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Statistical model for repeated measurement

• A dataset x1, . . . , xn consists of repeated measurements of a phenomenon we are
interested in understanding

▶ E.g., measurement of the speed of light

• We model a dataset as the realization of a random sample

Random sample

A random sample is a collection of i.i.d. random variables X1, . . . ,Xn ∼ F (α),
where F () is the distribution and α its parameter(s).

• Joint distribution P(X1, . . . ,Xn) =
∏m

i=1P(Xi ) ∼ F n(α)
• Challenging questions/inferences on a population given a sample:

▶ How to determine E [X ], Var(X ), or other functions of X?
▶ How to determine α, assuming to know the form of F?
▶ How to determine both F and α?
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An example

• What is an estimate of the true speed of light (estimand)?

x1 = 850, or min xi , or max xi , or x̄n = 852.4 ?
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An example

• Speed of light dataset as realization of

Xi = c + ϵi

where ϵi is measurement error with E [ϵi ] = 0 and Var(ϵi ) = σ2

• We are then interested in E [Xi ] = c

• How to estimate it?

• Use some data. For X1:
E [X1] = c Var(X1) = σ2

• Use all data. For X̄n = (X1 + . . .+ Xn)/n:

E [X̄n] = c Var(X̄n) =
Var(X1)

n
=

σ2

n

Hence, for n → ∞, Var(X̄n) → 0
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Estimate

Estimand and estimate

An estimand θ is an unknown parameter of a distribution F ().
An estimate t of θ is a value obtained as a function h() over a dataset x1, . . . , xn:

t = h(x1, . . . , xn)

• t = x̄n = 852.4 is an estimate of the speed of light (estimand) t = x1 = 850 is another estimate

• Since x1, . . . , xn are modelled as realizations of X1, . . . ,Xn, estimates are realizations of the
corresponding sample statistics h(X1, . . . ,Xn)

Statistics and estimator

A statistics is a function of h(X1, . . . ,Xn) of r.v.’s.
An estimator of a parameter θ is a statistics Tn = h(X1, . . . ,Xn) intended to
provide information about θ.

• An estimate t = h(x1, . . . , xn) is a realization of the estimator Tn = h(X1, . . . ,Xn)

• Tn = X̄n = (X1 + . . . ,Xn)/n is an estimator of µ Tn = X1 is another estimator
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Unbiased estimator

• The probability distribution of an estimator T is called the sampling distribution of T

Unbiased estimator

An estimator Tn = h(X1, . . . ,Xn) of a parameter θ (estimand) is unbiased if:

E [Tn] = θ

If the difference E [Tn]− θ, called the bias of Tn, is non-zero, Tn is called a biased estimator.

• E [Tn] > θ is a positive bias, E [Tn] < θ is a negative bias

• Asymptotically unbiased: limn→∞ E [Tn] = θ

• Sometimes, Tn written as θ̂, e.g., µ̂ estimator of µ
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When is an estimator better than another one?

Efficiency of unbiased estimators

Let T1 and T2 be unbiased estimators of the same parameter θ. The estimator T2

is more efficient than T1 if:

Var(T2) < Var(T1)

• The relative efficiency of T2 w.r.t. T1 is Var(T1)/Var(T2)

• Speed of light example:
▶ E [X1] = E [X2] = . . . = E [X̄n] = c , i.e., all unbiased estimators

The mean is more efficient than a single value

Var(X̄n) = σ2/n < σ2 = Var(X1)
Var(X1)

Var(X̄n)
= n

• The standard deviation of the sampling distribution is called the standard error (SE)
▶ The SE of the mean estimator X̄n is σ/

√
n
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Unbiased estimators for expectation and variance

• Estimates: sample mean x̄n and sample variance s2n
• E [X̄n] = (E [X1] + . . .+ E [Xn])/n = µ and, by CLT, Var(X̄n) → 0 for n → ∞
• Why division by n − 1 in S2

n? [Bessel’s correction]
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Unbiasedness does not carry over (no functional invariance)

• E [S2
n ] = σ2 implies E [Sn] = σ ?

• Since g(x) = x2 is convex, by Jensen’s inequality:

σ2 = E [S2
n ] = E [g(Sn)] > g(E [Sn]) = E [Sn]

2

which implies E [Sn] < σ [Negative bias]
• In general, if T unbiased for θ does not imply g(T ) unbiased for g(θ)

▶ But it holds for g() linear transformation!
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Estimators for the median and quantiles

• T = Med(X1, . . . ,Xn), for Xi with density function f (x)
• Let m be the true median, i.e., F (m) = 0.5: [CLT for medians]

for n → ∞,T ∼ N (m,
1

4nf (m)2
)

and then for n → ∞:
E [Med(X1, . . . ,Xn)] = m

• T = qX1,...,Xn(p), for Xi with density function f (x)
• Let qp be the true p-quantile, i.e., F (qp) = p: [CLT for quantiles]

for n → ∞,T ∼ N (qp,
p(1− p)

nf (qp)2
)

and then for n → ∞:
E [qX1,...,Xn(p)] = qp

See R script
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Example: estimating the probability of zero arrivals

• X1, . . . ,Xn, for n = 30, observations:

Xi = number of arrivals (of a packet, of a call, etc.) in a minute

• Xi ∼ Pois(µ), where p(k) = P(X = k) = µk

k! e
−µ [E [X ] = µ]

• We want to estimate p0 = p(0), probability of zero arrivals

• Frequentist-based estimator S:

S =
|{i | Xi = 0}|

n

▶ Takes values 0/30, 1/30, . . . , 30/30 . . . may not exactly be p0
▶ S = Y /n where Y = 1X1=0 + . . .+ 1Xn=0 ∼ Bin(n, p0)
▶ Hence, E [S ] = 1

nE [Y ] = n
np0 = p0 [S is unbiased]
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Example: estimating the probability of zero arrivals

• Since p0 = p(0) = e−µ, we devise a mean-based estimator T :

T = e−X̄n

▶ By Jensen’s inequality:

E [T ] = E [e−X̄n ] > e−E [X̄n] = e−µ = p0

Hence T is biased!
▶ However, T is asymptotically unbiased!

• Let’s look at the variances

See R script

12 / 25



MSE: Mean Squared Error of an estimator

• What if one estimator is unbiased and the other is biased but with a smaller variance?

MSE
The Mean Squared Error of an estimator T for a parameter θ is defined as:

MSE (T ) = E [(T − θ)2]

• An estimator T1 performs better than T2 if MSE (T1) < MSE (T2)

• Note that:

MSE (T ) = E [(T − E [T ] + E [T ]− θ)2] =

= E [(T − E [T ])2] + (E [T ]− θ)2 + 2E [T − E [T ]](E [T ]− θ) = Var(T ) + (E [T ]− θ)2

• E [T ]− θ is called the bias of the estimator

• Hence, MSE = Var + Bias2

• A biased estimator with a small variance may be better than an unbiased one with a large variance!

See R script
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Best estimators

Consistent estimator
An estimator Tn is a squared error consistent estimator if:

lim
n→∞

MSE (Tn) = 0

• Hence, for n → ∞, both Bias and Var converge to 0

• X̄n is a squared error consistent estimator of µ

• What if there is no consistent estimator or if there are more than once?

MVUE

An unbiased estimator Tn is a Minimum Variance Unbiased Estimators (MVUE) if:

Var(Tn) ≤ Var(Sn)

for all unbiased estimators Sn.

• Corollary. MSE (Tn) ≤ MSE (Sn)

• X̄n is a MVUE of µ if X1, . . . ,Xn ∼ N (µ, σ2) [proof in the next lesson]
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Example: number of German tanks

• Tanks’ ID drawn at random without replacement from 1, . . . ,N. Objective: estimate N.
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Example: number of German tanks

• Let x1, . . . , xn be the observed ID’s

• E.g., 61, 19, 56, 24, 16 with n = 5
• They are realizations of X1, . . . ,Xn draws without replacement from 1, . . . ,N

▶ X1, . . . ,Xn is not a random sample, as they are not independent!
▶ The marginal distribution is Xi ∼ U(1,N) [prove it, or see Sect. 9.3 of [T] ]

• Estimator based on the mean
▶ Since:

E [X̄n] = E [Xi ] =
N + 1

2

we can define an estimator:
T1 = 2X̄n − 1

▶ T1 is unbiased:
E [T1] = 2E [X̄n]− 1 = N

▶ E.g., t1 = 2(61 + 19 + 56 + 24 + 16)/5− 1 = 69.4
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Estimators

• So far, estimators were derived from parameter definition through the plug-in method

• A general principle to derive estimators will be shown today

• Example

• Assume that the data is generated from geometric distributions:

P(Xi = k) = (1− p)k−1p

where p is distinct for smokers and non smokers.

• What is an estimator for p? [parametric inference]

▶ E.g., since p = P(Xi = 1), we could use S = |{i | Xi=1}|
n , and show E [S ] = p

▶ p = 29/100 for smokers, and p = 198/486 = 0.41 for non-smokers
▶ But we did not use all of the available data!
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The maximum likelihood principle

The maximum likelihood principle

Given a dataset, choose the parameter(s) of interest in such a way that the data are most likely.

• For k = 1, . . . , 12, P(Xi = k) = (1− p)k−1p. Moreover, P(Xi > 12) = (1− p)12

• Since the Xi ’s are independent, we can write the probability of observing the smokers as:

L(p) = C · P(Xi = 1)29 · P(Xi = 2)16 · . . . · P(Xi = 12)3 · P(Xi > 12)7 = Cp93(1− p)322

▶ C is the number of ways we can assign 29 ones, 16 twos, . . . , 3 twelves, and 7 numbers
larger than 12 to 100 smokers

• ML principle: choose p̂ = arg maxp L(p)
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Example

• ML principle: choose p̂ = arg maxp L(p) = arg maxp Cp
93(1− p)322

• L′(p) = C (93p92(1− p)322 − 322p93(1− p)321) = Cp92(1− p)321(93− 415p)

• L′(p) = 0 for p = 0 or p = 1 or p = 93/415 = 0.224

• ML estimate is arg maxp L(p) = 0.224 < 0.41 (estimate using S)

• Equivalent formulation for maximization:

arg max
p

L(p) = arg max
p

log L(p)

• log L(p) = logC + 93 log p + 322 log (1− p)

• log′ L(p) = 93
p − 322

1−p

• log′ L(p) = 0 for 322p = 93(1− p), i.e., p = 93/(322 + 93) = 0.224
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Likelihood and log-likelihood

Likelihood, log-likelihood, and MLE

Let x1, . . . , xn be a dataset, i.e., realizations of a random sample X1, . . . ,Xn where the
density/p.m.f of Xi ’s is fθ(), parametric on θ. The likelihood function is:

L(θ) =
n∏

i=1

fθ(xi )

and the log-likelihood function is:

ℓ(θ) = log L(θ) =
n∑

i=1

log fθ(xi )

Maximum likelihood estimates

The maximum likelihood estimates of θ is the value t = argmaxθ L(θ) =
argmaxθ ℓ(θ). The statistics over the random sample:

θ̂ML = argmax
θ

L(θ) = argmax
θ

ℓ(θ)

is called the maximum likelihood estimator for θ.
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Example: MLE of exponential distribution

• Random sample of Exp(λ) E [X ] = 1/λ

• Since fλ(x) = λe−λx for x ≥ 0:

ℓ(λ) =
n∑

i=1

(log λ− λxi ) = n log λ− λ(x1 + . . .+ xn) = n(log λ− λx̄n)

• ℓ′(λ) = 0 iff n(1/λ − x̄n) = 0 iff λ = 1/x̄n

• λ̂ML = 1/X̄n is the MLE of λ for a Exp(λ)-distributed random sample

• It is biased!: E [λ̂ML] ≥ 1/E [X̄n] = λ [Jensen’s inequality]
• Exercise at home

▶ show that X̄n is an unbiased MLE of θ for a Exp(1/θ)-distributed random sample
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Example: MLE of normal distribution

• Random sample of N (µ, σ2)

• MLE of θ = (µ, σ2) where fµ,σ2(x) = 1
σ
√
2π
e−

1
2(

x−µ
σ )

2

[we work on σ2, not on σ]

ℓ(µ, σ2) = −n log σ − n log
√
2π − 1

2σ2

n∑
i=1

(xi − µ)2

• Partial derivatives:

d

dµ
ℓ(µ, σ) =

n

σ2
(x̄n − µ)

d

dσ2
ℓ(µ, σ) =

1

2σ2

(
1

σ2

n∑
i=1

(xi − µ)2 − n

)

• Partial derivatives at 0 for µ = x̄n and σ2 = 1
n

∑n
i=1(xi − x̄n)

2

• MLE estimators µ̂ML = X̄n (unbiased) and σ̂2
ML = 1

n

∑n
i=1(Xi − X̄n)

2 [biased]
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Loss functions (to be minimized)

• Negative log-likelihood (nLL)
nLL(θ) = −ℓ(θ)

• How to compare estimators that use different numbers of parameters?
▶ T1 assuming a Ber(p) vs T2 assuming Bin(n, p)
▶ Neural network with 10 nodes vs with 100 nodes

• Akaike information criterion (AIC), balances model fit against model simplicity

AIC (θ) = 2|θ| − 2ℓ(θ)

• Bayesian information criterion (BIC), stronger balances over model simplicity

BIC (θ) = |θ| log n − 2ℓ(θ)
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Cross entropy and nLL

• X ,Y discrete random variables with p.m.f. pX and pY :

• Cross entropy of X w.r.t. Y : H(X ;Y ) = EX [− log p(Y )] [see Lesson 4]

H(X ;Y ) = −
∑
i

pX (ai ) log pY (ai )

• H(X ;Y ) is the “information” or “uncertainty” or “loss” when using Y to encode X

• Negative log-likelihood:

nLL(θ) = −
n∑

i=1

log fθ(xi ) = H(X ,Y )

where X ∼ Fn (empirical distribution) and Y ∼ Fθ
• Minimizing nLL is equivalent to minimizing cross-entropy (or KL-divergence) between the
empirical and the theoretical distributions!
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Properties of MLE estimators

• MLE estimators can be biased, but under mild assumptions, they are asyntotically
unbiased! [Asyntotic unbiasedness]

lim
n→∞

E [θ̂ML] = θ

• If θ̂ML is the MLE estimator of θ and g() is an invertible function, then g(θ̂ML) is the
MLE estimator of g(θ) [Invariance principle]

▶ E.g., MLE of σ for normal data is σ̂ML =
√

σ̂2
ML =

√
1
n

∑n
i=1(Xi − X̄n)2

▶ but, E [θ̂ML] = θ does NOT necessarily imply E [g(θ̂ML)] = g(θ)
▶ See also Exercise at home

• Under mild assumptions, MLE estimators have asymptotically the smallest variance
among unbiased estimators [Asymptotic minimum variance]
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