National Ph.D. Program in Artificial Intelligence for Society Statistics for Machine Learning Lesson 07 - Statistical decision theory.

Andrea Pugnana, Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy andrea.pugnana@di.unipi.it salvatore.ruggieri@unipi.it

The classification/concept learning problem

- X = (W, C) where W are predictive features and C class, with $support(C) = \{0, 1, \dots, n_C 1\}$
- x_1, \ldots, x_n are observations (training set), with $x_i = (w_i, c_i)$ for $i = 1, \ldots, n$
- $\theta \in \Theta$ with Θ hypothesis space (parameters of ML model) with f_{θ} joint density of W, C

Classification/concept learning: which hypothesis is the most probable given the observed data?

$$\bullet \ \theta_{MLE} = \arg \max_{\theta} \ell(\theta) = \arg \min_{\theta} -\ell(\theta) = \arg \min_{\theta} \sum_{i=1}^{n} -\log f_{\theta}(x_i)$$

$$f_{\theta}(x_i) = f_{\theta}(w_i, c_i) = f_{\theta}(c_i | w_i) f_{\theta}(w_i)$$

- $\bullet \ \theta_{MLE} = \arg\min_{\theta} \sum_{i=1}^{n} -\log f_{\theta}(c_i|w_i) \sum_{i=1}^{n} \log f_{\theta}(w_i)$
- Assuming $\theta \perp W$, we have $f_{\theta_1}(w_i) = f_{\theta_2}(w_i)$, and then:

$$\theta_{MLE} = \arg \min_{\theta} \sum_{i=1}^{n} -\log f_{\theta}(c_i|w_i)$$

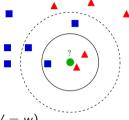
- ▶ How to compute θ_{MLE} ? Closed form, brute force enumeration of $\theta \in \Theta$, heuristic search, ...
- $f_{\theta}(c|w) = P(C = c|W = w, \theta)$ is called a **probabilistic classifier** learned/trained from x_1, \ldots, x_n

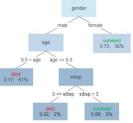
Probabilistic classifiers: examples

- Logistic regression
- k-Nearest Neighbors (k-NN)
- Decision trees
- Neural networks
- Naive Bayes $P(C = c_0 | W = w) = P(C = c_0) \prod_i P(W_i = w_i | C = c_0) / P(W = w)$ assuming $P(W = w | C = c_0) = \prod_i P(W_i = w_i | C = c_0)$ Survival of passengers on the Titanic
- Ensembles

• . . .

- Gradient boosting
- More classifiers at the Machine Learning and Data Mining courses





MLE and KL divergence/Cross-Entropy

$$\theta_{MLE} = \arg\min_{\theta} \sum_{i=1}^{n} -\log f_{\theta}(c_i|w_i)$$

- Assume data is generated from $f_{ heta_{TRUE}}$, i.e., $(W, C) \sim f_{ heta_{TRUE}}$
- We compute:

$$\theta_{MLE} = \arg\min_{\theta} \sum_{i=1}^{n} (-\log f_{\theta}(c_i|w_i) + \log f_{\theta_{TRUE}}(c_i|w_i)) = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log \frac{f_{\theta_{TRUE}}(c_i|w_i)}{f_{\theta}(c_i|w_i)}$$

$$\xrightarrow{n \to \infty}_{LLN} \arg\min_{\theta} E_{(W,C) \sim f_{\theta_{TRUE}}} [\log \frac{f_{\theta_{TRUE}}(C \mid W)}{f_{\theta}(C \mid W)}] = \arg\min_{\theta} D_{KL}(\theta_{TRUE} \parallel \theta) = \arg\min_{\theta} H(\theta_{TRUE}; \theta)$$

• Asymptotically: ML maximization = KL divergence minimization = Cross-entropy minimization

The classification/concept prediction problem

Question: which is the most probable class value given w and θ ?

• **Problem**: given $\theta \in \Theta$ and W = w, what is the most probable C = c? i.e.:

$$\mathop{arg}\max_{c} P(C=c,W=w| heta)$$

which is equivalent, assuming $\theta \perp\!\!\!\perp W$, to:

$$arg \max_{c} P(C = c | W = w, \theta) \cdot P(W = w | \theta) = arg \max_{c} f_{\theta}(c | w)$$

• Bayes decision rule
$$y^*_{ heta}(w) = arg \max_c f_{ heta}(c|w)$$

[or simply, y^*]

Theorem (Bayes decision rule is optimal)

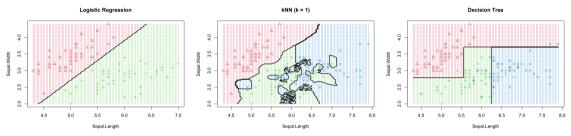
Fix $\theta \in \Theta$. For any decision rule $y_{\theta}^+ : \mathbb{R}^{|W|} \to \{0, \dots, n_C - 1\}$:

 $P(y^*_{ heta}(W) \neq C) \leq P(y^+_{ heta}(W) \neq C)$

Proof.
$$P(y_{\theta}^{*}(W) = C) = E[\mathbb{1}_{y_{\theta}^{*}(W)=C}] = E[E_{C}[\mathbb{1}_{y_{\theta}^{*}(W)=C}|W = w]] \ge$$

 $\ge E[E_{C}[\mathbb{1}_{y_{\theta}^{+}(W)=C}|W = w]] = E[\mathbb{1}_{y_{\theta}^{+}(W)=C}] = P(y_{\theta}^{+}(W) = C)$

Decision boundary



- A decision boundary for a decision rule $y_{\theta}^+()$ is the region $w \in \mathbb{R}^{|W|}$ such that $y_{\theta}^+(w)$ could admit as possible answers two or more classes
- For y_{θ}^* , it is the region $w \in \mathbb{R}^{|W|}$ such that $\arg \max_c f_{\theta}(c|w)$ is not unique.
- For y_{θ}^* and $n_C = 2$, it is the region $w \in \mathbb{R}^{|W|}$ such that $f_{\theta}(1|w) = 0.5$.

Bayes optimal predictions

Question: which is the most probable class value given w only (i.e., without fixing the parameters)?

- Possible answer: the prediction of the most probable model, i.e., $arg \max_{c} P(C = c | W = w, \theta_{MAP})$
- No, we can do better
 - Let $\Theta = \{\theta_1, \theta_2, \theta_3\}$ and $\Box P(\theta_1 | X_1 = x_1, \dots, X_n = x_n) = 0.4$ $\Box P(\theta_2 | X_1 = x_1, \dots, X_n = x_n) = P(\theta_3 | X_1 = x_1, \dots, X_n = x_n) = 0.3$
 - Hence $\theta_{MAP} = \theta_1$
 - Assume $f_{ heta_1}(1|w) = 1$ and $f_{ heta_2}(0|w) = f_{ heta_3}(0|w) = 1$
 - Hence, class 0 has the largest probability (over the hypothesis space), whilst θ_{MAP} predicts 1
- **Problem**: given W = w, what is the most probable C = c? i.e.:

$$\arg \max_{c} P(C = c | W = w, X_1 = x_1, \dots, X_n = x_n)$$

Bayes optimal prediction

arg
$$\max_{c} \sum_{\theta \in \Theta} f_{\theta}(c|w) P(\theta|X_1 = x_1, \dots, X_n = x_n)$$

No-Free-Lunch theorem

• A learner A is a computable function that maps a training set x_1, \ldots, x_n into a decision rule $y_{\theta}()$

Question: Is there a learner \mathcal{A} that always maps a training set into a decision rule with zero error?

No-Free-Lunch theorem (Molpert, 1990)

Consider binary classification, i.e., $n_C = 2$, and a finite domain $dom(W) < \infty$. For any learner A, there exists a distribution F with $(W, C) \sim F$ such that:

for at least 1/7 of the training sets x₁,..., x_n (realizations of Fⁿ) with n < |dom(W)|/2, the decision rule y_θ⁺ in output by A has an error of at least 1/8, i.e.:

 $P_F(y^+_ heta(W)
eq C)\geq 1/8$

▶ and there exists an error-free decision rule y_{θ}^{\star} s.t. $P_F(y_{\theta}^{\star}(W) \neq C) = 0$.

See here for an accessible proof

- A universal learner does no exist! No learner can succeed on all learning tasks: every learner has tasks on which it fails whereas other learners succeed.
- The learnt y_{θ}^+ is likely to have a large error for *F*, whereas there exists another learner that will output a decision rule y_{θ}^* with no error.

Probabilistic classifiers

- Probabilistic classifier: $f_{\theta}(c|w) \in [0,1]$ with $\sum_{c} f_{\theta}(c|w) = 1$:
 - learned from x_1, \ldots, x_n
 - ▶ predicted probabilities $(p_0, ..., p_{n_c-1})$ with $p_i = f_{\theta}(i|w)$
 - most probable class $y^*_{ heta} = arg \max_c f_{ heta}(c|w)$
 - confidence (of most probable class) $p_{\theta}^* = \max_c f_{\theta}(c|w)$
- Unnormalized classifier: $uc_{ heta}(c|w) \in \mathbb{R}$
 - unnormalized values (v_0, \ldots, v_{n_c-1}) with $v_i = uc_{\theta}(i|w)$
 - normalization using softmax:

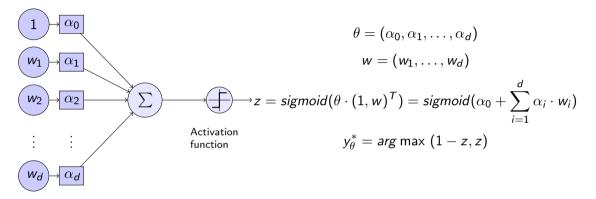
$$softmax((v_0, ..., v_{n_c-1})) = (\frac{e^{v_0}}{\sum_i e^{v_i}}, ..., \frac{e^{v_{n_c-1}}}{\sum_i e^{v_i}})$$

• binary classes ($v_0 = 0, v_1$):

 $softmax((0, v_1)) = (1 - z, z)$ where $z = sigmoid(v_1) = inv.logit(v_1) = \frac{1}{1 + e^{-v_1}}$

- $softmax(\mathbf{v} + c) = softmax(\mathbf{v})$
- $\frac{d}{d\mathbf{v}}$ softmax(\mathbf{v}) = softmax(\mathbf{v})(1 softmax(\mathbf{v}))

Example: Perceptron with sigmoid activation



inputs weights

- Difference with logistic regression?
 - Weights calculated differently (MLE vs gradient descent)
 - Perceptron is parametric to activation functions
 - Perceptron with sigmoid activation = Logistic regression

Binary classification/concept learning

- X = (W, C) where W are predictive features and C class, with $support(C) = \{0, 1\}$
- x_1, \ldots, x_n are observations (training set), with $x_i = (w_i, c_i)$
- **Definition.** Score function: $s_{\theta}(w) = f_{\theta}(1|w) = P(C = 1|W = w, \theta)$
 - predicted probabilities $(1 s_{\theta}(w), s_{\theta}(w))$
 - confidence (of most probable class): $\max\{1 s_{\theta}(w), s_{\theta}(w)\}$

$$f_{\theta}(c_i|w_i) = s_{\theta}(w_i)^{c_i}(1-s_{\theta}(w_i))^{(1-d_i)}$$

• MLE estimation

$$heta_{MLE} = rg\min_{ heta} \sum_{i=1}^n -\log f_{ heta}(c_i|w_i) = rg\min_{ heta} rac{1}{n} \sum_{i=1}^n -c_i \log s_{ heta}(w_i) - (1-c_i) \log (1-s_{ heta}(w_i))$$

• Cross-entropy loss or log-loss:

$$\ell_{ heta}(c,w) = \left\{ egin{array}{ll} -\log s_{ heta}(w) & ext{if } c=1 \ -\log \left(1-s_{ heta}(w)
ight) & ext{if } c=0 \end{array}
ight.$$

• MLE maximization = Log-loss minimization

$$\theta_{MLE} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell_{\theta}(c_i, w_i)$$

....

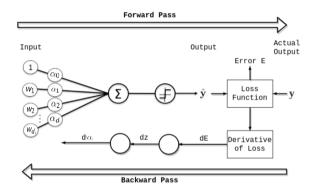
MLE and ERM for classification/concept learning

Empirical risk minimization

Let $\ell_{\theta} : \{0, \dots, n_{C} - 1\} \times \mathbb{R}^{|W|} \to \mathbb{R}_{\geq 0}$ be a loss function. $\theta_{ERM} = \arg \min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell_{\theta}(c_{i}, w_{i})$

- MLE is ERM with Log-loss $\ell_{ heta}(c,w) = -\log f_{ heta}(c|w) = \log rac{1}{P(c|w, heta)}$
- 0-1 loss $\ell_{\theta}(c, w) = \mathbb{1}_{y_{\theta}^+(w) \neq c}$ where $y_{\theta}^+(w) \in \{0, \dots, n_C 1\}$ is a decision rule
 - not convex, not differentiable, optimization problem is NP-hard
- L_p error loss for binary classifiers $\ell_ heta(c,w) = |s_ heta(w) c|^p$
 - absolute error loss or L_1 : $|s_{\theta}(w) c|$
 - squared error loss or L_2 or Brier score: $(s_{\theta}(w) c)^2$

Loss functions and classifiers



- Gradient of loss function determines updates of weights α₀,..., α_d in the direction of improving the loss (Backpropagation)
- Similar idea in ensemble of decision trees, where each one improves on the error of the previous one (Gradient boosting trees)

MSE and the bias-variance trade-off

• Squared error loss $\theta_{ERM} = arg \min_{\theta} MSE$, where the Mean Squared Error is:

$$MSE = rac{1}{n}\sum_{i=1}^n (s_ heta(w_i) - c_i)^2$$

- ► Why named *MSE*? Because *MSE* $\xrightarrow{n \to \infty}_{LLN} E_{(W,C) \sim f_{\theta_{TRUE}}}[(s_{\theta}(W) C)^2]$
- MSE approximates the Mean Squared-Error over the population
- ▶ Notice: in MSE for estimators *C* was a constant (parameter)
- Assumes that $C = D + \epsilon$, where $E[\epsilon] = 0$
 - Observed class labels c_i include some noise w.r.t. true labels, i.e., $c_i = d_i + \epsilon_i$
- Decomposition of MSE:

$$E_{(W,C)\sim f_{\theta_{TRUE}}}[(s_{\theta}(W)-C)^2] = Var(s_{\theta}(W)) + E[s_{\theta}(W)-C]^2 + Var(\epsilon)$$

- $Var(\epsilon)$ irreducible error (would require better curated class values in the training set)
- $E[s_{\theta}(W) C]^2$ is Bias². Minimized by interpolating training data, but with high variance.
- $Var(s_{\theta}(W))$ variance of the scores. Minimized by a constant score, but with high bias.

See R script

[See Lesson 18]

Loss functions and risk

Squared error loss minimization on training set generalizes to the population:

$$\theta_{ERM} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} (s_{\theta}(w) - c_i)^2 \xrightarrow{n \to \infty}_{LLN} \arg\min_{\theta} E_{(W,C) \sim f_{\theta_{TRUE}}}[(s_{\theta}(W) - C)^2]$$

Risk (or Expected Prediction Error EPE)

The risk w.r.t. a loss function ℓ_{θ} is $R(\theta_{TRUE}, \theta) = E_{(W,C) \sim f_{\theta_{TRUE}}}[\ell_{\theta}(C, W)].$

Definition. A loss function is a *proper scoring rule* if:

$$\theta_{TRUE} = \arg\min_{\theta} R(\theta_{TRUE}, \theta)$$

- For log-loss, $R(\theta_{TRUE}, \theta) = D_{KL}(\theta_{TRUE} \parallel \theta) \ge 0$ and $D_{KL}(\theta_{TRUE} \parallel \theta) = 0$ iff $\theta = \theta_{TRUE}$
- Log-loss, squared error (L_2) and 0-1 loss are proper scoring rules, whilst L_1 is not
 - ► For proper scoring rules, $\theta_{ERM} \xrightarrow{n \to \infty} \theta_{TRUE}$ recall we assume such $(W, C) \sim f_{\theta_{TRUE}}$ exists
 - Still, 0-1 loss is discontinuous and can be harmful!

Best classifier for 0-1 loss

Question: what is the decision rule with the smallest 0-1 risk? I.e., arg min_{y_{θ}^{+}} $E_{(W,C)\sim f_{\theta_{TRUE}}}[\mathbb{1}_{y_{\theta}^{+}(W)\neq C}]$?

Binary class *Bayes optimal classifier* (or *Bayes rule*):

$$y^*_{ heta_{TRUE}}(w) = \left\{egin{array}{cc} 1 & ext{if } \eta(w) \geq 1/2 \ 0 & ext{if } \eta(w) < 1/2 \end{array}
ight.$$

where $\eta(w) = P_{\theta_{TRUE}}(C = 1 | W = w)$.

$$\begin{split} E_{(W,C)\sim f_{\theta_{TRUE}}}[\mathbb{1}_{y_{\theta}^{+}(W)\neq C}] &= E_{W}[E_{C}[\mathbb{1}_{y_{\theta}^{+}(W)\neq C}|W]] \\ &= E_{W}[P(C=1|W) \cdot \mathbb{1}_{y_{\theta}^{+}(W)\neq 1} + P(C=0|W) \cdot \mathbb{1}_{y_{\theta}^{+}(W)\neq 0}] \\ &= E_{W}[\eta(W) \cdot \mathbb{1}_{y_{\theta}^{+}(W)=0} + (1-\eta(W)) \cdot \mathbb{1}_{y_{\theta}^{+}(W)=1}] \\ &\geq E_{W}[\min\{\eta(W), 1-\eta(W)\}] \\ &= E_{W}[\eta(W) \cdot \mathbb{1}_{y_{\theta_{TRUE}}^{*}(W)=0} + (1-\eta(W)) \cdot \mathbb{1}_{y_{\theta_{TRUE}}^{*}(W)=1}] \\ &= E_{(W,C)\sim f_{\theta_{TRUE}}}[\mathbb{1}_{y_{\theta_{TRUE}}^{*}(W)\neq C}] & \text{Bayes error rate} \end{split}$$

Bayes optimal classifier

$$\eta(w) = P_{\theta_{TRUE}}(C = 1 | W = w)$$

• $\eta()$ is unknown! (unless we are controlling data generation)

- Plug-in rule: use $\hat{\eta}(w) = f_{\theta}(c|w) = P_{\theta}(C = 1|W = w)$ as an estimate of $\eta(w)$
- Naive Bayes $P(C = c_0 | W = w) = P(C = c_0) \prod_i P(W_i = w_i | C = c_0) / P(W = w)$ assuming $P(W = w | C = c_0) = \prod_i P(W_i = w_i | C = c_0)$
 - ▶ Naive Bayes estimates $\eta(w)$ from empirical distribution of x_1, \ldots, x_n
 - and assuming independence of features
- 1-NN asymptotically converges $(| heta|
 ightarrow\infty)$ to risk:

[Cover and Hart (1967)]

$$r \leq E_{(W,C) \sim f_{\theta_{TRUE}}}[\mathbb{1}_{y_{\theta}^{1-NN}(W) \neq C}] \leq 2r(1-r) \leq 2r$$

where r is the Bayes error rate.

- · Bayes optimal classifier is optimal also for squared loss
 - Squared loss is convex and differentiable (good for optimization solving)

Loss functions and margin

- Binary classes $C = \{-1, 1\}$, unnormalized scores $s_{ heta}(w) \in \mathbb{R}$
 - Bayes decision rule becomes: $y_{\theta}^* = sgn(s_{\theta}(w))$
- Margin for (w, c) defined as

$$m = c \cdot s_{\theta}(w)$$

- Margin > 0 if prediction is correct (i..e, $s_{\theta}(w) \ge 0$ and c = 1, or if $s_{\theta}(w) < 0$ and c = -1)
- Loss minimization equivalent to margin maximization
- Margin-based loss: Loss function $\ell_{\theta}(c, w)$ that can be written as $\phi(m)$:
 - ▶ 0-1 loss: $\phi(m) = \mathbb{1}_{m \leq 0}$
 - Logistic log-loss: $\phi(\overline{m}) = \log_2 (1 + e^{-m})$
 - L_2 loss: $\phi(m) = (1-m)^2$
 - SVM/Hinge loss: $\phi(m) = \max\{0, 1 m\}$
 - AdaBoost/Exponential loss: $\phi(m) = e^{-m}$
- Methods for margin maximization exists for a convex margin-based loss
 - that also provide bounds on 0-1 loss
 - that encode regularizations in the margin-based loss

See R script

$$\eta(w) = P_{\theta_{TRUE}}(C = 1 | W = w)$$

Bayes optimal classifier (or Bayes rule):

$$y^*_{ heta_{TRUE}}(w) = \left\{egin{array}{cc} 1 & ext{if } \eta(w) \geq 1/2 \ 0 & ext{if } \eta(w) < 1/2 \end{array}
ight.$$

- If $\eta(w) pprox 1/2$, we might just as well toss a coin to make a decision
- This motivates the introduction of a reject option for classifiers
 - ▶ reject, or abstain, expressing doubt or uncertainty in decisions
 - ▶ relevant in practice (e.g., to understand the cases where a classifier performs poorly),
 - relevant ethically for socially sensitive decision tasks (e.g., credit scoring, disease prediction, CV screeening, etc.)

$$\eta(w) = P_{\theta_{TRUE}}(C = 1 | W = w)$$

Bayes optimal classifier (with reject option):

$$y_{\theta_{TRUE}}^{*,d}(w) = \begin{cases} 1 & \text{if } \eta(w) > 1 - d \\ 0 & \text{if } \eta(w) < d \\ abstain & \text{otherwise, i.e., } d \le \min\{\eta(w), 1 - \eta(w)\} \end{cases}$$

where $d \in [0, 1/2]$ is the reject cost.

• If $y_{\theta_{TRUE}}^{*,d}(w) \neq abstain$ [d upper bound on misclassification error]

 $d > \min \{\eta(w), 1 - \eta(w)\} = P_{\theta_{TRUE}}(y^*_{\theta}(w) \neq C) \qquad [error of Bayes optimal]$ Theorem (Chow 1970).

$$\arg\min_{y_{\theta}^{+}} E_{(W,C) \sim f_{\theta_{TRUE}}}[d\mathbb{1}_{y_{\theta}^{+}(W)=abstain} + \mathbb{1}_{y_{\theta}^{+}(W) \neq C, y_{\theta}^{+}(W) \neq abstain}] = y_{\theta_{TRUE}}^{*,d}$$

Selective binary classification

A selective binary classifier (score) is a pair (s_{θ}, g_{θ}) , where $s_{\theta}()$ is a classifier (score) and $g_{\theta} : \mathbb{R}^{|W|} \to \{0, 1\}$ is a selection function, which determines when to accept/abstain from using s_{θ} :

$$(s_{ heta},g_{ heta})(w) = egin{cases} s_{ heta}(w) & ext{if } g_{ heta}(w) = 1 \ abstain & ext{otherwise} \end{cases}$$

Support and Risk

The coverage of a selective classifier is $\phi(g_{\theta}) = E_{(W,C)\sim f_{\theta_{TRUE}}}[g_{\theta}(W)]$, i.e., the expected probability of the accepted region. The risk w.r.t. a loss function ℓ_{θ} is $R(s_{\theta}, g_{\theta}) = E_{(W,C)\sim f_{\theta_{TRUE}}}[\ell_{\theta}(C, W)g_{\theta}(W)]/\phi(g_{\theta})$.

• Empirical coverage and empirical selective risk:

$$\hat{\phi}(g_{\theta}) = \frac{\sum_{i=1}^{n} g_{\theta}(w_i)}{n} \qquad \hat{r}(s_{\theta}, g_{\theta}) = \frac{\frac{1}{n} \sum_{i=1}^{n} \ell_{\theta}(c_i, w_i) g_{\theta}(w_i)}{\hat{\phi}(g_{\theta})}$$

• Selective classification problem: minimize risk while guaranteeing a minimum support c

$$\mathop{arg~\min}\limits_{ heta} R(s_{ heta},g_{ heta}) \hspace{0.3cm} ext{s.t.} \hspace{0.3cm} \phi(g_{ heta}) \geq c$$

Soft selective binary classification

A soft selective binary classifier:

$$(s_{ heta}, g_{ heta})(w) = egin{cases} s_{ heta}(w) & ext{if } k_{ heta}(w) \geq au \ abstain & ext{otherwise} \end{cases}$$

- $k_{\theta}(w)$ is called the *confidence function*
 - A good confidence function should rank instances based on descending loss, i.e., if k(w) ≤ k(w') then E[ℓ_θ(C, w)] ≥ E[ℓ_θ(C, w')].
- Confidence of the classifier (see slide 9) and $au \in [1/2, 1]$:

$$k_ heta(w) = \max\{s_ heta(w), 1 - s_ heta(w)\}$$

• The inherent trade-off between risk and coverage is summarized by the risk-coverage curve

