National Ph.D. Program in Artificial Intelligence for Society Statistics for Machine Learning

Lesson 08 - Fitting distributions. Multiple-sample tests of the mean and applications to classifier comparison. Testing independence/association

Andrea Pugnana, Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy andrea.pugnana@di.unipi.it salvatore.ruggieri@unipi.it

Distribution fitting and quality of fitting

- Dataset x_1, \ldots, x_n realization of $X_1, \ldots, X_n \sim F$
- Distribution fitting: What is a plausible F?
 - Useful in Data Science for understanding the data generation process, for checking assumptions (e.g., normality of noise in LR), for checking data distribution changes, etc.
 - Parametric approaches:
 - \Box Assume $F = F(\lambda)$ for some family F, and estimate λ as $\hat{\lambda}$
 - Maximum Likelihood Estimation (point estimate):

$$\hat{\lambda} = {\sf argmax}_{\lambda} {\sf L}(\lambda)$$

□ Parametric bootstrap (*p*-value):

$${T}_{ks} = \sup_{a \in \mathbb{R}} |F_n^*(a) - F_{\hat{\Lambda}^*}(a)$$

- Non-parametric approaches:
 - \Box Empirical distribution F_n
 - Kernel Density Estimation
- Quality of fitting: Among several fits F_1, \ldots, F_k , which one is the best?
 - ► Goodness of fit: measure of how good/bad is *F_i* in fitting the data?
 - ▶ Comparison: which one between two *F*₁ and *F*₂ is better?

[Glivenko-Cantelli Thm]

Quality of fitting

- Loss functions (to be minimized)
 - Akaike information criterion (AIC), balances model fit against model simplicity

$$AIC(F(\lambda)) = 2|\lambda| - 2\ell(\lambda)$$

Bayesian information criterion (BIC), stronger balances over model simplicity

$$BIC(F(\lambda)) = |\lambda| \log n - 2\ell(\lambda)$$

• Statistics (continuous data):

▶ KS test $H_0: X \sim F$ $H_1: X \not\sim F$ with Kolmogorov-Smirnov (KS) statistic:

$$D = \sup_{a \in \mathbb{R}} |F_n(a) - F(a)| \sim K$$

▶ LR test $H_0: X \sim F_1$ $H_1: X \sim F_2$ with the likelihood-ratio test:

$$\lambda_{LR} = \log \frac{L(F_1(\lambda_1))}{L(F_2(\lambda_2))} = \ell(F_1(\lambda_1)) - \ell(F_2(\lambda_2)) \quad \text{with} \quad -2\lambda_{LR} \sim \chi^2(1)$$

Quality of fitting

- Statistics (discrete data):
 - ► Pearson's Chi-Square test

 $H_0: X \sim F$ $H_1: X \not\sim F$ with χ^2 statistic:

$$\chi^{2} = \sum_{N_{i}>0} \frac{(N_{i} - n_{i})^{2}}{n_{i}} = n \cdot \sum_{N_{i}>0} \frac{(N_{i} / n - p(i))^{2}}{p(i)} \sim \chi^{2}(df)$$

where N_i number of observations of value *i*, $n_i = n \cdot p(i)$ expected number of observations (rescaled), and $df = |\{i \mid N_i > 0\}| - 1$ is the number of observed values minus 1. $\chi^2 = \infty$ if for some *i*: $n_i = 0$

Yates's correction for continuity

It corrects for approximating the discrete probability of observed frequencies by the continuous chi-squared distribution

$$\chi^2 = \sum_{N_i > 0} \frac{(|N_i - n_i| - 0.5)^2}{n_i}$$

It increases Type II error, so do not use it!

Comparing two datasets

- Dataset x_1, \ldots, x_n realization of $X_1, \ldots, X_n \sim F$
- Dataset y_1, \ldots, y_m realization of $Y_1, \ldots, Y_m \sim G$
- $H_0: F = G$ $H_1: F \neq G$
 - Useful to detect covariate drift (data stability) from source to target datasets
- Univariate data:
 - ► Continuous data: KS statistics $D = \sup_{a \in \mathbb{R}} |F_n(a) G_m(a)| \sim K$
 - KS-distance between empirical cumulative distributions
 - Discrete data: χ^2 statistics

$$\chi^2 = \sum_{R_i > 0 \lor S_i > 0} \frac{(\sqrt{\frac{m}{n}}R_i - \sqrt{\frac{m}{m}}S_i)^2}{R_i + S_i} \sim \chi^2(df)$$

where R_i (resp., S_i) is the number of observations in x_1, \ldots, x_n (resp., y_1, \ldots, y_m) which are equal to i, $df = |\{i | R_i > 0 \lor S_i > 0\}| - 1$

- Other tests in the R package twosamples
- Multivariate data: see classifier 2-sample test and others in the R package Ecume

Chi-square distribution

Chi-square distribution

The Chi-square distribution with k degrees of freedom $\chi^2(k)$ has density:

$$f(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2-1} e^{-x/2}$$

Let
$$X_1, \ldots, X_k \sim \mathcal{N}(0, 1)$$
. Then $Y = \sum_{i=1}^k X_i^2 \sim \chi^2(k)$

The multiple comparisons problem

• Single test $H_0: \mu = 0$, with significance level $\alpha = 0.05$

[false positive rate]

- test is called *significant* when we reject H_0
- α is Type I error, probability of rejecting H_0 when it is true
- Multiple tests, say m = 20

▶ E.g., $H_0^i : \mu_i = 0$ for i = 1, ..., m where μ_i is the expectation of a subpopulation

- What is the probability of rejecting at least one H_0^i when all of them are true?
 - ► For independent tests: $P(\cup_{i=1}^{m} \{p_i \leq \alpha\}) = 1 P(\cap_{i=1}^{m} \{p_i > \alpha\}) = 1 (1 \alpha)^m$ and then $1 - (0.95)^{20} \approx 0.64$
 - For dependent tests: $P(\bigcup_{i=1}^{m} \{p_i \leq \alpha\}) \leq \sum_i P(\{p_i \leq \alpha\}) = m \cdot \alpha$, and then $\leq 20 \cdot 0.05 = 1$

Family-wise error rate (FWER)

The FWER is the probability of making at least one Type I error in a family of m tests. If the tests are independent:

```
\alpha_{FWER} = 1 - (1 - \alpha)^m
```

If the tests are dependent: $\alpha_{FWER} \leq m \cdot \alpha$

Multiple comparisons: corrections

Question: what should be α such that $\alpha_{FWER} \leq b$?

- Bonferroni correction (most conservative one):
 - scale significance level $\alpha = b/m$ [invert $b = m \cdot \alpha$]
 - thus $\alpha_{FWER} \leq m \cdot \alpha = b$

Notice: $p \leq \alpha$ is equivalent to scale p-values and test $p \cdot m \leq b$

- *Šidák correction* (exact for independent tests):
 - ▶ scale significance level $\alpha = 1 (1 b)^{1/m}$ [invert $b = 1 (1 \alpha)^m$]
 - thus $\alpha_{FWER} = 1 (1 \alpha)^m = b$

Notice: $p \leq \alpha$ is equivalent to scale p-values and test $1 - (1 - p)^m \leq b$

Omnibus tests and post-hoc tests

- $H_0: \theta_1 = \theta_2 = \ldots = \theta_k \ [= 0]$
- $H_1: \theta_i \neq \theta_j$ for some $i \neq j$
- Omnibus tests detect any of several possible differences
 - Advantage: no need to pre-specify which treatments are to be compared and then no need to adjust for making multiple comparisons
- If H_0 is rejected (test significant), a *post-hoc test* to find which $\theta_i \neq \theta_j$
 - Everything to everything post-hoc compare all pairs
 - One to everything post-hoc compare a new population to all the others
- We distinguish a few cases:
 - Multiple linear regression (normal errors + homogeneity of variances, i.e., U_i ~ N(0, σ²)):
 Γ-test + t-test
 - Equality of means (normal distributions + homogeneity of variances):
 - $\ \ \square \ \ ANOVA + Tukey/Dunnett$
 - Equality of means (general distributions):
 - \Box Friedman + Nemenyi

Equality of means: ANOVA

- $H_0: \mu_1 = \mu_2 = \ldots = \mu_k$
- $H_1: \mu_1 \neq \mu_2$ for some $i \neq j$
- datasets $y_1^j, \ldots, y_{n_j}^j$ for $j = 1, \ldots, k$
 - Assumption: normality (Shapiro-Wilk test) + homogeneity of variances (Bartlett test)
 - responses of k-1 treatments and 1 control group
 - accuracies of k classifiers over $n_j = n$ datasets
- Linear regression model over dummy encoded *j*:

$$Y = \alpha + \beta_1 x_1 + \ldots + \beta_{k-1} x_{k-1}$$

- $\alpha = \mu_k$ is the mean of the reference group (j = k)
- $\blacktriangleright \ \beta_j = \mu_j \mu_k$
- ▶ in R: $lm(Y \sim Group)$ where Group contains the labels of j = 1, ..., k
- F-test (over linear regression): $H_0: \beta_1 = \ldots = \beta_k = 0$, i.e., $\mu_j = \mu_k$ for $j = 1, \ldots, k$
- Tukey HSD (Honest Significant Differences) is an all-pairs post-hoc test
- Dunnet test is a one-to-everything test

[generalization of two sample t-test]

[repeated measures/two way ANOVA]

[one way ANOVA]

Non-parametric test of equality of means: Friedman

•
$$H_0: \mu_1 = \mu_2 = \ldots = \mu_k$$

- $H_1: \mu_1 \neq \mu_2$ for some $i \neq j$
- datasets x_1^j, \ldots, x_n^j for $j = 1, \ldots, k$
 - accuracies of k classifiers over n datasets.
- Let r_i^j be the rank of x_i^j in x_i¹,...,x_i^k
 e.g., jth classifier w.r.t. ith dataset
- Average rank of classifier: $R_i = \frac{1}{n} \sum_{i=1}^{n} r_i^j$
- Under H_0 , we have $R_1 = \ldots = R_k$ and, for *n* and *k* large:

$$\chi_F^2 = rac{12n}{k(k+1)} \left(\sum_{j=1}^k R_j^2 - rac{k(k+1)^2}{4} \right) \sim \chi^2(k)$$

- Nemenyi test is an all-pairs post-hoc test
- Bonferroni correction is a one-to-everything test
- For unpaired observations, use Kruskal-Wallis test instead of Friedman test

See R script

[paired observations/repeated measures]

Comparing classifiers: Summary

The SCMAMP package in R

The AutoRank package in Python

Testing independence of discrete random variables

- Pearson's Chi-Square test of independence
- X and Y discrete (finite) distributions
- $(x_1, y_1) \dots, (x_n, y_n)$ bivariate observed dataset
- $H_0: X \perp Y \quad H_1: X \not\perp Y$
- Test statistic:

$$\chi^{2} = \sum_{i,j} \frac{(O_{i,j} - E_{i,j})^{2}}{E_{i,j}} = n \sum_{i,j} \frac{(O_{i,j}/n - p_{i,j}, p_{j,j})^{2}}{p_{i,j}, p_{j,j}} \sim \chi^{2}(df)$$

where $O_{i,j}$ is the number of observations of value X = i and Y = j, $E_{i,j} = np_{i,.}p_{.,j}$ where $p_{i,.} = \sum_j O_{i,j}/n$ and $p_{.,j} = \sum_i O_{i,j}/n$. $df = (n_x - 1)(n_y - 1)$ where n_x (resp., n_y) is the size of the support of X (resp., Y)

- Exact test when *n* is small: Fisher's exact test
- Paired data (e.g., before and after taking a drug): McNemar's test

The G-test and Mutual Information

- G-test of independence
- X and Y discrete (finite) distributions
- $(x_1, y_1) \dots, (x_n, y_n)$ bivariate observed dataset
- $H_0: X \perp Y \quad H_1: X \not\perp Y$
- Test statistics:

$$G=2\sum_{i,j}O_{i,j}\lograc{O_{i,j}}{E_{i,j}}=2\sum_{i,j}O_{i,j}\lograc{O_{i,j}}{n
ho_{i,.}
ho_{.,j}}\sim\chi^2(df)$$

where $O_{i,j}$ is the number of observations of value X = i and Y = j, $E_{i,j} = np_{i,.}p_{.,j}$ where $p_{i,.} = \sum_j O_{i,j}/n$ and $p_{.,j} = \sum_i O_{i,j}/n$. $df = (n_x - 1)(n_y - 1)$ where n_x (resp., n_y) is the size of the support of X (resp., Y)

- Preferrable to Chi-Squared when numbers $(O_{ij} \text{ or } E_{ij})$ are small, asymptotically equivalent
- $G = 2 \cdot n \cdot I(O, E)$ where I(O, E) is the mutual information between O and E

Other tests of independence (hints and references)

- $(x_1, y_1) \dots, (x_n, y_n)$ bivariate observed dataset
- Permutation tests:
 - ► reduces to comparing two datasets: $(x_1, y_1) \dots, (x_n, y_n)$ and $(x_1, y_{\pi_1}) \dots, (x_n, y_{\pi_n})$, where π_1, \dots, π_n is a permutation of $1, \dots, n$ [see slide on comparing two datasets]
- Continuous X and Y:
 - ► discretize both X and Y and then apply independence tests for discrete r.v.'s, or
 - test correlation (see later), or
 - Hoeffding's test, see R package independence
- Continuous X and discrete Y:
 - discretize X and then apply independence tests for discrete r.v.'s, or
 - a direct approach Yang and Kim, or
 - ▶ special case Y binary: $X \perp Y$ iff P(X|Y) = P(X) iff P(X|Y = 0) = P(X|Y = 1)

[see slide on comparing two datasets]

Measures of association

- Association: one variable provides information on the other
 - $X \perp Y$ independent, i.e., P(X|Y) = P(X): zero information
 - Y = f(X) deterministic association with f invertible: maximum information
- Correlation: the two variables show an increasing/decreasing trend
 - $X \perp Y$ implies Cov(X, Y) = 0
 - the converse is not always true

Variable Y	Variable X		
	Nominal	Ordinal	Continuous
Nominal Ordinal Continuous	φ or λ Rank biserial Point biserial	Rank biserial τ_{b} or Spearman τ_{b} or Spearman	Point biserial τ _b or Spearman Pearson or Spearman

 ϕ = phi coefficient, λ = Goodman and Kruskal's lambda,

 $\tau_{\rm b}$ = Kendall's $\tau_{\rm b}$.

Association between nominal variables: Pearson χ^2 -based

- ϕ **coefficient** (or MCC, Matthews correlation coefficient)
 - For 2×2 contingency tables:

$$\phi = \sqrt{rac{\chi^2}{n}} \in [0,1]$$

- Cramer's V
 - ► For contingency tables larger than 2 × 2:

$$V = \sqrt{\frac{\chi^2}{n \cdot \min\left\{r - 1, c - 1\right\}}} \in [0, 1]$$

where r and c are the number of rows and columns

- Tschuprov's T
 - ► For contingency tables larger than 2 × 2:

$$T = \sqrt{\frac{\chi^2}{n \cdot \sqrt{(r-1)(c-1)}}} \in [0,1]$$

where r and c are the number of rows and columns

See R script

[Exercise. Show $\phi = |r_{xy}|$]

[sames as V if r = c]

Testing correlation: continuous data

• Population correlation:

$$o = \frac{E[(X - \mu_X) \cdot (Y - \mu_Y)]}{\sigma_X \cdot \sigma_Y}$$

• Pearson's correlation coefficient:

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

- Assumption: joint distribution of X, Y is bivariate normal (or large sample)
- $(x_1, y_1) \dots, (x_n, y_n)$ bivariate observed dataset
- $H_0: \rho = 0$ $H_1: \rho \neq 0$
- Test statistics:

$$T=\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}\sim t(n-2)$$

► Recall that $X \perp Y$ implies $\rho = 0$: if H_0 can be rejected, then $X \perp Y$ can be rejected See R script

Testing AUC-ROC

- Binary classifier score $s_{ heta}(w) \in [0,1]$ where $s_{ heta}(w)$ estimate $\eta(w) = P_{\theta_{TRUE}}(C = 1|W = w)$
- ROC Curve
 - $TPR(p) = P(s_{\theta}(w) \ge p | C = 1)$ and $FPR(p) = P(s_{\theta}(w) | C = 0)$
 - ROC Curve is the scatter plot TPR(p) over FPR(p) for p ranging from 1 down to 0
 - AUC-ROC is the area below the curve
 - Linearly related to Somer's D correlation index (a.k.a. Gini coefficient)

What does AUC-ROC estimate?

Testing AUC-ROC

• AUC is the probability of correct identification of the order between two instances:

$$AUC = P_{\theta_{TRUE}}(s_{\theta}(W1) < s_{\theta}(W2) | C_{W1} = 0, C_{W2} = 1)$$

where (W1, C_{W1}) $\sim \mathit{f}_{\theta_{\textit{TRUE}}}$ and (W2, C_{W2}) $\sim \mathit{f}_{\theta_{\textit{TRUE}}}$

• $s_{\theta}(W_1), \ldots, s_{\theta}(W_n) \sim F_{\theta_{TRUE}}|_{C=1}$ (scores of positives) and $s_{\theta}(V_1), \ldots, s_{\theta}(V_m) \sim F_{\theta_{TRUE}}|_{C=0}$ (scores of negative)

$$U = \sum_{i=1}^{n} \sum_{j=1}^{m} S(s_{\theta}(W_i), s_{\theta}(V_j)) \qquad S(X, Y) = \begin{cases} 1 & \text{if } X > Y \\ \frac{1}{2} & \text{if } X = Y \\ 0 & \text{if } X < Y \end{cases}$$

- AUC-ROC = $U/(n \cdot m)$ is an estimator of AUC
- U statistics of the Wilcoxon rank-sum test
- Normal approximation, DeLong's algorithm, bootstrap, Fligner-Policello, Brunner-Munzel tests and confidence intervals