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Distribution fitting and quality of fitting
• Dataset x1, . . . , xn realization of X1, . . . ,Xn ∼ F

• Distribution fitting: What is a plausible F?
▶ Useful in Data Science for understanding the data generation process, for checking

assumptions (e.g., normality of noise in LR), for checking data distribution changes, etc.
▶ Parametric approaches:

□ Assume F = F (λ) for some family F , and estimate λ as λ̂
□ Maximum Likelihood Estimation (point estimate):

λ̂ = argmaxλL(λ)

□ Parametric bootstrap (p-value):

Tks = sup
a∈R

|F ∗
n (a)− FΛ̂∗(a)|

▶ Non-parametric approaches:
□ Empirical distribution Fn [Glivenko-Cantelli Thm]
□ Kernel Density Estimation

• Quality of fitting: Among several fits F1, . . . ,Fk , which one is the best?
▶ Goodness of fit: measure of how good/bad is Fi in fitting the data?
▶ Comparison: which one between two F1 and F2 is better?
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https://en.wikipedia.org/wiki/Glivenko%E2%80%93Cantelli_theorem


Quality of fitting

• Loss functions (to be minimized)
▶ Akaike information criterion (AIC), balances model fit against model simplicity

AIC (F (λ)) = 2|λ| − 2ℓ(λ)

▶ Bayesian information criterion (BIC), stronger balances over model simplicity

BIC (F (λ)) = |λ| log n − 2ℓ(λ)

• Statistics (continuous data):
▶ KS test H0 : X ∼ F H1 : X ̸∼ F with Kolmogorov-Smirnov (KS) statistic:

D = sup
a∈R

|Fn(a)− F (a)| ∼ K

▶ LR test H0 : X ∼ F1 H1 : X ∼ F2 with the likelihood-ratio test:

λLR = log
L(F1(λ1))

L(F2(λ2))
= ℓ(F1(λ1))− ℓ(F2(λ2)) with − 2λLR ∼ χ2(1)

See R script
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Quality of fitting
• Statistics (discrete data):

▶ Pearson’s Chi-Square test
H0 : X ∼ F H1 : X ̸∼ F with χ2 statistic:

χ2 =
∑
Ni>0

(Ni − ni )
2

ni
= n ·

∑
Ni>0

(Ni/n − p(i))2

p(i)
∼ χ2(df )

where Ni number of observations of value i , ni = n · p(i) expected number of observations
(rescaled), and df = |{i | Ni > 0}| − 1 is the number of observed values minus 1.
χ2 = ∞ if for some i : ni = 0

▶ Yates’s correction for continuity
It corrects for approximating the discrete probability of observed frequencies by the
continuous chi-squared distribution

χ2 =
∑
Ni>0

(|Ni − ni | − 0.5)2

ni

It increases Type II error, so do not use it!

See R script
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https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
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Comparing two datasets

• Dataset x1, . . . , xn realization of X1, . . . ,Xn ∼ F

• Dataset y1, . . . , ym realization of Y1, . . . ,Ym ∼ G

• H0 : F = G H1 : F ̸= G
▶ Useful to detect covariate drift (data stability) from source to target datasets

• Univariate data:
▶ Continuous data: KS statistics D = supa∈R |Fn(a)− Gm(a)| ∼ K

□ KS-distance between empirical cumulative distributions
▶ Discrete data: χ2 statistics

χ2 =
∑

Ri>0∨Si>0

(
√

m
n Ri −

√
n
mSi )

2

Ri + Si
∼ χ2(df )

where Ri (resp., Si ) is the number of observations in x1, . . . , xn (resp., y1, . . . , ym) which are
equal to i , df = |{i |Ri > 0 ∨ Si > 0}| − 1

▶ Other tests in the R package twosamples

• Multivariate data: see classifier 2-sample test and others in the R package Ecume
See R script
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https://en.wikipedia.org/wiki/Concept_drift
https://twosampletest.com/
https://rdrr.io/cran/Ecume


Chi-square distribution

Chi-square distribution

The Chi-square distribution with k degrees of freedom χ2(k) has density:

f (x) =
1

2k/2Γ(k/2)
x

k/2−1e−x/2

Let X1, . . . ,Xk ∼ N (0, 1). Then Y =
∑k

i=1 X
2
i ∼ χ2(k)
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The multiple comparisons problem
• Single test H0 : µ = 0, with significance level α = 0.05 [false positive rate]

▶ test is called significant when we reject H0

▶ α is Type I error, probability of rejecting H0 when it is true

• Multiple tests, say m = 20
▶ E.g., H i

0 : µi = 0 for i = 1, . . . ,m where µi is the expectation of a subpopulation

• What is the probability of rejecting at least one H i
0 when all of them are true?

▶ For independent tests: P(∪m
i=1{pi ≤ α}) = 1− P(∩m

i=1{pi > α}) = 1− (1− α)m

and then 1− (0.95)20 ≈ 0.64
▶ For dependent tests: P(∪m

i=1{pi ≤ α}) ≤
∑

i P({pi ≤ α}) = m · α, and then ≤ 20 · 0.05 = 1

Family-wise error rate (FWER)

The FWER is the probability of making at least one Type I error in a
family of m tests. If the tests are independent:

αFWER = 1− (1− α)m

If the tests are dependent: αFWER ≤ m · α
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https://xkcd.com/882/


Multiple comparisons: corrections

Question: what should be α such that αFWER ≤ b?

• Bonferroni correction (most conservative one):

▶ scale significance level α = b/m [invert b = m · α]
▶ thus αFWER ≤ m · α = b

Notice: p ≤ α is equivalent to scale p-values and test p ·m ≤ b

• Šidák correction (exact for independent tests):

▶ scale significance level α = 1− (1− b)1/m [invert b = 1− (1− α)m]
▶ thus αFWER = 1− (1− α)m = b

Notice: p ≤ α is equivalent to scale p-values and test 1− (1− p)m ≤ b
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Omnibus tests and post-hoc tests

• H0 : θ1 = θ2 = . . . = θk [= 0]

• H1 : θi ̸= θj for some i ̸= j
• Omnibus tests detect any of several possible differences

▶ Advantage: no need to pre-specify which treatments are to be compared . . .
. . . and then no need to adjust for making multiple comparisons

• If H0 is rejected (test significant), a post-hoc test to find which θi ̸= θj
▶ Everything to everything post-hoc compare all pairs
▶ One to everything post-hoc compare a new population to all the others

• We distinguish a few cases:
▶ Multiple linear regression (normal errors + homogeneity of variances, i.e., Ui ∼ N (0, σ2)):

□ F -test + t-test
▶ Equality of means (normal distributions + homogeneity of variances):

□ ANOVA + Tukey/Dunnett
▶ Equality of means (general distributions):

□ Friedman + Nemenyi
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Equality of means: ANOVA

• H0 : µ1 = µ2 = . . . = µk [generalization of two sample t-test]
• H1 : µ1 ̸= µ2 for some i ̸= j
• datasets y j1, . . . , y

j
nj for j = 1, . . . , k

▶ Assumption: normality (Shapiro-Wilk test) + homogeneity of variances (Bartlett test)
▶ responses of k − 1 treatments and 1 control group [one way ANOVA]
▶ accuracies of k classifiers over nj = n datasets [repeated measures/two way ANOVA]

• Linear regression model over dummy encoded j :

Y = α+ β1x1 + . . .+ βk−1xk−1

▶ α = µk is the mean of the reference group (j = k)
▶ βj = µj − µk

▶ in R: lm(Y∼Group) where Group contains the labels of j = 1, . . . , k

• F -test (over linear regression): H0 : β1 = . . . = βk = 0, i.e., µj = µk for j = 1, . . . , k
• Tukey HSD (Honest Significant Differences) is an all-pairs post-hoc test
• Dunnet test is a one-to-everything test
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https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test
https://en.wikipedia.org/wiki/Bartlett%27s_test
https://en.wikipedia.org/wiki/Tukey%27s_range_test
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Non-parametric test of equality of means: Friedman

• H0 : µ1 = µ2 = . . . = µk

• H1 : µ1 ̸= µ2 for some i ̸= j
• datasets x j1, . . . , x

j
n for j = 1, . . . , k [paired observations/repeated measures]

▶ accuracies of k classifiers over n datasets
• Let r ji be the rank of x ji in x1i , . . . , x

k
i

▶ e.g., j th classifier w.r.t. i th dataset
• Average rank of classifier: Rj =

1
n

∑n
i=1 r

j
i

• Under H0, we have R1 = . . . = Rk and, for n and k large:

χ2
F =

12n

k(k + 1)

 k∑
j=1

R2
j − k(k + 1)2

4

 ∼ χ2(k)

• Nemenyi test is an all-pairs post-hoc test
• Bonferroni correction is a one-to-everything test
• For unpaired observations, use Kruskal-Wallis test instead of Friedman test

See R script
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https://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_one-way_analysis_of_variance


Comparing classifiers: Summary

The SCMAMP package in R

The AutoRank package in Python 12 / 20

https://github.com/b0rxa/scmamp
https://github.com/sherbold/autorank


Testing independence of discrete random variables

• Pearson’s Chi-Square test of independence

• X and Y discrete (finite) distributions

• (x1, y1) . . . , (xn, yn) bivariate observed dataset

• H0 : X ⊥⊥ Y H1 : X ̸⊥⊥ Y

• Test statistic:

χ2 =
∑
i,j

(Oi,j − Ei,j)
2

Ei,j
= n

∑
i,j

(Oi,j/n − pi,.p.,j)
2

pi,.p.,j
∼ χ2(df )

where Oi,j is the number of observations of value X = i and Y = j , Ei,j = npi,.p.,j where
pi,. =

∑
j Oi,j/n and p.,j =

∑
i Oi,j/n. df = (nx − 1)(ny − 1) where nx (resp., ny ) is the size of

the support of X (resp., Y )

• Exact test when n is small: Fisher’s exact test

• Paired data (e.g., before and after taking a drug): McNemar’s test

See R script
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https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
https://en.wikipedia.org/wiki/Fisher%27s_exact_test
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The G-test and Mutual Information

• G-test of independence

• X and Y discrete (finite) distributions

• (x1, y1) . . . , (xn, yn) bivariate observed dataset

• H0 : X ⊥⊥ Y H1 : X ̸⊥⊥ Y

• Test statistics:

G = 2
∑
i,j

Oi,j log
Oi,j

Ei,j
= 2

∑
i,j

Oi,j log
Oi,j

npi,.p.,j
∼ χ2(df )

where Oi,j is the number of observations of value X = i and Y = j , Ei,j = npi,.p.,j where
pi,. =

∑
j Oi,j/n and p.,j =

∑
i Oi,j/n. df = (nx − 1)(ny − 1) where nx (resp., ny ) is the size of

the support of X (resp., Y )

• Preferrable to Chi-Squared when numbers (Oij or Eij) are small, asymptotically equivalent

• G = 2 · n · I (O,E ) where I (O,E ) is the mutual information between O and E
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https://en.wikipedia.org/wiki/G-test


Other tests of independence (hints and references)

• (x1, y1) . . . , (xn, yn) bivariate observed dataset

• Permutation tests:

▶ reduces to comparing two datasets: (x1, y1) . . . , (xn, yn) and (x1, yπ1) . . . , (xn, yπn), where
π1, . . . , πn is a permutation of 1, . . . , n [see slide on comparing two datasets]

• Continuous X and Y :

▶ discretize both X and Y and then apply independence tests for discrete r.v.’s, or
▶ test correlation (see later), or
▶ Hoeffding’s test, see R package independence

• Continuous X and discrete Y :

▶ discretize X and then apply independence tests for discrete r.v.’s, or
▶ a direct approach Yang and Kim, or
▶ special case Y binary: X ⊥⊥ Y iff P(X |Y ) = P(X ) iff P(X |Y = 0) = P(X |Y = 1)

[see slide on comparing two datasets]
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https://en.wikipedia.org/wiki/Hoeffding%27s_independence_test
https://cran.r-project.org/web/packages/independence/index.html
https://koreascience.kr/article/JAKO202022762160255.pdf


Measures of association

• Association: one variable provides information on the other

▶ X ⊥⊥ Y independent, i.e., P(X |Y ) = P(X ): zero information
▶ Y = f (X ) deterministic association with f invertible: maximum information

• Correlation: the two variables show an increasing/decreasing trend

▶ X ⊥⊥ Y implies Cov(X ,Y ) = 0
▶ the converse is not always true
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Association between nominal variables: Pearson χ2-based
• ϕ coefficient (or MCC, Matthews correlation coefficient)

▶ For 2× 2 contingency tables: [Exercise. Show ϕ = |rxy |]

ϕ =

√
χ2

n
∈ [0, 1]

• Cramer’s V
▶ For contingency tables larger than 2× 2:

V =

√
χ2

n ·min {r − 1, c − 1}
∈ [0, 1]

where r and c are the number of rows and columns

• Tschuprov’s T [sames as V if r = c]
▶ For contingency tables larger than 2× 2:

T =

√
χ2

n ·
√
(r − 1)(c − 1)

∈ [0, 1]

where r and c are the number of rows and columns
See R script 17 / 20
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Testing correlation: continuous data

• Population correlation:

ρ =
E [(X − µX ) · (Y − µY )]

σX · σY
• Pearson’s correlation coefficient:

r =

∑n
i=1(xi − x̄) · (yi − ȳ)√∑n

i=1(xi − x̄)2 ·
∑n

i=1(yi − ȳ)2

• Assumption: joint distribution of X ,Y is bivariate normal (or large sample)
• (x1, y1) . . . , (xn, yn) bivariate observed dataset
• H0 : ρ = 0 H1 : ρ ̸= 0
• Test statistics:

T =
r
√
n − 2√
1− r2

∼ t(n − 2)

▶ Recall that X ⊥⊥ Y implies ρ = 0: if H0 can be rejected, then X ⊥⊥ Y can be rejected

See R script
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Testing AUC-ROC

• Binary classifier score sθ(w) ∈ [0, 1] where sθ(w) estimate η(w) = PθTRUE (C = 1|W = w)

• ROC Curve
▶ TPR(p) = P(sθ(w) ≥ p|C = 1) and FPR(p) = P(sθ(w)|C = 0)
▶ ROC Curve is the scatter plot TPR(p) over FPR(p) for p ranging from 1 down to 0
▶ AUC-ROC is the area below the curve What does AUC-ROC estimate?
▶ Linearly related to Somer’s D correlation index (a.k.a. Gini coefficient)
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Testing AUC-ROC
• AUC is the probability of correct identification of the order between two instances:

AUC = PθTRUE (sθ(W 1) < sθ(W 2)|CW 1 = 0,CW 2 = 1)

where (W 1,CW 1) ∼ fθTRUE and (W 2,CW 2) ∼ fθTRUE
• sθ(W1), . . . , sθ(Wn) ∼ FθTRUE |C=1 (scores of positives) and

sθ(V1), . . . , sθ(Vm) ∼ FθTRUE |C=0 (scores of negative)

U =
n∑

i=1

m∑
j=1

S(sθ(Wi ), sθ(Vj)) S(X ,Y ) =

 1 if X > Y
1/2 if X = Y
0 if X < Y

▶ AUC-ROC = U/(n ·m) is an estimator of AUC

• U statistics of the Wilcoxon rank-sum test

• Normal approximation, DeLong’s algorithm, bootstrap, Fligner-Policello, Brunner-Munzel
tests and confidence intervals

See R script
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https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test
https://glassboxmedicine.com/2020/02/04/comparing-aucs-of-machine-learning-models-with-delongs-test/
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