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Bootstrap principle

® let X1,...,X, ~ F be arandom sample

» with unknown distribution F

® Estimator T = h(Xy,...,X,), eg, Xo= (X1 +...+ X,)/n
» with unknown (sampling) distribution
® From a dataset xq, ..., x,, we can derive a point estimate 6= h(x1y ...y Xn)
* From many datasets {x!,...,x}}",, we can derive many point estimates ' = h(xi, ..., x")
® By the Glivenko-Cantelli Thm, the empirical distribution of o' approximates the distribution of T
® Problem: typically, we do not have many datasets, but only one!

See R script
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https://en.wikipedia.org/wiki/Glivenko%E2%80%93Cantelli_theorem

Bootstrap principle

® |et X]_, e ,Xn ~ F be a random sample true empirical
» with unknown distribution F d'sm};“m” dlsml;umm

® Estimator T = h(Xy,...,X,), eg, Xo= (X + ...+ X,)/n I / {

® From a dataset xi,...,X,, we can

. . . N observed bootstrap
» derive a point estimate § = h(xy,...,Xp) sample sample
» or, derive an estimate F of F (X102 %n) (X}, xh)
® From F we can generate (a lot of) bootstrap samples x;, ..., x} I {
» as realizations of X{,..., X ~ £ statistic bootstrap replication
) ] N 0 6°
and then (many) bootstrap point estimates 6* = h(x;, ..., x})
BooTsTRAP PRINCIPLE. Use the dataset x1,z9,...,2, to com-
pute an estimate F' for the “true” distribution function F. Replace
the random sample X, X5,...,X,, from F by a random sample

X, X5, .... X, from F., and approximate the probability distribu-
tion of h(Xy, Xo, ..., X,,) by that of (X7, X5,..., X}).
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Empirical bootstrap

true empirical
distribution distribution
F F
® How to derive F from x1, ..., x,? I / {
® |f we know nothing about F, use the empirical distribution: observed bootstrap
R el | x< sample sample
F(a) = Fp(a) = W (X1, s Xn) (X5reeenXh)
® How to generate a bootstrap sample x;,...,x:7? I {
* -
> _Xi is chosen randomly from F statistic bootstrap replication
> i.e, x* s chosen randomly from xi, ..., x, (our dataset) 6 g
® Hence, a bootstrap dataset x;, ..., x; is obtained by random sampling with replacement!
® Often the bootstrap approximation of the distribution of T will improve if we shift T by relating it

to a corresponding feature of the “true” distribution.
» rather than approximating the distribution of X, by the one of X*, better to
approximate A = X, — i1 by A* = X* — p*, where p* = E[F] = %, = (x1 + ... + x,)/n
[See remarks 18.1 and 18.2 of textbook]
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Empirical bootstrap

EMPIRICAL BOOTSTRAP SIMULATION (FOR X,,— ). Given a dataset
..... . determine its empirical distribution function £}, as an

1,2
estimate of F, and compute the expectation

T3+ T+ -+ Ty
n

corresponding to £,.
1. Generate a bootstrap dataset x7,x3,.... ), from F,.
2. Compute the centered sample mean for the bootstrap dataset:

T5 — Tn,
where .
= Ty T+ 4T,

" n

Repeat steps 1 and 2 many times.
® Use the empirical distribution of §* = x* — X, (realizations of A* = X*
» for estimating the distribution of A = X, — w, and in particular:
E[A] = E[X,] — 1 =~ E[A*] ~ mean(5*)

» and then estimate p as i = E[X,] — mean(5*) ~ X, — mean(5*)

- )_<n)

mean(6*) is the estimated bias
» and se(X,) = /Var(X,) = /Var(X, — p) = \/Var(X: — %,) = sd(5*)
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Empirical bootstrap

EMPIRICAL BOOTSTRAP SIMULATION (FOR X,,—p). Given a dataset
T1,T2,..., 2, determine its empirical distribution function F;, as an

estimate of F', and compute the expectation

Tit+ 3t + T
n

.
W =Gy =

corresponding to F,.
1. Generate a bootstrap dataset x7,z3,... ) from F,.
2. Compute the centered sample mean for the bootstrap dataset:

* =
I, = @

where

“n

o = i +z5+-- -ty
n

Repeat steps 1 and 2 many times.

® Use the empirical distribution of §* = X — X, (realizations of A* = )?,f — Xn)
» for estimating the distribution of A = X, — u, and in particular:
» confidence interval for § = X, — 1t is (g /2, 1—a/2) of 6* empirical distribution
> Qa2 <0=X,— u< di—a/2 implies c.i. for o is ()?n - ql—oc/27>_(n - %/2)
See R script 6/17



Empirical bootstrap

® Bootstrap approach applies to any estimator, not only the mean

® Example: the German Tank problem

n+1

T, = M, — 1 E[T2] = N

® Example 2: estimate Pg(|X, — p| > 1) as

» Pz(|X; — X,| > 1) and then by the fraction of 0* = X — X, such that |§*| > 1
See R script
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Wrap up on empirical bootstrap

® How many bootstrap samples?
> There are (') distinct bootstrap samples [Why?]
» Suggested to use at least 1000 bootstrap samples
» Jackknife resampling: bootstrap samples xq,...,Xj—1, Xj+1,...,Xn, for i =1,....n
® How good is the approximation by bootstrap?
» Small perturbation to data-generating process should produce small perturbation of the
parameter to estimate (6)
» Problems with extreme values, e.g., percentiles, maximum, etc.
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https://en.wikipedia.org/wiki/Jackknife_resampling

Resampling methods for classifier performance estimation

® Decision rule y, (w) (classifier) or score function sy(w) (binary probabilistic classifier)

® Loss function, e.g., 0-1 loss £o(c, w) =1+ ().

Risk (or Expected Prediction Error EPE)

The risk w.r.t. a loss function £y is R(07ruE,0) = Ew,c)~hy, , [C6(C, W)].

Question: how to estimate risk given a dataset?

e Holdout method: split dataset into training and test, build y; () on training, estimate as the
empirical risk on test set (wq,c1),. .., (Wn, Cn): ‘

P=151 1 lolci,w;) se =/ 7?(1”4) Iy

‘ Training Test |

Data |

» Drawbacks: variability of training/test set, and then of empirical risk estimates
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Resampling methods for classifier performance estimation

Question: how to estimate risk given a dataset?

® Random sampling: repeat holdout k times, and average the empirical risks:
F= 13 P owith # = LS5 4y(c/, w!) s the error on j* training-test split

® Standard error calculated as standard deviation over the k repetitions:

K (a2
se = \/ﬁ > =P —F)?

Wrong! As test sets (and then #'s) are not independent!
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Resampling methods for classifier performance estimation

o 0 0 D Test Traini
Question: how to estimate risk given a dataset? Fold Fold
® k-fold cross-validation: average the empirical risks over k-fold splits: Tst

k

~

= 3 X5 P with P = 2 ST (] w) 2 e L]
® Standard deviation calculated over the k folds, with % s [T L]
€~ Vﬁzj(ﬂ*ﬁ)z % an (T T ]
Wrong!(*) Test sets are independent, but training sets (and then #'s) are not! &
e |f classifier is stable over the folds (see [Kohavi, 1995]), use: o[ TTT 1
se = F(l;F) [see Lesson 26 on Cl for proportions]
» Boils down to estimation as holdout but using all data instances (lower variability)!
» This is the one implemented in R/caret
[ ]

Setting k = n is the leave-one out cross-validation (LOOCV)

(*) CV should be treated as an estimator of the average prediction error across training sets!
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Resampling methods for classifier performance estimation

Question: how to estimate risk given a dataset?

® training = bootstrap x7,..., X}, test = dataset \ bootstrap = {x1,...,x,} \ {x{, ..., x}}

» .632 bootstrap algorithm for k bootstrap runs
L1 o N
P= 2(0.632 -7 4+0.368 - 7)
J

where # is the empirical risk on j© bootstrap run, and 7, is the empirical risk on the dataset
® [Kohavi, 1995, Kim, 2009] conclusions and recommendations:

» Bootstrap has low variance, but it is extremely biased
» k-fold cross-validation has low bias and variance can be controlled

O by averaging multiple k-fold cross-validation

» Recommendation: use repeated (stratified) k-fold cross-validation, with k ~ 10
® [Vanwinckelen, 2012] warns against “repeated”, and it recommends k-fold cross-validation
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Parametric bootstrap principle

true empirical
distribution distribution
F F
observed bootst
® Let Xi,...,X, ~ F() be a random sample sa;m;; z:n:prlip
» with known family F but unknown parameter ~y (x4, Xn) (xgseexy)
e Estimator T = h(Xq,...,X,), g, Xo = (X¢ +...+ X,)/n l l
® From a dataset xi,...,Xx,, We can statistic bootstrap replication
» derive an estimate 4 of v v o
® From F(9) we can generate (a lot of) bootstrap samples x7, ..., x,
» as realizations of X{,..., X ~ F(§) [a form of Monte Carlo simulation]
and then (many) bootstrap point estimates §* = h(xJ, ..., x})
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https://en.wikipedia.org/wiki/Monte_Carlo_method

Parametric bootstrap

PARAMETRIC BOOTSTRAP SIMULATION (FOR X, — p). Given a
dataset 21, 2,...,2,, compute an estimate ¢ for §. Determine Fj
as an estimate for Fy, and compute the expectation p* = by corre-
sponding to Fj.
1. Generate a bootstrap dataset a7, 23, ..., 2, from F}.
2. Compute the centered sample mean for the bootstrap dataset:
Tn — K4

where ) . .

k. R a2

" n

Repeat steps 1 and 2 many times.

® Cfr with non-parametric bootstrap: use i instead of X,
® Use the empirical distribution of §* = X — p, for estimating
» confidence interval for § = X, — 1 is (qa /2, G1—a/2) of 0% empirical distribution
> o2 <0 =Xy — it < qi_qs2 implies c.i. for pis (X, — qi—a/2, X0 — Ga/2)
See R script
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Application: distribution fitting

e Consider xi, ..., X, realizations of a random sample Xi,..., X, ~ F
® |s the dataset from an Exp(\) for some A? le., is it F = Exp()\)?
* We estimate \ = 1/x, [MLE estimation]

® \We measure how close is the dataset to the distribution as:

tys = sup |Fy(a) — F5(a)|
acR
where:

» F,(a) is the empirical cumulative distribution function of xy, ..., x,
» F;(a) =1— e, for a> 0, is the CDF of Exp(})
> tys is the Kolmogorov-Smirnov distance

o if F = Exp()\) then both F, ~ F and F; ~ F, and then F, = F;, so that t, is small
o if F# Exp(\) then F, = F # Exp(\) ~ F5. so that tys is large
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Application: distribution fitting

true empirical

distribution dlstril_:-ution
F 3
® For the software dataset from the textbook I / l
> l)\\ = 0.0015 and tyks = 0.17 observed bootstrap
® |s t;s = 0.17 expected or an extreme value? [xfﬁ“f‘?':"} (xf“lrf‘f'z,}
® | et’s study the distribution of the bootstrap estimator: l B l "
Tks = sup |F’>’k(a) o F/A\*(a)| statistic bootstrap replication
aeR 8 b
where:
X X~ Exp(j\) is a bootstrap sample
» F7(a) is the empirical cumulative distribution of the bootstrap sample
» A*=1/X*
°

It turns out P(Tys > 0.17) = 0, unlikely that Exp(\) is the right model
See R script
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