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From point estimate to interval estimate

Estimator and point estimate

A statistics is a function h(X1, . . . ,Xn) of r.v.’s.
An estimator of a parameter θ is a statistics Tn = h(X1, . . . ,Xn) intended to
provide information about θ.
A point estimate t of θ is t = h(x1, . . . , xn) over realizations of X1, . . . ,Xn.

• Sometimes, a range of plausible values l < θ < u is useful, as it provides uncertainty information

• Idea: confidence interval is an interval for which we can be confident the unknown parameter θ is
in with a specified probability (called confidence level)

2 / 26



Confidence intervals

• Sometimes, only have P(Ln < θ < Un) ≥ γ [conservative 100γ% confidence interval]
▶ E.g., the interval found using Chebyshev’s inequality

• There is no way of knowing if ln < θ < un (interval is correct or not)

• We only know that we have probability γ of covering θ

• Notation: γ = 1− α where α is called the significance level
▶ 100γ = 95% confidence level, i.e. probability that interval includes the parameter
▶ α = 0.05 significance level, i.e. probability that interval does not include the parameter

Seeing theory simulation 3 / 26

https://seeing-theory.brown.edu/frequentist-inference/index.html#section1


Confidence intervals for the mean: summary

• x1, . . . , xn realizations of X1, . . . ,Xn ∼ F with E [Xi ] = µ and Var(Xi ) = σ2

• Problem: what is a confidence interval for µ?
▶ Normal data F = N (µ, σ2)

□ with known variance: Z = X̄n−µ
σ/

√
n

□ with unknown variance: T = X̄n−µ
Sn/

√
n

▶ General data (with unknown variance)

□ large sample, i.e., large n: T = X̄n−µ
Sn/

√
n

□ bootstrap (next lesson)

▶ Bernoulli data F = Ber(µ)

□ confidence interval for proportions: T = X̄n−µ√
X̄n(1−X̄n)/

√
n
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Critical values

Critical value

The (right) critical value zp of Z ∼ N (0, 1) is the number with right tail probability p:

P(Z ≥ zp) = p

• The right tail is P(Z ≥ zp) = 1− P(Z ≤ zp) = 1− Φ(zp)
▶ This is why Table B.1 of the textbook is given for 1− Φ()

• 1− Φ(zp) = p means Φ(zp) = 1− p, i.e., zp is the (1− p)th quantile

• By symmetry, P(Z ≥ zp) = P(Z ≤ −zp) = p, and then
z1−p = −zp

▶ E.g., z0.975 = −z0.025 = −1.96 and z0.025 = −z.975 = 1.96
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CI for the mean: normal data with known variance

• Dataset x1, . . . , xn realization of random sample X1, . . . ,Xn ∼ N (µ, σ2)
• Estimator X̄n ∼ N (µ, σ2/n) and the scaled mean:

Z =
X̄n − µ

σ/
√
n

∼ N (0, 1) (1)

• Confidence interval for Z :

P(cl ≤ Z ≤ cu) = γ or P(Z ≤ cl) + P(Z ≥ cu) = α = 1− γ

• Symmetric split:
P(Z ≤ cl) = P(Z ≥ cu) = α/2

Hence cu = −cl = zα/2, and by (1):

P(X̄n − zα/2
σ√
n
≤ µ ≤ X̄n + zα/2

σ√
n
) = 1− α = γ

(x̄n − zα/2
σ√
n
, x̄n + zα/2

σ√
n
) is a 100γ% or 100(1− α)% confidence interval for µ
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One-sided confidence intervals

• One-sided confidence intervals (greater-than):

P(Ln < θ) = γ

Then (ln,∞) is a 100γ% or 100(1− α)% one-sided confidence interval

• ln is called the lower confidence bound

• Normal data with known variance:

P(X̄n − zα
σ√
n
≤ µ) = 1− α = γ

(x̄n − zα
σ√
n
,∞) is a 100γ% or 100(1− α)% one-sided confidence interval for µ

See R script
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CI for the mean: normal data with unknown variance
• Use the unbiased estimator of σ2 and its estimate:

S2
n =

1

n − 1

n∑
i=1

(Xi − X̄n)
2 s2n =

1

n − 1

n∑
i=1

(xi − x̄n)
2

▶ and then S2
n/n is an unbiased estimator of Var(X̄n) = σ2/n

• The following transformation is called the studentized mean: T = X̄n−µ
Sn/

√
n
∼ t(n − 1)

▶ Student/Gosset t-distribution X ∼ t(m): Some history on its discovery
□ E [X ] = 0 for m ≥ 2, and Var(X ) = m/(m − 2) for m ≥ 3
□ For m → ∞, X → N (0, 1)

See R script 8 / 26

https://en.wikipedia.org/wiki/William_Sealy_Gosset


CI for the mean: normal data with unknown variance

• Dataset x1, . . . , xn realization of random sample X1, . . . ,Xn ∼ N (µ, σ2)

Critical value

The (right) critical value tm,p of T ∼ t(m) is the number with right tail probability p:

P(T ≥ tm,p) = p

• Same properties as zp
• From the studentized mean:

T =
X̄n − µ

Sn/
√
n
∼ t(n − 1)

to confidence interval:

P(X̄n − tn−1,α/2
Sn√
n
≤ µ ≤ X̄n + tn−1,α/2

Sn√
n
) = 1− α = γ

(x̄n − tn−1,α/2
sn√
n
, x̄n + tn−1,α/2

sn√
n
) is a 100γ% or 100(1− α)% confidence interval for µ

See R script
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CI for the mean: general data with unknown variance

• Dataset x1, . . . , xn realization of random sample X1, . . . ,Xn

• A variant of CLT states that for n → ∞

T =
X̄n − µ

Sn/
√
n
→ N (0, 1)

• For large n, we make the approximation: [how large should n be?]

T =
X̄n − µ

Sn/
√
n
≈ N (0, 1)

and then

P(X̄n − zα/2
Sn√
n
≤ µ ≤ X̄n + zα/2

Sn√
n
) ≈ 1− α = γ

(x̄n − zα/2
sn√
n
, x̄n + zα/2

sn√
n
) is a 100γ% or 100(1− α)% confidence interval for µ

See R script
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General form of Wald confidence intervals

θ ∈ θ̂ ± zα/2se(θ̂) or θ ∈ θ̂ ± tα/2se(θ̂)

• They originate from the Wald test statistics:

T =
θ̂ − θ√
Var(θ̂)

=
θ̂ − θ

se(θ̂)

• Importance of standard error se(θ̂) of estimators!

• Limitation: asymptotic, symmetric intervals

11 / 26

https://en.wikipedia.org/wiki/Wald_test


CI for proportions (e.g., classifier accuracy)
• Dataset x1, . . . , xn realization of random sample X1, . . . ,Xn ∼ Ber(p)

▶ xi = 1y+
θ (wi )=ci is 1 for correct classification, 0 for incorrect classification [over a test set]

▶ p is the (unknown) accuracy of classifier y+
θ ()

• B =
∑n

i=1 Xi ∼ Bin(n, p) and X̄n = B/n

▶ For large n, Bin(n, p) ≈ N (np, np(1− p)) for 0 ≪ p ≪ 1 [De Moivre–Laplace]
□ and then X̄n = B/n ≈ N (p, p(1− p)/n)

□ se(X̄n) =
√

np(1− p)/n ≈
√

X̄n(1− X̄n)/n, because we don’t known p

□ Consider T = (X̄n − p)/se(X̄n) ≈ N (0, 1) and then P(−zα/2 ≤ T ≤ zα/2) = γ implies:

P(X̄n − zα/2

√
X̄n(1− X̄n)

n
≤ p ≤ X̄n + zα/2

√
X̄n(1− X̄n)

n
) = 1− α = γ

(x̄n − zα/2

√
x̄n(1−x̄n)

n
, x̄n + zα/2

√
x̄n(1−x̄n)

n
) is a 100γ% or 100(1− α)% confidence interval for p

▶ Drawbacks: symmetric, large sample, skewness, etc. [see Wilson score interval and Exact
or Clopper–Pearson interval]

See R script
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https://en.wikipedia.org/wiki/De_Moivre%E2%80%93Laplace_theorem
https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Wilson_score_interval
https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Clopper%E2%80%93Pearson_interval
https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Clopper%E2%80%93Pearson_interval


Hypothesis testing

• Hypotheses testing consists of contrasting two conflicting hypotheses based on observed data

• Consider the German tank problem:

▶ Military intelligence states that N = 350 tanks were produced [H0 or null hypothesis]
▶ Alternative hypothesis: [H1 or alternative hypothesis]

N < 350 (one-tailed or one-sided test), or N ̸= 350 (two-tailed or two-sided test)
▶ Observed serial tank id’s: 61 19 56 24 16

• Statistical test: How likely is the observed data under the assumption that the null hypothesis
holds?

▶ If it is NOT (sufficiently) likely, we reject the null hypothesis in favor of H1
▶ If it is (sufficiently) likely, we cannot reject the null hypothesis

• Why ’we cannot reject the null hypothesis’ and not instead ’we accept the null hypothesis’?

▶ Other hypotheses, e.g., N = 349 or N = 351, could also be not rejected
and then, we cannot say which of N = 349 or N = 350 or N = 351 is actually true
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Test statistic

• In the German tank example: [See Lesson 19]
▶ H0 : N = 350
▶ H1 : N < 350
▶ Observed serial tank id’s: 61 19 56 24 16

• We use T = max {X1,X2,X3,X4,X5}
• If H0 is true, i.e., N = 350, then E [T ] = 5

6(N + 1) = 5
6351 = 292.5

• If H0 is true, we have:

P(T ≤ 61) = P(max {X1,X2,X3,X4,X5} ≤ 61) =
61

350
· 60

349
. . .

57

346
= 0.00014

very unlikely: either we are unfortunate, or H0 can be rejected 14 / 26



Statistical test of hypothesis: one-tailed – critical region
• H0: θ = v [Null hypothesis]
• H1: θ < v (resp. H1: θ > v) [Left-tailed/Right-tailed test]
• 100(1− α)%, e.g., 95% or 99% or 99.9% [Confidence level]

▶ i.e., α = 0.05 or α = 0.01 or α = 0.001 [Significance level]
• T = h(X1, . . . ,Xn) test statistics when H0 is true
• x1, . . . , xn: observed dataset, and t = h(x1, . . . , xn) [t-value]
• cl s.t. P(T ≤ cl) = α (resp. cu s.t. P(T ≥ cu) = α) [Critical values]
• Output of the test at confidence level 100(1− α)% using critical values

▶ t ≤ cl (resp. t ≥ cu): H0 is rejected [Critical region]
▶ otherwise: H0 cannot be rejected

15 / 26



Statistical test of hypothesis: one-tailed – p-value
• H0: θ = v [Null hypothesis]
• H1: θ < v (resp. H1: θ > v) [Left-tailed/Right-tailed test]
• 100(1− α)%, e.g., 95% or 99% or 99.9% [Confidence level]

▶ i.e., α = 0.05 or α = 0.01 or α = 0.001 [Significance level]
• T = h(X1, . . . ,Xn) test statistics when H0 is true
• x1, . . . , xn: observed dataset, and t = h(x1, . . . , xn) [t-value]
• p = P(T ≤ t) (resp. p = P(T ≥ t)) [p-value]

▶ evidence against H0 - the smaller the stronger evidence
• Output of the test at confidence level 100(1− α)% using p-values

▶ p ≤ α: H0 is rejected
▶ otherwise: H0 cannot be rejected
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Statistical test of hypothesis: two-tailed
• H0: θ = v [Null hypothesis]
• H1: θ ̸= v [Two-tailed test]
• 100(1− α)%, e.g., 95% or 99% or 99.9% [Confidence level]

▶ i.e., α = 0.05 or α = 0.01 or α = 0.001 [Significance level]
• T = h(X1, . . . ,Xn) test statistics when H0 is true
• x1, . . . , xn: observed dataset, and t = h(x1, . . . , xn) [t-value]
• cl s.t. P(T ≤ cl) = α/2 and cu s.t. P(T ≥ cu) = α/2 [Critical values]
• Output of the test at confidence level 100(1− α)% using critical values

▶ t ≤ cl or t ≥ cu: H0 is rejected [Critical region]
▶ otherwise: H0 cannot be rejected
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Critical values and p-values

• Critical region K : the set of values that reject H0 in favor of H1 at significance level α
• Critical values: values on the boundary of the critical region
• p-value: the probability of obtaining test results at least as extreme as the results actually
observed, under the assumption that H0 is true

• t ∈ K iff p-value ≤ α
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Type I and Type II errors

• Type I error is we falsely reject H0: P(Reject H0|H0 is true) [α-risk, false positive rate]
▶ E.g., unjust speed-limit fine
▶ we reject H0 when p < α, so this error occur with probability 100α%
▶ this error can be controlled by setting the significance level α to the largest acceptable value

□ how much is an acceptable value?
▶ A possible solution is to solely report the p-value, which conveys the maximum amount of

information and permits decision makers to choose their own level

• Type II error is we falsely do not reject H0: P(Not Reject H0|H1 is true) [β-risk, false negative rate]
▶ E.g.,lack of a true speed-limit sanction
▶ 1− β = P(Reject H0|H1 is true) is called the power of the test
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Relation with confidence intervals

• H0: µ = 120 (null hypothesis)
• H1: µ > 120 (alternative hypothesis)
• α = 0.05 (significance level)
• cu = 120 + z0.05

2√
3
= 121.9

• H0 rejected when:

t = x̄3 ≥ cu

⇔ x̄3 ≥ 120 + z0.05
2√
3

⇔ 120 ≤ x̄3 − z0.05
2√
3

⇔ 120 is not in the 95% one-tailed c.i. for µ

because (x̄3 − z0.05
2√
3
,∞) is a one-tailed c.i. for µ
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One sample tests for the mean: summary
• x1, . . . , xn realizations of X1, . . . ,Xn ∼ F with E [Xi ] = µ and Var(Xi ) = σ2

Question: how consistent is the dataset with the null hypothesis that µ = µ0

▶ expected level over the population given blood measurement levels over n persons
▶ expected accuracy over the distribution given results on n test instances for a classifier

• H0 : µ = µ0 H1 : µ ̸= µ0 (or H1 : µ > µ0, or H1 : µ < µ0)

• We distinguish a few cases:
▶ Normal data F = N (µ, σ2)

□ with known variance: Z = X̄n−µ0
σ/

√
n

[z-test]

□ with unknown variance: T = X̄n−µ0
Sn/

√
n

[t-test]

▶ General data (with unknown variance)
□ large sample, i.e., large n, T = X̄n−µ0

Sn/
√
n

[t-test]
□ symmetric distribution [Wilcoxon test]
□ bootstrap t-test

▶ Bernoulli data F = Ber(µ)
□ Test of proportions : B⋆ = X̄n−µ0√

µ0(1−µ0)/
√
n

[Binomial test]

See R script



Misues of p-values

Misinterpretations of p-values, [Greenland et al, 2016]

• The p-value is the probability that the null hypothesis is true, or the probability that the
alternative hypothesis is false. A p-value indicates the degree of compatibility between a
dataset and a particular hypothetical explanation

• The 0.05 significance level is the one to be used: No, it is merely a convention. There is
no reason to consider results on opposite sides of any threshold as qualitatively different.

• A large p-value is evidence in favor of the test hypothesis: A p-value cannot be said to
favor the test hypothesis except in relation to those hypotheses with smaller p-values

• If you reject the test hypothesis because p ≤ 0.05, the chance you are in error is 5%: No,
the chance is either 100% or 0%. The 5% refers only to how often you would reject it,
and therefore be in error.
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Two sample tests for the mean: summary
• x1, . . . , xn realizations of X1, . . . ,Xn ∼ F1 with E [Xi ] = µ1 and Var(Xi ) = σ2

X

• y1, . . . , ym realizations of Y1, . . . ,Ym ∼ F2 with E [Yi ] = µ2 and Var(Yi ) = σ2
Y

Question: how consistent is the dataset with the null hypothesis that µ1 = µ2

▶ blood measurements over n persons for control and (medical) treatment groups of patients
▶ accuracy over n benchmark datasets for two classifiers

• H0 : µ1 = µ2 H1 : µ1 ̸= µ2 Wald test statistics: T = X̄n−Ȳm√
Var(X̄n−Ȳm)

= X̄n−Ȳm√
σ2
X
n +

σ2
Y
m• We distinguish a few cases:

▶ F1,F2 are normal distributions
□ σ2

X and σ2
Y are known [z-test]

□ σ2
X and σ2

Y are unknown and σ2
X = σ2

Y [t-test]
□ σ2

X and σ2
Y are unknown and σ2

X ̸= σ2
Y [Welch test]

▶ F1,F2 are general distributions
□ Large sample [t-test]
□ F1(x −∆) = F2(x) location-shift [Wilcoxon test]
□ Bootstrap two sample test

▶ Bernoulli data [test of proportions]
▶ Paired data [paired t-test]



Two sample tests for proportions

• X1, . . . ,Xn ∼ Ber(µ1) and Y1, . . . ,Ym ∼ Ber(µ2)

• H0 : µ1 = µ2 H1 : µ1 ̸= µ2

• Large sample [prop.test]
▶ W̄n+m = (X1 + . . .+ Xn + Y1 + . . .+ Ym)/(n +m) the overall average
▶ Test statistics when H0 is true

Z =
X̄n − Ȳm√

W̄n+m(1− W̄n+m)
√

1
n + 1

m

∼ N (0, 1)

▶ z value is x̄n−ȳm√
w̄n+m(1−w̄n+m)

√
1
n+

1
m

and p-value p = P(|Z | ≥ |z |) = 2(1− Φ(|z |))

• Fisher exact test (based on odds ratio) for small samples [fisher.test]

See R script
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https://en.wikipedia.org/wiki/Fisher%27s_exact_test


Paired data

• Datasets x1, . . . , xn and y1, . . . , yn are measurement for the same experimental unit
▶ unit: a person before and after a (medical) treatment
▶ unit: a dataset/fold used to train two different classifiers

• The theory is essentially based on taking differences x1 − y1, . . . , xn − yn and thus
reducing the problem to that of a one-sample test.

• H0 : µ1 = µ2 ⇒ H0 : µ1 − µ2 = 0
• Advantage: better power / lower Type II risk of the test w.r.t. unpaired version

▶ Ppaired(p ≤ α|H1) ≥ Punpaired(p ≤ α|H1)

See R script
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Optional references

• On confidence intervals and statistical tests (with R code)

Myles Hollander, Douglas A. Wolfe, and Eric Chicken (2014)

Nonparametric Statistical Methods.

3rd edition, John Wiley & Sons, Inc.

• On p-values

Sander Greenland, Stephen J. Senn, Kenneth J. Rothman, John B. Carlin, Charles Poole, Steven N.
Goodman, and Douglas G. Altman (2016)

Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations.

European Journal of Epidemiology 31, pages 337–350
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