step → Not all links/nodes are equal
- Choice of starting points and the target were non-random
- People refuse to participate (25% for Milgram)
- Some sort of social search: People in the experiment follow some strategy (e.g., geographic routing) instead of forwarding the letter to everyone. They are not finding the shortest path.
- There are not many samples.
- People might have used extra information resources.

[Dodds-Muhamad-Watts, '03] Columbia small-world study

- In 2003 Dodds, Muhamad and Watts performed the experiment using email:
 - 18 targets of various backgrounds
 - 24,000 first steps (~1,500 per target)
 - 65% dropout per step
 - 384 chains completed (1.5%)

Avg. chain length = 4.01 PROBLEM: Huge drop-out rate, i.e., longer chains are less likely to complete

Correcting for the drop-out rate

Huge drop-out rate:

- Longer chains don't complete Correction proposed by Harrison-White. Let:
 - f_j = true (unobserved) fraction of chains that would have length j
 - N = total # of starters
 - N_j = # starters who reached target in j steps
 - Then: $f_j^* := N/N$
 - Assume drop-out rate 1α in each step, so $f_j^* := f_j \alpha^j$
 - $\sum_{j} f_{j} = 1 \rightarrow \sum_{j} f_{j}^{*} \alpha^{j} = 1$
 - Observe f_j^* , calculate the average dropout rate 1- α and then $f_{\alpha} = f_{\alpha}^* \cdot \lambda^{-3}$

Small-world in soc. networks

C

- After the correction:
 - Typical path length L=7 (MEDIAN)
- Some not well understood phenomena in social networks:
 - Funneling effect: some target's friends are more likely to be the final step.
 - Conjecture: High reputation/authority
 - Effects of target's characteristics: structurally why are high-status target easier to find
 - Conjecture: Core-periphery net structure

18 target persons: Status/Authority

Target	City	Country	Occupation	Gender	N	N. (%)	r inj	<4>>	
1	Novasihink	Kursta	Phil) student	1 ⁱ	3254	28(0.22)	64 (26)	4.05	
2	New York	USA	Writer	F	6014	31 (0.51)	65 (73)	3.61	
3	Randong	Indexterior	Cocmployed	м	8151	0	66(36)	esta.	
4	New York	USA	Journalist	1º	5690	41 (0.77)	60 (72)	3.9	
5	Tihaca	USA	Protessor	м	3653	165 (2.87)	54(71)	3.84	4164
6	Melbourne	Australia	Travel Consultant	F	5307	20 (0.36)	60(21)	5.2	STOTUT
7	Bardafors	Norway	Anny veterinarian	м	4343	16 (9.37)	63 (76)	1.25	4.05
8	Persh	Australia	Police Officer	м	4485	4 (0.09)	64 (75)	4.5	
9	Omilu	USA	Life Insurance	F	4360	2 (0.04)	66 (79)	4.5	
			Agent						
10	Welwyn Garden City	UK	Retired	м	6393	1 (0.02)	65 (74)		
8.1	Paris	Preserve	Libertion	۳	4198	3 (0.07)	63 (75)	5	
12	'I allina	Intonia	Archival Inspector	м	4530	sf (0.18)	63(79)	- 4	
13	Munich	Germany	Jeurnalisz	м	4350	32 (9.74)	62 (74)	4.66	
14	Split	Ceuria	Saucient	м	6629	0	63 (77)	64	•N # people assigned
13	Gargaon	India	Technology	м	4510	12 (0.27)	67 (78)	3.67	to correspond to target
			Consultant						•N # completed
16	Managon	Nicaragou	Computer analysi	м	6347	2 (0.03)	68 (78)	5.5	chains
17	Katikari	New Zealand	Potter	м	4091	12 (9.3)	62 (74)	4.33	•r frac. of people who
18	Eldenon	USA	Lotheran Pastor	м	4438	9 (0.21)	68 (76)	1.33	did not forward
Totals	1				98,847	384 (0.4)	63 (75)	4.05	 •L mean path length

18 target persons: Status/Authority

Target	City	Country	Occupation	Gender	N	N. (%)	r inj	<4>>	
1	Novasihink	Kursta	Phil) student	1 ⁱ	3254	28(0.22)	64 (26)	4.05	
2	New York	USA	Writer	F	6014	31 (0.51)	65 (73)	3.61	
3	Randong	Indexterior	Cocmployed	м	8151	0	66(36)	eda	
4	New York	USA	Journalist	1º	5690	41 (0.77)	60 (72)	3.9	
5	Tihaca	USA	Protessor	м	3653	165 (2.87)	54(71)	3.84	4164
6	Melbourne	Australia	Travel Consultant	F	5307	20 (0.36)	60(21)	5.2	STOTUT
7	Bardafors	Norway	Anny veterinarian	м	4343	16 (9.37)	63 (76)	1.25	4.05
8	Persh	Australia	Police Officer	м	4485	4 (0.09)	64 (75)	4.5	
9	Omilu	USA	Life Insurance	F	4360	2 (0.04)	66 (79)	4.5	
			Agent						
10	Welwyn Garden City	UΚ	Retired	м	6393	1 (0.02)	65 (74)		
8.1	Paris	Press	Libertion	۳	4198	3 (0.07)	63 (75)	5	
12	'I allina	Intonia	Archival Inspector	м	4530	sf (0.18)	63(79)	- 4	
13	Munich	Germany	Jeurnalisz	м	4350	32 (9.74)	62 (74)	4.66	
14	Split	Ceuria	Saucient	м	6629	0	63 (77)	64	•N # people assigned
13	Gargaon	India	Technology	м	4510	12 (0.27)	67 (78)	3.67	to correspond to target
			Consultant						•N # completed
16	Managon	Nicaragou	Computer analysi	м	6347	2 (0.03)	68 (78)	5.5	chains
17	Katikari	New Zealand	Potter	м	4091	12 (9.3)	62 (74)	4.33	•r frac. of people who
18	Eldenon	USA	Lotheran Pastor	м	4438	9 (0.21)	68 (76)	1.33	did not forward
Totals	1				98,847	384 (0.4)	63 (75)	4.05	 •L mean path length

6-degrees: Should we be surprised?

- Assume each human is connected to 100 other people:
- So:
 - In step 1 she can reach 100 people
 - In step 2 she can reach 100*100 = 10,000 people
 - In step 3 she can reach 100*100*100 = 100,000 people
 - In 5 steps she can reach 10 billion people
- What's wrong here?
 - Many edges are local ("short"): friend of a friend

Planetary-Scale Views on an Instant-Messaging Network

*Jure Leskovec⁺

Machine Learning DepartmentCarnegie Mellon University Pittsburgh, PA, USAEric HorvitzMicrosoft Research Redmond, WA, USAMicrosoft Research Technical Report MSR-TR-2006-186June 2007

IM experiment

Contact (buddy) list Messaging window

Analisi di reti sociali - Aprile 2011

Data statistics

- Data for June 2006
- Log size:
 - 150Gb/day (compressed)
- Total: 1 month of communication data: 4.5Tb of compressed data
- Activity over June 2006 (30 days)
 - 245 million users logged in
 - 180 million users engaged in conversations
 - 17,5 million new accounts activated
 - More than 30 billion conversations
 - More than 255 billion exchanged messages

Data statistics: typical day

Activity on a typical day (June 1 2006):

- 1 billion conversations
- 93 million users login
- 65 million different users talk (exchange messages)
- 1.5 million invitations for new accounts sent

Messaging as a network

Analisi di reti sociali - Aprile 2011

IM communication network

Buddy graph

- 240 million people (people that login in June '06)
- 9.1 billion buddy edges (friendship links)
- <u>Communication graph</u> (take only 2-user conversations)
 - Edge if the users exchanged at least 1 message
 - 180 million people
 - 1.3 billion edges
 - 30 billion conversations

Network connectivity

Analisi di reti sociali - Aprile 2011

