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From point estimate to interval estimate

Estimator and point estimate

A statistics is a function h(Xi,...,X,) of r.v.'s.

An estimator of a parameter 6 is a statistics T, = h(Xi, ..., X,) intended to
provide information about 6.

A point estimate t of  is t = h(xi, ..., x,) over realizations of Xi, ..., X.

® Sometimes, a range of plausible values /| < 6 < u is useful, as it provides uncertainty information

® |dea: confidence interval is an interval for which we can be confident the unknown parameter @ is
in with a specified probability (called confidence level)
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Confidence intervals

CONFIDENCE INTERVALS. Suppose a dataset xj,...,x, is given,
modeled as realization of random variables X1, ..., X,,. Let 6 be the
parameter of interest, and v a number between 0 and 1. If there exist
sample statistics L, = g(X1,..., X,,) and U, = h(X1,...,X,) such
that

PLn<0<Upy)=v

for every value of 6, then
(ln~ un)v

where [, = g(x1,...,2,) and w,, = h(21,...,2,), is called a 100v%
confidence interval for 6. The number + is called the confidence level.
® Sometimes, only have P(L, <0 < U,) >~ [conservative 100y % confidence interval]
» E.g., the interval found using Chebyshev's inequality

® There is no way of knowing if [, < 6 < u, (interval is correct or not)

We only know that we have probability v of covering

Notation: v =1 — « where « is called the significance level
» 100y = 95% confidence level, i.e. probability that interval includes the parameter
» o = 0.05 significance level, i.e. probability that interval does not include the parameter
Seeing theory simulation 3/26


https://seeing-theory.brown.edu/frequentist-inference/index.html#section1

Confidence intervals for the mean: summary

® x1,..., X, realizations of Xi,..., X, ~ F with E[X;] = p and Var(X;) = o2
® Problem: what is a confidence interval for p?

» Normal data F = N (u,0?)

0 with known variance: Z = f’}_‘;
O with unknown variance; T = Xe—£

Su/ /i
» General data (with unknown variance)

O large sample, i.e., large n: T = ;("/"‘
O bootstrap (next lesson)
» Bernoulli data F = Ber(u)

S

O confidence interval for proportions: T = Xo—pe

V Xn(1=Xn)/ /0

4/26



Critical values

Critical value

The (right) critical value z, of Z ~ N(0,1) is the number with right tail probability p:

P(Z>z)=p

® The right tail is P(Z > z,) =1 - P(Z < z5) =1 —®(2,)
» This is why Table B.1 of the textbook is given for 1 — ®()

® 1 —®d(z,) =p means ®(z,) =1—p, i.e., zp is the (1 — p)th quantile

® By symmetry, P(Z > z,) = P(Z < —z,) = p, and then
Z1-p= —2p
» E.g., Z0.975 = —20.005 = —1.96 and zp.025 = —z.975 = 1.96

-\ area p
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Cl for the mean: normal data with known variance

e Dataset xi,..., X, realization of random sample Xi,..., X, ~ N (u,0?)
e Estimator X, ~ N(u,02/n) and the scaled mean:
Xn —
Z = ~/\/ 0,1 1
i~ A(O.) 1)

® Confidence interval for Z:
Plce<Z<c,)=v or PZ<¢g)+P(Z>c)=a=1—-x
® Symmetric split:
P(Z<c¢)=P(Z>cy) =9
Hence c, = —¢; = z,/, and by (1):

P(X, — z <pu<X, —|—z(y/20

Zo)2 = \f \[) =l-a=y
(Xn — za/2\%,>'<n + 2(1,/2\%) is a 1007% or 100(1 — «)% confidence interval for
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One-sided confidence intervals

® One-sided confidence intervals (greater-than):
P(L,<8)=~

Then (/p,00) is a 1007% or 100(1 — «)% one-sided confidence interval
® /. is called the lower confidence bound

® Normal data with known variance:

P()_(nfza%g,u):l*a:’y

(xn — za%, o0) is a 1007% or 100(1 — )% one-sided confidence interval for p
See R script
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Cl for the mean: normal data with unknown variance

® Use the unbiased estimator of o2 and its estimate:
1 < - ) 1
i — X

» and then S2/n is an unbiased estimator of Var(X,) = o2/n

® The following transformation is called the studentized mean: T = ;_("_\/’% ~t(n—1)

DEFINITION. A continuous random variable has a t-distribution with
parameter m, where m > 1 is an integer, if its probability density is
given by

mtl

22\ T2
i) = logp (1 + %) for —oo < 2 < 0,

where k,, = T (Z52) /(T (&) /m=). This distribution is denoted
by t(m) and is referred to as the t-distribution with m degrees of
freedom.

» Student/Gosset t-distribution X ~ t(m): Some history on its discovery
0 E[X]=0for m>2, and Var(X) = m/(m —2) for m >3
O For m — oo, X — N(0,1)
See R script 8/26


https://en.wikipedia.org/wiki/William_Sealy_Gosset

Cl for the mean: normal data with unknown variance

e Dataset xi,..., X, realization of random sample Xi, ..., X, ~ N (u,0?)

Critical value

The (right) critical value t,, , of T ~ t(m) is the number with right tail probability p:

P(T > tmp) =p

® Same properties as z,
® From the studentized mean: -

Xn —
T = ~t(n—1)
Sn /\f
to confidence interval:
— S, n
P(Xn — to- lu/2f<M<X ntth 1a/2\f)_1—a:7
(xn — tn—l.a/2%7>_<n + t,,_l_’,y/zﬁ) is a 1007% or 100(1 — «)% confidence interval for

See R script
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Cl for the mean: general data with unknown variance

® A variant of CLT states that for n — oo

® For large n, we make the approximation:

and then

® Dataset xi,..., X, realization of random sample Xi,..., X,
X, —
T = (0,1)
S /\f
[how large should n be?]
Xn —
T= ~ N(0,1
S SN
- Sn - Sny
P(XH_Z(M/ZW S:U’SXH_’_ZQ/ZW) ~rl-a=vy

22) is a 1007% or 100(1 — a)% confidence interval for p

()_<n - Za/2%7)_(n + Za/2ﬁ

See R script
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General form of Wald confidence intervals

0ch+ za/2se(9A) or 0ch+ tu/zse(é)

® They originate from the Wald test statistics:

T 0-6 0 —AH
Var(0) se(V)

n

® Importance of standard error se(f) of estimators!

® | imitation: asymptotic, symmetric intervals
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https://en.wikipedia.org/wiki/Wald_test

Cl for proportions (e.g., classifier accuracy)

® Dataset xi, ..., X, realization of random sample Xi, ..., X, ~ Ber(p)
> X = ]ly;(wl_):q is 1 for correct classification, 0 for incorrect classification [over a test set]
» pis the (unknown) accuracy of classifier y, ()
e B=3"",X;~ Bin(n,p) and X, = B/n
» For large n, Bin(n,p) ~ N (np,np(1 —p)) for 0 < p < 1 [De Moivre—Laplace]
O and then X, = B/n~ N(p,p(1 — p)/n)

O se(X,) = /np(1 — p)/n = 1/Xs(1 — Xa)/n, because we don't known p
O Consider T = (X, — p)/se(Xa) ~ N(0,1) and then P(—z,/» < T < z,/5) = 7 implies:

P(Xo = zas2) ‘Xn(l,:ixn) <P < Xotzap2)f ‘Xn(l; X"*)) =l-a=~
(%n — za/24/ M,)‘m + 2424/ M) is a 1007% or 100(1 — «)% confidence interval for p

» Drawbacks: symmetric, large sample, skewness, etc. [see Wilson score interval and Exact
or Clopper—Pearson interval]
See R script
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https://en.wikipedia.org/wiki/De_Moivre%E2%80%93Laplace_theorem
https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Wilson_score_interval
https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Clopper%E2%80%93Pearson_interval
https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Clopper%E2%80%93Pearson_interval

Hypothesis testing

® Hypotheses testing consists of contrasting two conflicting hypotheses based on observed data
® Consider the German tank problem:

» Military intelligence states that N = 350 tanks were produced [HO or null hypothesis]

» Alternative hypothesis: [H1 or alternative hypothesis]
N < 350 (one-tailed or one-sided test), or N # 350 (two-tailed or two-sided test)

» Observed serial tank id's: 61 19 56 24 16

® Statistical test: How likely is the observed data under the assumption that the null hypothesis
holds?

» If it is NOT (sufficiently) likely, we reject the null hypothesis in favor of H1
» If it is (sufficiently) likely, we cannot reject the null hypothesis

® Why 'we cannot reject the null hypothesis' and not instead "we accept the null hypothesis’?

» Other hypotheses, e.g., N = 349 or N = 351, could also be not rejected
and then, we cannot say which of N = 349 or N = 350 or N = 351 is actually true
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Test statistic

TeST StATISTIC. Suppose the dataset is modeled as the realization
of random variables X1, Xo,..., X,. A test statistic is any sample
statistic T = h(X1, Xo,...,X,,), whose numerical value is used to
decide whether we reject Hp.

® In the German tank example: [See Lesson 19]
» Hy: N =350
» Hy : N <350
» Observed serial tank id's: 61 19 56 24 16
® We use T = max{Xy, Xz, X3, Xa, X5}
® If Hp is true, i.e., N = 350, then E[T] = %(N +1)= %351 =292.5
Values in Values in Values against
favor of H, favor of Ho both Hy andHl
.'Ii 29|2.5 3!20
[ ]

If Hp is true, we have:

1 7
P(T < 61) = P(max {Xo, Xo, X5, X, X} < 61) = o= . 00 5

350 349 346
very unlikely: either we are unfortunate, or Hy can be rejected 1426

= 0.00014



Statistical test of hypothesis: one-tailed — critical region

® Hy: 0=v [Null hypothesis]
® Hi: 0 < v (resp. Hi: 6 > v) [Left-tailed /Right-tailed test]
e 100(1 — )%, e.g., 95% or 99% or 99.9% [Confidence level]
> i.e., @« =0.050r & =0.01 or & =0.001 [Significance level]
o T = h(Xy,...,Xp) test statistics when Hy is true
® xi,...,X, observed dataset, and t = h(xy,...,X,) [t-value]
® ¢gst P(T <c¢)=a/(resp. ¢,st. P(T>c,)=a) [Critical values]
® Qutput of the test at confidence level 100(1 — «)% using critical values
» t < ¢ (resp. t > c¢,): Hp is rejected [Critical region]

» otherwise: Hy cannot be rejected

Reject " Do not / Do not Reject

Null reject null ‘reject null Null
=0.05 a=0.05
~ '

-1.645 1.645 15/26



Statistical test of hypothesis: one-tailed — p-value

® Hy: 0=v [Null hypothesis]

® Hi: 0 < v (resp. Hi: 6 > v) [Left-tailed /Right-tailed test]

e 100(1 — )%, e.g., 95% or 99% or 99.9% [Confidence level]
> i.e., @« =0.050r & =0.01 or & =0.001 [Significance level]

o T = h(Xy,...,Xp) test statistics when Hy is true

® xi,...,X,: observed dataset, and t = h(xy,...,Xx,) [t-value]

e p=P(T <t)(resp. p=P(T >1t)) [p-value]

» evidence against Hy - the smaller the stronger evidence

Output of the test at confidence level 100(1 — «)% using p-values
» p < a: Hy is rejected
» otherwise: Hy cannot be rejected

t=-1.645

t=-2'40i

= ]
p=0.009
a=0.05 16 /26



Statistical test of hypothesis: two-tailed

® Hy: 0=v [Null hypothesis]
® Hi: 0#v [Two-tailed test]
e 100(1 — «)%, e.g., 95% or 99% or 99.9% [Confidence level]
> i.e., @« =0.050r & =0.01 or & =0.001 [Significance level]
o T = h(Xy,...,Xp) test statistics when Hy is true
® xi,...,X,: observed dataset, and t = h(xy,...,Xx,) [t-value]
e st P(T<¢)=«/2and¢,st. P(T >c,)=a/2 [Critical values]
® Qutput of the test at confidence level 100(1 — «)% using critical values
» t < ¢ ort>c, Hyis rejected [Critical region]

» otherwise: Hy cannot be rejected

Reject / \ ;
Null Do not Reject

(x/2=0£35 reject null | /2=0.025

-1.96 1.96 17/26



Critical values and p-values

Sampling distribution
of T under Hy N

Ca T

L Critical region K = [ca,00)

Critical region K: the set of values that reject Hy in favor of Hj at significance level «
Critical values: values on the boundary of the critical region

p-value: the probability of obtaining test results at least as extreme as the results actually
observed, under the assumption that Hjy is true

t € K iff p-value < «
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Type | and Type Il errors

True state of nature

Ho is true Hy is true

Our decision on the
basis of the data

Reject Ho

Type I error Correct decision

Not reject Ho

Correct decision Type II error

® Type | error is we falsely reject Hy: P(Reject Ho|Ho is true)

>

>
>

v

E.g., unjust speed-limit fine

[e-risk, false positive rate]

we reject Hy when p < «, so this error occur with probability 100a%

this error can be controlled by setting the significance level « to the largest acceptable value
O how much is an acceptable value?

A possible solution is to solely report the p-value, which conveys the maximum amount of

information and permits decision makers to choose their own level

® Type Il error is we falsely do not reject Hyo: P(Not Reject Ho|H; is true) [-risk, false negative rate]
» E.g.,lack of a true speed-limit sanction

» 1 — 8 = P(Reject Ho|H; is true) is called the power of the test
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Relation with confidence intervals

Ho: w1 = 120 (null hypothesis)

Hy: p > 120 (alternative hypothesis)
a = 0.05 (significance level)

cu =120 + 20,05 75 = 121.9

Hp rejected when:

=X3 2> Cy
& X3 > 120 + 2
X3 =2 20.05 7=
V3
2

< 120 < X3 — 20.05—=
V3

< 120 is not in the 95% one-tailed c.i. for p

because (X3 — 20.05%, o0) is a one-tailed c.i. for p
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One sample tests for the mean: summary

® xi,...,X, realizations of Xi,..., X, ~ F with E[X;] = p and Var(X;) = o2
Question: how consistent is the dataset with the null hypothesis that p = pg

» expected level over the population given blood measurement levels over n persons

» expected accuracy over the distribution given results on n test instances for a classifier
® Ho:pu=upg Hi:p#po (or Hy:p > pg, or Hy @ < po)
® We distinguish a few cases:

» Normal data F = N (p, 0?)

. . o R
O with known variance: Z = ﬁ [z-test]
. . . _ an
O with unknown variance: T = 2712 [t-test]
» General data (with unknown variance)
O large sample, i.e., large n, T = );:7\% [t-test]
O symmetric distribution [Wilcoxon test]

O bootstrap t-test
» Bernoulli data F = Ber(u) i
O Test of proportions : B* = % [Binomial test]
po(1—po)/v/n

See R script



Misues of p-values

M|smterpretat|ons of p-values, [Greenland et al, 2016]

aJ-’ee%nat—we—hypet—heas—rs—ﬁa-lse— A p-value |nd|cates the degree of compat|b|||ty between a

dataset and a particular hypothetical explanation

® The0-05-significancetevelis-the-one-to-be-used: No, it is merely a convention. There is

no reason to consider results on opposite sides of any threshold as qualitatively different.

® A-largep-value-is-evidence-infavor-of-the-test-hypothesis: A p-value cannot be said to

favor the test hypothesis except in relation to those hypotheses with smaller p-values

the chance is either 100% or 0%. The 5% refers only to how often you would reject it,
and therefore be in error.
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Two sample tests for the mean: summary
® Xxi,...,X, realizations of Xi,..., X, ~ F; with E[X;] = p1 and Var(X;) = ai

® yi,...,Ym realizations of Yi,..., Yy ~ F with E[Y;] = po and Var(Y;) = o3,
Question: how consistent is the dataset with the null hypothesis that u; = o

» blood measurements over n persons for control and (medical) treatment groups of patients
» accuracy over n benchmark datasets for two classifiers

o« M- . e T RV Ry Ve
Ho:p1=p2 Hi:pr#p2  Wald test statistics: T TRy \/i+

n

°
3|

We distinguish a few cases:
» F1, F, are normal distributions

O % and 0% are known [z-test]
O 0% and 0% are unknown and 0% = 0% [t-test]
O ¢% and o2 are unknown and o% # 0% [Welch test]
» F1, F, are general distributions
O Large sample [t-test]
0 Fi(x — A) = F2(x) location-shift [Wilcoxon test]
O Bootstrap two sample test
» Bernoulli data [test of proportions]

» Paired data [paired t-test]



Two sample tests for proportions

® Xi,...,Xn~ Ber(u1) and Yi,..., Ym ~ Ber(u)

® Ho:pa=p2 Hi:ps#
® Large sample [prop.test]

» Woim= (X1 +...+Xo+ Y1+ ...+ Yn)/(n+ m) the overall average
» Test statistics when Hp is true

Xn— Ym

= — — ~N(0,1)
VWaim(l = Woim)\/3 + &
> z value is \/Wﬁm(li“;ny;"’m)\/%+# and p-value p = P(|Z] > |z]) = 2(1 — ®(|z]))
¢ Fisher exact test (based on odds ratio) for small samples [fisher.test]

See R script
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https://en.wikipedia.org/wiki/Fisher%27s_exact_test

® Datasets x1,...,x, and y1,...,y, are measurement for the same experimental unit

> unit: a person before and after a (medical) treatment
» unit: a dataset/fold used to train two different classifiers

® The theory is essentially based on taking differences x; — yi, . .
reducing the problem to that of a one-sample test.
® Ho:pp=p2=Ho:p1—p2=0
® Advantage: better power / lower Type Il risk of the test w.r.t. unpaired version
> paired(p < OL|H1) > Punpaired(p < a|Hl)

.y Xn — yn and thus

See R script
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Optional references

® On confidence intervals and statistical tests (with R code)

B Myles Hollander, Douglas A. Wolfe, and Eric Chicken (2014)
Nonparametric Statistical Methods.
3rd edition, John Wiley & Sons, Inc.

® On p-values

@ Sander Greenland, Stephen J. Senn, Kenneth J. Rothman, John B. Carlin, Charles Poole, Steven N.
Goodman, and Douglas G. Altman (2016)
Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations.

European Journal of Epidemiology 31, pages 337-350
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https://link.springer.com/article/10.1007/s10654-016-0149-3

