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Bootstrap principle

• Let X1, . . . ,Xn ∼ F be a random sample

▶ with unknown distribution F

• Estimator T = h(X1, . . . ,Xn), e.g., X̄n = (X1 + . . .+ Xn)/n

▶ with unknown (sampling) distribution

• From a dataset x1, . . . , xn, we can derive a point estimate θ̂ = h(x1, . . . , xn)

• From many datasets {x i1, . . . , x in}mi=1, we can derive many point estimates θ̂i = h(x i1, . . . , x
i
n)

• By the Glivenko-Cantelli Thm, the empirical distribution of θ̂i approximates the distribution of T

• Problem: typically, we do not have many datasets, but only one!

See R script
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Bootstrap principle
• Let X1, . . . ,Xn ∼ F be a random sample

▶ with unknown distribution F

• Estimator T = h(X1, . . . ,Xn), e.g., X̄n = (X1 + . . .+ Xn)/n

• From a dataset x1, . . . , xn, we can

▶ derive a point estimate θ̂ = h(x1, . . . , xn)
▶ or, derive an estimate F̂ of F

• From F̂ we can generate (a lot of) bootstrap samples x∗1 , . . . , x
∗
n

▶ as realizations of X ∗
1 , . . . ,X

∗
n ∼ F̂

and then (many) bootstrap point estimates θ̂∗ = h(x∗1 , . . . , x
∗
n )
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Empirical bootstrap

• How to derive F̂ from x1, . . . , xn?

• If we know nothing about F , use the empirical distribution:

F̂ (a) = Fn(a) =
|{i∈1,...,n | xi≤a}|

n

• How to generate a bootstrap sample x∗1 , . . . , x
∗
n ?

▶ x∗i is chosen randomly from F̂
▶ i.e., x∗i s chosen randomly from x1, . . . , xn (our dataset)

• Hence, a bootstrap dataset x∗1 , . . . , x
∗
n is obtained by random sampling with replacement!

• Often the bootstrap approximation of the distribution of T will improve if we shift T by relating it
to a corresponding feature of the “true” distribution.

▶ rather than approximating the distribution of X̄n by the one of X̄ ∗
n , better to

approximate ∆ = X̄n − µ by ∆∗ = X̄ ∗
n − µ∗, where µ∗ = E [F̂ ] = x̄n = (x1 + . . .+ xn)/n

[See remarks 18.1 and 18.2 of textbook]
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Empirical bootstrap

• Use the empirical distribution of δ∗ = x̄∗n − x̄n (realizations of ∆∗ = X̄ ∗
n − x̄n)

▶ for estimating the distribution of ∆ = X̄n − µ, and in particular:

E [∆] = E [X̄n]− µ ≈ E [∆∗] ≈ mean(δ∗)

▶ and then estimate µ as µ̂ = E [X̄n]−mean(δ∗) ≈ x̄n −mean(δ∗)
mean(δ∗) is the estimated bias

▶ and se(X̄n) =
√
Var(X̄n) =

√
Var(X̄n − µ) ≈

√
Var(X̄ ∗

n − x̄n) ≈ sd(δ∗)
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Empirical bootstrap

• Use the empirical distribution of δ∗ = x̄∗n − x̄n (realizations of ∆∗ = X̄ ∗
n − x̄n)

▶ for estimating the distribution of ∆ = X̄n − µ, and in particular:
▶ confidence interval for δ = x̄n − µ is (qα/2, q1−α/2) of δ

∗ empirical distribution
▶ qα/2 ≤ δ = x̄n − µ ≤ q1−α/2 implies c.i. for µ is (x̄n − q1−α/2, x̄n − qα/2)
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Empirical bootstrap

• Bootstrap approach applies to any estimator, not only the mean

• Example: the German Tank problem

T2 =
n + 1

n
Mn − 1 E [T2] = N

• Example 2: estimate PF (|X̄n − µ| > 1) as
▶ PF̂ (|X̄ ∗

n − x̄n| > 1) and then by the fraction of δ∗ = x̄∗n − x̄n such that |δ∗| > 1

See R script
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Wrap up on empirical bootstrap

• How many bootstrap samples?
▶ There are

(
2n−1
n−1

)
distinct bootstrap samples [Why?]

▶ Suggested to use at least 1000 bootstrap samples
▶ Jackknife resampling: bootstrap samples x1, . . . , xi−1, xi+1, . . . , xn, for i = 1, . . . , n

• How good is the approximation by bootstrap?
▶ Small perturbation to data-generating process should produce small perturbation of the

parameter to estimate (θ)
▶ Problems with extreme values, e.g., percentiles, maximum, etc.
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Resampling methods for classifier performance estimation
• Decision rule y+

θ (w) (classifier) or score function sθ(w) (binary probabilistic classifier)

• Loss function, e.g., 0-1 loss ℓθ(c ,w) = 1y+
θ (w) ̸=c

Risk (or Expected Prediction Error EPE)

The risk w.r.t. a loss function ℓθ is R(θTRUE , θ) = E(W ,C)∼fθTRUE
[ℓθ(C ,W )].

Question: how to estimate risk given a dataset?

• Holdout method: split dataset into training and test, build y+
θ () on training, estimate as the

empirical risk on test set (w1, c1), . . . , (wn, cn):

r̂ = 1
n

∑n
i=1 ℓθ(ci ,wi ) se =

√
r̂(1−r̂)

n

▶ Drawbacks: variability of training/test set, and then of empirical risk estimates
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Resampling methods for classifier performance estimation

Question: how to estimate risk given a dataset?

• Random sampling: repeat holdout k times, and average the empirical risks:
r̂ = 1

k

∑k
j=1 r̂

j with r̂ j = 1
nj

∑nj
i=1 ℓθ(c

j
i ,w

j
i ) is the error on j th training-test split

• Standard error calculated as standard deviation over the k repetitions:

se =
√

1
k−1

∑k
j=1(r̂

j − r̂)2

Wrong! As test sets (and then r̂ j ’s) are not independent!
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Resampling methods for classifier performance estimation
Question: how to estimate risk given a dataset?

• k-fold cross-validation: average the empirical risks over k-fold splits:

r̂ = 1
k

∑k
j=1 r̂

j with r̂ j = 1
n/k

∑n/k
i=1 ℓθ(c

j
i ,w

j
i )

• Standard deviation calculated over the k folds, with

se =
√

1
k−1

∑
j(r̂

j − r̂)2

Wrong!(⋆) Test sets are independent, but training sets (and then r̂ j ’s) are not!

• If classifier is stable over the folds (see [Kohavi, 1995]), use:

se =
√

r̂(1−r̂)
n [see Lesson 26 on CI for proportions]

▶ Boils down to estimation as holdout but using all data instances (lower variability)!
▶ This is the one implemented in R/caret

• Setting k = n is the leave-one out cross-validation (LOOCV)

(⋆) CV should be treated as an estimator of the average prediction error across training sets!
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Resampling methods for classifier performance estimation

Question: how to estimate risk given a dataset?

• training = bootstrap x∗1 , . . . , x
∗
n , test = dataset \ bootstrap = {x1, . . . , xn} \ {x∗1 , . . . , x∗n }

▶ .632 bootstrap algorithm for k bootstrap runs

r̂ =
1

k

∑
j

(0.632 · r̂ j + 0.368 · r̂tr )

where r̂ j is the empirical risk on j th bootstrap run, and r̂tr is the empirical risk on the dataset

• [Kohavi, 1995, Kim, 2009] conclusions and recommendations:

▶ Bootstrap has low variance, but it is extremely biased
▶ k-fold cross-validation has low bias and variance can be controlled

□ by averaging multiple k-fold cross-validation

▶ Recommendation: use repeated (stratified) k-fold cross-validation, with k ≈ 10

• [Vanwinckelen, 2012] warns against “repeated”, and it recommends k-fold cross-validation
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Parametric bootstrap principle

• Let X1, . . . ,Xn ∼ F (γ) be a random sample
▶ with known family F but unknown parameter γ

• Estimator T = h(X1, . . . ,Xn), e.g., X̄n = (X1 + . . .+ Xn)/n
• From a dataset x1, . . . , xn, we can

▶ derive an estimate γ̂ of γ

• From F (γ̂) we can generate (a lot of) bootstrap samples x∗1 , . . . , x
∗
n

▶ as realizations of X ∗
1 , . . . ,X

∗
n ∼ F (γ̂) [a form of Monte Carlo simulation]

and then (many) bootstrap point estimates θ̂∗ = h(x∗1 , . . . , x
∗
n )
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Parametric bootstrap

• Cfr with non-parametric bootstrap: use µθ̂ instead of x̄n
• Use the empirical distribution of δ∗ = x̄∗n − µθ̂ for estimating

▶ confidence interval for δ = x̄n − µ is (qα/2, q1−α/2) of δ
∗ empirical distribution

▶ qα/2 ≤ δ = x̄n − µ ≤ q1−α/2 implies c.i. for µ is (x̄n − q1−α/2, x̄n − qα/2)

See R script
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Application: distribution fitting

• Consider x1, . . . , xn realizations of a random sample X1, . . . ,Xn ∼ F

• Is the dataset from an Exp(λ) for some λ? I.e., is it F = Exp(λ)?

• We estimate λ̂ = 1/x̄n [MLE estimation]

• We measure how close is the dataset to the distribution as:

tks = sup
a∈R

|Fn(a)− Fλ̂(a)|

where:
▶ Fn(a) is the empirical cumulative distribution function of x1, . . . , xn
▶ Fλ̂(a) = 1− eλ̂a, for a ≥ 0, is the CDF of Exp(λ̂)
▶ tks is the Kolmogorov-Smirnov distance

• if F = Exp(λ) then both Fn ≈ F and Fλ̂ ≈ F , and then Fn ≈ Fλ̂, so that tks is small

• if F ̸= Exp(λ) then Fn ≈ F ̸= Exp(λ) ≈ Fλ̂, so that tks is large
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Application: distribution fitting

• For the software dataset from the textbook
▶ λ̂ = 0.0015 and tks = 0.17

• Is tks = 0.17 expected or an extreme value?
• Let’s study the distribution of the bootstrap estimator:

Tks = sup
a∈R

|F ∗
n (a)− FΛ̂∗(a)|

where:
▶ X ∗

1 , . . . ,X
∗
n ∼ Exp(λ̂) is a bootstrap sample

▶ F ∗
n (a) is the empirical cumulative distribution of the bootstrap sample

▶ Λ̂∗ = 1/X̄ ∗
n

• It turns out P(Tks > 0.17) ≈ 0, unlikely that Exp(λ) is the right model

See R script
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