National Ph.D. Program in Artificial Intelligence for Society Statistics for Machine Learning Lesson 08 - Confidence intervals and Hypotheses testing.

Andrea Pugnana, Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy andrea.pugnana@di.unipi.it salvatore.ruggieri@unipi.it

From point estimate to interval estimate

Estimator and point estimate

A statistics is a function $h(X_1, ..., X_n)$ of r.v.'s. An estimator of a parameter θ is a statistics $T_n = h(X_1, ..., X_n)$ intended to provide information about θ . A point estimate t of θ is $t = h(x_1, ..., x_n)$ over realizations of $X_1, ..., X_n$.

- Sometimes, a *range* of plausible values $l < \theta < u$ is useful, as it provides uncertainty information
- Idea: confidence interval is an interval for which we can be confident the unknown parameter θ is in with a specified probability (called *confidence level*)

Confidence intervals

CONFIDENCE INTERVALS. Suppose a dataset x_1, \ldots, x_n is given, modeled as realization of random variables X_1, \ldots, X_n . Let θ be the parameter of interest, and γ a number between 0 and 1. If there exist sample statistics $L_n = g(X_1, \ldots, X_n)$ and $U_n = h(X_1, \ldots, X_n)$ such that

$$P(L_n < \theta < U_n) = \gamma$$

for every value of θ , then

 $(l_n, u_n),$

where $l_n = g(x_1, \ldots, x_n)$ and $u_n = h(x_1, \ldots, x_n)$, is called a $100\gamma\%$ confidence interval for θ . The number γ is called the *confidence level*.

- Sometimes, only have $P(L_n < heta < U_n) \geq \gamma$
 - E.g., the interval found using Chebyshev's inequality
- There is no way of knowing if $l_n < \theta < u_n$ (interval is correct or not)
- We only know that we have probability γ of covering θ
- Notation: $\gamma = 1 \alpha$ where α is called the significance level
 - ▶ 100 $\gamma = 95\%$ confidence level, i.e. probability that interval includes the parameter
 - $\alpha = 0.05$ significance level, i.e. probability that interval does not include the parameter Seeing theory simulation

[conservative 100γ % confidence interval]

Confidence intervals for the mean: summary

- x_1, \ldots, x_n realizations of $X_1, \ldots, X_n \sim F$ with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$
- Problem: what is a confidence interval for μ ?
 - Normal data $F = \mathcal{N}(\mu, \sigma^2)$
 - \Box with known variance: $Z = \frac{\bar{X}_n \mu}{\sigma/\sqrt{n}}$
 - \Box with unknown variance: $T = \frac{\bar{X}_n \mu}{S_n / \sqrt{n}}$
 - General data (with unknown variance)
 - \Box large sample, i.e., large *n*: $T = \frac{\bar{X}_n \mu}{S_n / \sqrt{n}}$
 - □ bootstrap (next lesson)
 - Bernoulli data $F = Ber(\mu)$
 - $\ \square$ confidence interval for proportions: $T=\frac{\bar{X}_n-\mu}{\sqrt{\bar{X}_n(1-\bar{X}_n)/\sqrt{n}}}$

Critical values

Critical value

The (right) critical value z_p of $Z \sim \mathcal{N}(0, 1)$ is the number with right tail probability p:

 $P(Z \geq z_p) = p$

- The right tail is $P(Z \ge z_p) = 1 P(Z \le z_p) = 1 \Phi(z_p)$
 - This is why Table B.1 of the textbook is given for $1 \Phi()$
- $1 \Phi(z_p) = p$ means $\Phi(z_p) = 1 p$, i.e., z_p is the (1 p)th quantile
- By symmetry, $P(Z \ge z_p) = P(Z \le -z_p) = p$, and then $z_{1-p} = -z_p$
 - ▶ E.g., $z_{0.975} = -z_{0.025} = -1.96$ and $z_{0.025} = -z_{.975} = 1.96$

CI for the mean: normal data with known variance

- Dataset x_1, \ldots, x_n realization of random sample $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$
- Estimator $ar{X}_n \sim \mathcal{N}(\mu, \sigma^2/n)$ and the scaled mean:

$$Z = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1) \tag{1}$$

• Confidence interval for Z:

$$P(c_l \leq Z \leq c_u) = \gamma$$
 or $P(Z \leq c_l) + P(Z \geq c_u) = \alpha = 1 - \gamma$

• Symmetric split:

$$P(Z \leq c_l) = P(Z \geq c_u) = \alpha/2$$

Hence $c_u = -c_l = z_{\alpha/2}$, and by (1):

$$P(\bar{X}_n - \frac{z_{\alpha/2}}{\sqrt{n}} \leq \mu \leq \bar{X}_n + \frac{z_{\alpha/2}}{\sqrt{n}}) = 1 - \alpha = \gamma$$

 $(\bar{x}_n - \frac{z_{\alpha/2}\sigma}{\sqrt{n}}, \bar{x}_n + \frac{z_{\alpha/2}\sigma}{\sqrt{n}})$ is a 100 γ % or 100 $(1 - \alpha)$ % confidence interval for μ

One-sided confidence intervals

• One-sided confidence intervals (greater-than):

$$P(L_n < \theta) = \gamma$$

Then (I_n, ∞) is a $100\gamma\%$ or $100(1-\alpha)\%$ one-sided confidence interval

- *I_n* is called the *lower confidence bound*
- Normal data with known variance:

$$P(\bar{X}_n - \frac{\sigma}{\sqrt{n}} \leq \mu) = 1 - \alpha = \gamma$$

 $(\bar{x}_n - z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty)$ is a 100 γ % or 100 $(1 - \alpha)$ % one-sided confidence interval for μ See R script

CI for the mean: normal data with unknown variance

• Use the unbiased estimator of σ^2 and its estimate:

$$S_n^2 = rac{1}{n-1}\sum_{i=1}^n (X_i - ar{X}_n)^2 \qquad \qquad S_n^2 = rac{1}{n-1}\sum_{i=1}^n (x_i - ar{x}_n)^2$$

• and then S_n^2/n is an unbiased estimator of $Var(\bar{X}_n) = \sigma^2/n$

• The following transformation is called the *studentized mean*: $T=rac{ar{\chi}_n-\mu}{S_n/\sqrt{n}}\sim t(n-1)$

DEFINITION. A continuous random variable has a t-distribution with parameter m, where $m \ge 1$ is an integer, if its probability density is given by

$$f(x) = k_m \left(1 + \frac{x^2}{m}\right)^{-\frac{m+1}{2}}$$
 for $-\infty < x < \infty$,

where $k_m = \Gamma\left(\frac{m+1}{2}\right) / \left(\Gamma\left(\frac{m}{2}\right)\sqrt{m\pi}\right)$. This distribution is denoted by t(m) and is referred to as the *t*-distribution with *m* degrees of freedom.

▶ Student/Gosset t-distribution $X \sim t(m)$: □ E[X] = 0 for $m \ge 2$, and Var(X) = m/(m-2) for $m \ge 3$ □ For $m \to \infty$, $X \to \mathcal{N}(0, 1)$

See R script

CI for the mean: normal data with unknown variance

• Dataset x_1, \ldots, x_n realization of random sample $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$

Critical value

The (right) critical value $t_{m,p}$ of $T \sim t(m)$ is the number with right tail probability p:

$$P(T \geq t_{m,p}) = p$$

- Same properties as z_p
- From the studentized mean:

$$T=\frac{\bar{X}_n-\mu}{S_n/\sqrt{n}}\sim t(n-1)$$

to confidence interval:

$$P(\bar{X}_n - t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}} \le \mu \le \bar{X}_n + t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}}) = 1 - \alpha = \gamma$$

 $(\bar{x}_n - t_{n-1,\alpha/2} \frac{s_n}{\sqrt{n}}, \bar{x}_n + t_{n-1,\alpha/2} \frac{s_n}{\sqrt{n}})$ is a 100 γ % or 100 $(1 - \alpha)$ % confidence interval for μ See R script

CI for the mean: general data with unknown variance

- Dataset x_1, \ldots, x_n realization of random sample X_1, \ldots, X_n
- A variant of CLT states that for $n \to \infty$

$$T = rac{ar{X}_n - \mu}{S_n / \sqrt{n}} o \mathcal{N}(0, 1)$$

• For large *n*, we make the approximation:

[how large should n be?]

$$T = rac{ar{X}_n - \mu}{S_n / \sqrt{n}} pprox \mathcal{N}(0, 1)$$

and then

$$P(\bar{X}_n - \frac{z_{\alpha/2}}{\sqrt{n}} \le \mu \le \bar{X}_n + \frac{z_{\alpha/2}}{\sqrt{n}}) \approx 1 - \alpha = \gamma$$

 $(\bar{x}_n - z_{\alpha/2} \frac{s_n}{\sqrt{n}}, \bar{x}_n + z_{\alpha/2} \frac{s_n}{\sqrt{n}})$ is a 100 γ % or 100 $(1 - \alpha)$ % confidence interval for μ See R script

General form of Wald confidence intervals

$$heta \in \hat{ heta} \pm \mathsf{z}_{\alpha/2} \mathsf{se}(\hat{ heta}) \qquad ext{ or } \qquad heta \in \hat{ heta} \pm \mathsf{t}_{\alpha/2} \mathsf{se}(\hat{ heta})$$

• They originate from the Wald test statistics:

$$T = rac{\hat{ heta} - heta}{\sqrt{Var(\hat{ heta})}} = rac{\hat{ heta} - heta}{se(\hat{ heta})}$$

- Importance of standard error $se(\hat{\theta})$ of estimators!
- Limitation: asymptotic, symmetric intervals

Cl for proportions (e.g., classifier accuracy)

- Dataset x_1, \ldots, x_n realization of random sample $X_1, \ldots, X_n \sim Ber(p)$
 - $x_i = \mathbb{1}_{y_{\theta}^+(w_i)=c_i}$ is 1 for correct classification, 0 for incorrect classification [over a test set]
 - p is the (unknown) accuracy of classifier $y_{\theta}^+()$
- $B = \sum_{i=1}^{n} X_i \sim Bin(n,p)$ and $\bar{X}_n = B/n$
 - ► For large *n*, $Bin(n, p) \approx \mathcal{N}(np, np(1-p))$ for $0 \ll p \ll 1$ [De Moivre–Laplace] □ and then $\bar{X}_n = B/n \approx \mathcal{N}(p, p(1-p)/n)$
 - \square se $(ar{X}_n) = \sqrt{np(1-p)}/n pprox \sqrt{ar{X}_n(1-ar{X}_n)/n}$, because we don't known p
 - $\Box \text{ Consider } \mathcal{T} = (\bar{X}_n p)/se(\bar{X}_n) \approx \mathcal{N}(0, 1) \text{ and then } \mathcal{P}(-z_{\alpha/2} \leq \mathcal{T} \leq z_{\alpha/2}) = \gamma \text{ implies:}$

$$P(\bar{X}_n - z_{\alpha/2}\sqrt{\frac{\bar{X}_n(1 - \bar{X}_n)}{n}} \le p \le \bar{X}_n + z_{\alpha/2}\sqrt{\frac{\bar{X}_n(1 - \bar{X}_n)}{n}}) = 1 - \alpha = \gamma$$

 $(\bar{x}_n - z_{\alpha/2}\sqrt{\frac{\bar{x}_n(1-\bar{x}_n)}{n}}, \bar{x}_n + z_{\alpha/2}\sqrt{\frac{\bar{x}_n(1-\bar{x}_n)}{n}})$ is a 100 γ % or 100 $(1-\alpha)$ % confidence interval for p

Drawbacks: symmetric, large sample, skewness, etc. [see Wilson score interval and Exact or Clopper–Pearson interval]

See R script

Hypothesis testing

- Hypotheses testing consists of contrasting two conflicting hypotheses based on observed data
- Consider the German tank problem:
 - Military intelligence states that N = 350 tanks were produced [H0 or null hypothesis]
 - Alternative hypothesis: [H1 or alternative hypothesis] N < 350 (one-tailed or one-sided test), or $N \neq 350$ (two-tailed or two-sided test)
 - Observed serial tank id's: 61 19 56 24 16
- Statistical test: How likely is the observed data under the assumption that the null hypothesis holds?
 - ▶ If it is NOT (sufficiently) likely, we reject the null hypothesis in favor of H1
 - ► If it is (sufficiently) likely, we cannot reject the null hypothesis
- Why 'we cannot reject the null hypothesis' and not instead 'we accept the null hypothesis'?
 - ▶ Other hypotheses, e.g., N = 349 or N = 351, could also be not rejected and then, we cannot say which of N = 349 or N = 350 or N = 351 is actually true

Test statistic

TEST STATISTIC. Suppose the dataset is modeled as the realization of random variables X_1, X_2, \ldots, X_n . A *test statistic* is any sample statistic $T = h(X_1, X_2, \ldots, X_n)$, whose numerical value is used to decide whether we reject H_0 .

- In the German tank example:
 - $H_0: N = 350$
 - ► *H*₁ : *N* < 350
 - Observed serial tank id's: 61 19 56 24 16
- We use $T = \max \{X_1, X_2, X_3, X_4, X_5\}$
- If H_0 is true, i.e., N = 350, then $E[T] = \frac{5}{6}(N+1) = \frac{5}{6}351 = 292.5$

Values in	Values in	Values against
favor of H_1	favor of H_0	both H_0 and H_1
E	202 5	250
5	292.5	330

• If H₀ is true, we have:

verv

$$P(T \le 61) = P(\max\{X_1, X_2, X_3, X_4, X_5\} \le 61) = \frac{61}{350} \cdot \frac{60}{349} \dots \frac{57}{346} = 0.00014$$

unlikely: either we are unfortunate, or H_0 can be rejected

[See Lesson 19]

Statistical test of hypothesis: one-tailed – critical region

Statistical test of hypothesis: one-tailed – p-value

[Null hypothesis] [Left-tailed/Right-tailed test] [Confidence level] [Significance level]

> [t-value] [p-value]

Statistical test of hypothesis: two-tailed

1.96

-1.96

Critical values and p-values

- Critical region K: the set of values that reject H_0 in favor of H_1 at significance level α
- Critical values: values on the boundary of the critical region
- *p-value*: the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that H_0 is true
- $t \in K$ iff *p*-value $\leq \alpha$

Type I and Type II errors

		True state of nature	
		H_0 is true	H_1 is true
Our decision on the basis of the data	Reject H_0	Type I error	Correct decision
	Not reject H_0	Correct decision	Type II error

• Type I error is we falsely reject H_0 : $P(\text{Reject } H_0 | H_0 \text{ is true})$

[α -risk, false positive rate]

- E.g., unjust speed-limit fine
- we reject H_0 when $p < \alpha$, so this error occur with probability $100\alpha\%$
- ► this error can be controlled by setting the significance level α to the largest acceptable value □ how much is an acceptable value?
- A possible solution is to solely report the *p*-value, which conveys the maximum amount of information and permits decision makers to choose their own level
- Type II error is we falsely do not reject H_0 : $P(\text{Not Reject } H_0|H_1 \text{ is true}) [\beta risk, false negative rate]$
 - E.g., lack of a true speed-limit sanction
 - ▶ $1 \beta = P(\text{Reject } H_0 | H_1 \text{ is true})$ is called the *power* of the test

Relation with confidence intervals

- H_0 : $\mu = 120$ (null hypothesis)
- H_1 : $\mu > 120$ (alternative hypothesis)
- $\alpha = 0.05$ (significance level)
- $c_u = 120 + z_{0.05} \frac{2}{\sqrt{3}} = 121.9$
- H_0 rejected when:

$$\begin{array}{l}t=\bar{x}_{3}\geq c_{u}\\\Leftrightarrow\quad\bar{x}_{3}\geq 120+z_{0.05}\frac{2}{\sqrt{3}}\\\Leftrightarrow\quad120\leq\bar{x}_{3}-z_{0.05}\frac{2}{\sqrt{3}}\\\Leftrightarrow\quad120\text{ is not in the 95\% one-tailed c.i. for }\mu\end{array}$$

because
$$(\bar{x}_3 - z_{0.05} \frac{2}{\sqrt{3}}, \infty)$$
 is a one-tailed c.i. for μ

One sample tests for the mean: summary

•
$$x_1, \ldots, x_n$$
 realizations of $X_1, \ldots, X_n \sim F$ with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$

Question: how consistent is the dataset with the null hypothesis that $\mu = \mu_0$

- expected level over the population given blood measurement levels over *n* persons
- expected accuracy over the distribution given results on n test instances for a classifier

•
$$H_0: \mu = \mu_0$$
 $H_1: \mu \neq \mu_0$ (or $H_1: \mu > \mu_0$, or $H_1: \mu < \mu_0$)

• We distinguish a few cases:

► Normal data
$$F = \mathcal{N}(\mu, \sigma^2)$$

□ with known variance: $Z = \frac{\bar{X}_n - \mu_0}{\sigma/\sqrt{n}}$ [z-test]
□ with unknown variance: $T = \frac{\bar{X}_n - \mu_0}{\bar{S}_n/\sqrt{n}}$ [t-test]
► General data (with unknown variance)
□ large sample, i.e., large $n, T = \frac{\bar{X}_n - \mu_0}{\bar{S}_n/\sqrt{n}}$ [t-test]
□ symmetric distribution [Wilcoxon test]
□ bootstrap t-test
► Bernoulli data $F = Ber(\mu)$
□ Test of proportions : $B^* = \frac{\bar{X}_n - \mu_0}{\sqrt{\mu_0(1-\mu_0)}/\sqrt{n}}$ [Binomial test]

Misues of *p*-values

Misinterpretations of p-values, [Greenland et al, 2016]

- The p-value is the probability that the null hypothesis is true, or the probability that the alternative hypothesis is false. A p-value indicates the degree of compatibility between a dataset and a particular hypothetical explanation
- The 0.05 significance level is the one to be used: No, it is merely a convention. There is no reason to consider results on opposite sides of any threshold as qualitatively different.
- A large p-value is evidence in favor of the test hypothesis: A p-value cannot be said to favor the test hypothesis except in relation to those hypotheses with smaller p-values
- If you reject the test hypothesis because p ≤ 0.05, the chance you are in error is 5%: No, the chance is either 100% or 0%. The 5% refers only to how often you would reject it, and therefore be in error.

Two sample tests for the mean: summary

- x_1, \ldots, x_n realizations of $X_1, \ldots, X_n \sim F_1$ with $E[X_i] = \mu_1$ and $Var(X_i) = \sigma_x^2$
- y_1, \ldots, y_m realizations of $Y_1, \ldots, Y_m \sim F_2$ with $E[Y_i] = \mu_2$ and $Var(Y_i) = \sigma_Y^2$

Question: how consistent is the dataset with the null hypothesis that $\mu_1 = \mu_2$

- blood measurements over n persons for control and (medical) treatment groups of patients
- accuracy over n benchmark datasets for two classifiers

•
$$H_0: \mu_1 = \mu_2$$
 $H_1: \mu_1 \neq \mu_2$ Wald test statistics: $T = \frac{\bar{X}_n - \bar{Y}_m}{\sqrt{Var(\bar{X}_n - \bar{Y}_m)}} = \frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}$
• We distinguish a few cases:
• F_1, F_2 are normal distributions
 $\Box \sigma_X^2$ and σ_Y^2 are known
 $\Box \sigma_X^2$ and σ_Y^2 are unknown and $\sigma_X^2 = \sigma_Y^2$
 $\Box \sigma_X^2$ and σ_Y^2 are unknown and $\sigma_X^2 \neq \sigma_Y^2$ [*t*-test]
 $\Box F_1, F_2$ are general distributions
 \Box Large sample
 $\Box F_1(x - \Delta) = F_2(x)$ location-shift [*Wilcoxon test*]

- Bootstrap two sample test
- Bernoulli data
- Paired data

[test of proportions] [paired t-test]

[z-test] [t-test] [Welch test]

[t-test]

Two sample tests for proportions

- $X_1, \ldots, X_n \sim Ber(\mu_1)$ and $Y_1, \ldots, Y_m \sim Ber(\mu_2)$
- $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$
- Large sample

[prop.test]

- $ar{W}_{n+m} = (X_1 + \ldots + X_n + Y_1 + \ldots + Y_m)/(n+m)$ the overall average
- Test statistics when *H*₀ is true

$$Z = rac{ar{X}_n - ar{Y}_m}{\sqrt{ar{W}_{n+m}(1 - ar{W}_{n+m})}\sqrt{rac{1}{n} + rac{1}{m}}} \sim \mathcal{N}(0,1)$$

► z value is
$$\frac{\bar{x}_n - \bar{y}_m}{\sqrt{\bar{w}_{n+m}(1 - \bar{w}_{n+m})}\sqrt{\frac{1}{n} + \frac{1}{m}}}$$
 and p-value $p = P(|Z| \ge |z|) = 2(1 - \Phi(|z|))$

• Fisher exact test (based on odds ratio) for small samples

[fisher.test]

See R script

Paired data

- Datasets x_1, \ldots, x_n and y_1, \ldots, y_n are measurement for the same experimental unit
 - unit: a person before and after a (medical) treatment
 - unit: a dataset/fold used to train two different classifiers
- The theory is essentially based on taking differences $x_1 y_1, \ldots, x_n y_n$ and thus reducing the problem to that of a one-sample test.

•
$$H_0: \mu_1 = \mu_2 \Rightarrow H_0: \mu_1 - \mu_2 = 0$$

• Advantage: better power / lower Type II risk of the test w.r.t. unpaired version

•
$$P_{paired}(p \leq \alpha | H_1) \geq P_{unpaired}(p \leq \alpha | H_1)$$

See R script

- On confidence intervals and statistical tests (with R code)
- Myles Hollander, Douglas A. Wolfe, and Eric Chicken (2014) Nonparametric Statistical Methods. 3rd edition, John Wiley & Sons, Inc.
 - On p-values

 Sander Greenland, Stephen J. Senn, Kenneth J. Rothman, John B. Carlin, Charles Poole, Steven N. Goodman, and Douglas G. Altman (2016)
 Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. European Journal of Epidemiology 31, pages 337–350