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Markov’s inequality

Notation. Indicator function: 1φ(x) =

{
1 if φ(x)
0 otherwise

▶ Link expectation to probability of events
▶ E [1X≥α] =

∑
a 1X≥α(a)pX (a) =

∑
a≥α pX (a) = PX (X ≥ α)

• Question: how much probability mass is near the expectation?

Markov’s inequality. Assume X ≥ 0, and α > 0:

P(X ≥ α) ≤ E [X ]

α

Proof. Take expectations of α1X≥α ≤ X . □

• For a non-negative r.v., the probability of a large value is inversely proportional to the value

Corollary. Assume X ≥ 0, E [X ] > 0 and k > 0. We have: P(X ≥ kE [X ]) ≤ 1
k
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Chebyshev’s inequality

• Question: how much probability mass is near the expectation?

Proof. Let X = (Y − E [Y ])2 and α = a2. By Markov’s inequality:

P(|Y − E [Y ]| ≥ a) = P((Y − E [Y ])2 ≥ a2) ≤ E [(Y − E [Y ])2]

a2
=

1

a2
Var(Y )

□
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Chebyshev’s inequality

• “µ ± a few σ” rule: Most of the probability mass of a random variable is within a few
standard deviations from its expectation!

• Let µ = E [Y ] and σ2 = Var(Y ) > 0. For k > 0 (and hence a = kσ > 0):

P(|Y − µ| < kσ) = 1− P(|Y − µ| ≥ kσ) ≥ 1− 1

k2σ2
Var(Y ) = 1− 1

k2

• For k = 2, 3, 4, the RHS is 3/4, 8/9, 15/16

• Chebyshev’s inequality is sharp when nothing is known about X , but in general it is a
large bound!
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Averages vary less

• E [X ] is a key summary of a distribution! How to “guess” it?

• Guessing the weight of a cow

• The Wisdom of Crowds
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Expectation and variance of an average

• Let X1,X2, . . . ,Xn be independent r. v. for which E [Xi ] = µ and Var(Xi ) = σ2

X̄n =
X1 + X2 + . . .+ Xn

n

• Notice that X1, . . . ,Xn are not required to be identically distributed!
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The (weak) law of large numbers

• Apply Chebyshev’s inequality to X̄n

P(|X̄n − µ| > ϵ) ≤ 1

ϵ2
Var(X̄n) =

σ2

nϵ2

• For n → ∞, σ2/(nϵ2) → 0

• probability that X̄n is far from µ tends to 0 as n → ∞! [Convergence in probability]

• It holds also if σ2 is infinite (proof not included)

• Notice (again!) that X1, . . . ,Xn are not required to be identically distributed!
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Recovering probability of an event

Objective: We want to know p = P(a < X ≤ b)

• Run n independent measurements

• Model the results as X1, . . . ,Xn random variables

• Define the indicator variables, for i = 1, . . . , n:

Yi = 1a<Xi≤b =

{
1 if a < Xi ≤ b
0 otherwise

• Yi ’s are independent [by propagation of independence]

• E [Yi ] = P(a < X ≤ b) = p and Var(Yi ) = p(1− p)

• Defined Ȳn = Y1+...+Yn
n , by the law of large numbers:

lim
n→∞

P(|Ȳn − p| > ϵ) = 0

• Frequency counting of values (a, b] (e.g., in histograms) is a prob. estimation method!
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Estimating conditional probability

Objective: estimate p = P(C = c |A = a) = P(A = a,C = c)/P(A = a) = pac/pa
• Run n independent measurement

• Model the results as (A1,C1), . . . , (An,Cn)
• Using the approach of previous slide (but with the strong LLN):

▶ for Yi = 1Ai=a,Ci=c : P(limn→∞ Ȳn = pac) = 1 where pac = P(A = a,C = c)
▶ for Zi = 1Ai=a: P(limn→∞ Z̄n = pa) = 1 where pa = P(A = a)

• if Z̄n ̸= 0, from previous two statements: (limit of a ratio is the ratio of the limits)

P( lim
n→∞

Ȳn

Z̄n
=

pac
pc

) = 1

• Sample usage: almost everywhere in Machine Learning

• Issues: when n is small (e.g., rare values)

9 / 42

https://en.wikipedia.org/wiki/Law_of_large_numbers#Strong_law


Hoeffding bound

Theorem (Hoeffding bound)

If X̄n is the average of n independent r.v. with expectation µ and
P(a ≤ Xi ≤ b) = 1, then for any ϵ > 0

P(|X̄n − µ| ≥ ϵ) ≤ 2e
−2nϵ2/(b−a)2

• For bounded support, a tight upper bound!

• When a = 0, b = 1 (e.g., Bernoulli trials):

P(|X̄n − µ| ≥ ϵ) ≤ 2e−2nϵ2

• Other concentration inequalities.
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The central limit theorem

• Let X1,X2, . . . ,Xn be independent r. v. for which E [Xi ] = µ and Var(Xi ) = σ2

X̄n =
X1 + X2 + . . .+ Xn

n
E [X̄n] = µ Var(X̄n) =

σ2

n

• Can we derive the distribution of X̄n?

• Assume X1, . . . ,Xn ∼ N (µ, σ2) with µ and σ2 known. We have:

X̄n ∼ N (µ,
σ2

n
) Zn =

X̄n − µ

σ/
√
n

∼ N (0, 1)

• Interestingly, the same conclusion extends to any other distribution!
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The central limit theorem

• It extends to not identically distributed r.v.’s [Lindeberg’s condition]
• Why is it so frequent to observe a normal distribution?

▶ Sometime it is the average/sum effects of other variables, e.g., as in “noise”
▶ This justifies the common use of it to stand in for the effects of unobserved variables
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How large should n be?

• How fast is the convergence of Zn to N (0, 1)?
• The approximation might be poor when:

▶ n is small the myth of n ≥ 30
▶ Xi is asymmetric, bimodal, or discrete
▶ the value to test (0.6 in our example) is far from µ
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Condensed observations: graphical summaries

• Probability models governs some random phenomena

• Confronted with a new phenomenon, we want to learn about the randomness associated with it

▶ Parametric (efficient) vs non-parameteric (general) methods

• Record observations x1,. . . , xn (a dataset)

• n can be large: need to condense for easy visual comprehension

• Graphical summaries:

▶ Univariate: empirical distribution functions, histograms, kernel density estimates
▶ Multi-variate: kernel density estimates, scatter plots
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The empirical CDF

• A r.v. X is completely characterized by its CDF F

• Record observations x1,. . . , xn (a dataset)

• Empirical cumulative distribution function (ECDF):

Fn(x) =
|{i ∈ [1, n] | xi ≤ x}|

n

• Empirical complementary cumulative distribution function (ECCDF): F̄n(x) = 1− Fn(x)

• Estimating F through Fn [Glivenko-Cantelli Thm]

P( lim
n→∞

sup
x

|F (x)− Fn(x)| = 0) = 1

allow for estimating other quantities by plugging Fn in the place of F , e.g., E [X ] as

E [X ] =
∑
a

a · P(X = a) ≈
∑
a

a · |{i | xi = a}|
n

=
1

n

∑
i

xi

• What about p.m.f. and d.f.?
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p.m.f.: Barplots

• For discrete data, barplots provide frequency counts for values
▶ approximate the p.m.f. due to the law of large numbers

P(X = a) ≈ |{i | xi = a}|
n

• For continuous data, frequency counting of distinct values do not work. Why?
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d.f.: Histograms

• Histograms provide frequency counts for ranges of values.

• Split the support to m intervals, called bins:

B1, . . . ,Bm

where the length |Bi | is called the bin width

• Count observations in each bin and normalize them:

Ai =
|{j ∈ [1, n] | xj ∈ Bi}|

n
≈ P(X ∈ Bi )

• Plot bars whose area is proportional to Ai

Ai = |Bi | · Hi Hi =
|{j ∈ [1, n] | xj ∈ Bi}|

n|Bi |
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Choice of the bin width
• Bins of equal width:

Bi = (r + (i − 1)b, r + ib] for i ∈ [1,m]

where r ≤ minimum point and b is the bin width

• Mean Integrated Square Error (MISE), for f̂ density estimation of f :

MISE = E [

∫
(f̂ (t)− f (t))2dt] =

∫ ∫
(f̂ (t)− f (t))2f (x1) . . . f (xn)dtdx1 . . . dxn

• Scott’s normal reference rule (minimize MISE for Normal density):

b = 3.49 · s · n−1/3, where s = σ̂ =
√

1
n−1

∑n
i=1(xi − x̄)2 is the sample standard deviation
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Choice of the bin width

• b = 2 · IQR · n−1/3, where IQR = Q3 − Q1 [Freedman-Diaconis’ choice]
▶ It replaces 3.49 · s in the Scott’s rule by 2 · IQR (more robust to outlier)
▶ Q3 is 75% percentile of x1, . . . , xn
▶ Q1 is 25% percentile of x1, . . . , xn

• Variable bin width
▶ Logarithmic binning in power laws

• Alternative strategy: number of bins given equal bin width b: [other methods]
▶ m = ⌈max xi−min xi

b ⌉
▶ m = ⌈

√
n⌉

▶ Sturges’s formula: m = ⌈log2 n⌉+ 1
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d.f.: Kernels

• Problem with histograms: as m increases, histograms become unusable
• Idea: estimate density function by putting a pile (of sand) around each observation
• Kernels state the shape of the pile

▶ Epanechnikov 3
4 (1− t2) for −1 ≤ t ≤ 1

▶ Triweight 35
32 (1− t2)3 for −1 ≤ t ≤ 1

▶ Normal 1√
2π
e−

1
2 t

2

for −∞ < t < ∞
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Kernel density estimation (KDE)
A Kernel is a function K : R → R such that

• K is a probability density, i.e., K (t) ≥ 0 and
∫∞
−∞ K (t)dt = 1

• K is symmetric, i.e., K (−t) = K (t)

• [sometime, it is required that] K (t) = 0 for |t| > 1, i.e., support is [−1, 1]

A bandwidth h is a scaling factor over the support of K from [−1, 1] to [−h, h]

• h controls for how the probability density extends around 0

• if X ∼ K (t), then hX ∼ 1
hK ( th ) [Change-of-units transformation, see Lesson 09]

21 / 42



Kernel density estimation (KDE)

Let x1, . . . , xn be the observations

• if X ∼ K , then hX + xi ∼ 1
hK ( t−xi

h ) [Change-of-units transformation]

• K scaled and shifted at xi , with support [xi − h, xi + h]

The kernel density estimate is defined as the mixture of scaled and shifted kernel densities:

fn,h(t) =
1

nh

n∑
i=1

K (
t − xi
h

)

• It is a probability density function! [Prove it!]
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Histograms vs KDE

• KDE has less variability than histograms!
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Choice of the bandwidth

• Note. The choice of the kernel is not critical: different kernels give similar results

• A problem. The choice of the bandwith h is critical (and it may depend on the kernel)

• Mean Integrated Squared Error (MISE) is

E [

∫ ∞

−∞
(fn,h(t)− f (t))2dt] =

∫ ∫ ∞

−∞
(fn,h(t)− f (t))2f (x1) . . . f (xn)dtdx1 . . . dxn

where f (t) is the true density function and observations are independent

• For f (t) being the Normal density, the MISE is minimized for

h = (
4

3
)
1
5 · s · n−

1
5 [normal reference method]
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Kernel density estimation (KDE)

• A problem. The choice of the bandwith h is critical (and it may depend on the kernel)
• Automatic selection of h

▶ Plug-in selectors (iterative bandwith selection)
▶ Cross-validation selectors (part of data for estimation and part for evaluation)

• Another problem. When the support is finite, symmetric kernels give meaningless results
• Boundary kernels

▶ Kernel (truncation) and renormalization
▶ Linear (combination) kernel
▶ Beta boundary kernels
▶ Reflective kernels (density=0 at boundaries)

• See [Khamis, 2008] for a complete book on KDE
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Condensed observations: numerical summaries

• Probability models governs some random phenomena

• Confronted with a new phenomenon, we want to learn about the randomness associated with it

▶ Parametric (efficient) vs non-parameteric (general) methods

• Record observations x1,. . . , xn (a dataset)

• n can be large: need to condense for easy comprehension and processing

• Numerical summaries (useful for automated processing):

▶ Univariate: sample/empirical mean, median, standard deviation, quantiles, MAD
▶ Multi-variate: Pearson’s, Spearman’s, Kendall’s correlation coefficients
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Sample summaries

Main idea (plug-in method): translate summaries of empirical distribution Fn of a sample of
realizations to estimate summaries of the generating distribution F

• Sample mean:

x̄n =
x1 + . . .+ xn

n
E [X ], µ

• Median for sorted x1, . . . , xn:

Med(x1, . . . , xn) =

{
x (n+1)

2

if n is odd

(x n
2
+ x n

2
+1)/2 if n is even

F−1(0.5)

E.g., Med(2, 3, 4) = 3 and Med(2, 3, 4, 5) = 3.5
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Measures of variability

• Sample variance:

s2n =
1

n − 1

n∑
i=1

(xi − x̄n)
2 =

1

n − 1

n∑
i=1

x2i − n

n − 1
· x̄2n Var(X ), σ2

Divide by n − 1 for a sample, and by n for a population! [Bessel’s correction]

• Sample standard deviation:

sn =
√

s2n
√
Var(X ), σ
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Order statistics and empirical quantiles
• Let x⟨1⟩, . . . , x⟨n⟩ be sorted x1, . . . , xn. We call x⟨i⟩ the i-th order statistics.

▶ The order statistics consist of the same elements in the dataset, but in ascending order

• Distribution quantiles qp = infx{P(X ≤ x) ≥ p} = infx{F (x) ≥ p}
• Empirical quantiles: q(p) = infx{Fn(x) ≥ p} = infx{|{i | xi ≤ x}|/n ≥ p}
• What is q(p) when p · (n + 1) is not an integer?

q(p) = x⟨k⟩ + α(x⟨k+1⟩ − x⟨k⟩)

where k = ⌊p · (n + 1)⌋ and α = p · (n + 1)− k (remainder)
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The box-and-whisker plot

• Axis here is with reference to a standard Normal distribution

• See John Tukey (designed FFT, coined ’bit’ & ’software’, and visionary of data science)
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Association and correlation

• Bivariate analysis of joint distribution of X and Y or of a sample (x1, y1), . . . , (xn, yn)

• Association: one variable provides information on the other
▶ X ⊥⊥ Y independent, i.e., P(X |Y ) = P(X ): zero information
▶ Y = f (X ) deterministic association with f invertible: maximum information

• Correlation: the two variables show an increasing/decreasing trend
▶ X ⊥⊥ Y implies Cov(X ,Y ) = 0
▶ the converse is not always true

• Coefficient or measure of association/correlation: determine the strength of
association/correlation between two variables and the direction of the relationship
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Measures of association

• Dimension: level of measurement
▶ Ordinal: discrete but ordered, e.g., 0, 1, 2 for “low”, “medium”, “severe” risks
▶ Nominal: discrete without any order, e.g., 0, 1, 2 for “bus”, “car”, “train” transportation

• See [Khamis, 2008] for a guide to the selection

• See [Berry et al., 2018] for extensive introduction

• See mhahsler.github.io for a list of measures in association rule mining X ⇒ Y
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Linear correlation of continuous r.v.: Pearson’s r

• Bivariate analysis of joint distribution of X and Y or of a sample (x1, y1), . . . , (xn, yn)

• Sample covariance:

sxy =
1

n − 1

n∑
i=1

(xi − x̄) · (yi − ȳ) Cov(X ,Y ) = E [(X − µX ) · (Y − µY )]

• Apply plug-in method to correlation between X and Y :

ρ =
Cov(X ,Y )√

Var(X ) · Var(Y )
=

E [(X − µX ) · (Y − µY )]

σX · σY

• Pearson’s (linear/product-moment) correlation coefficient:

r =
sxy

sx · sy
=

∑n
i=1(xi − x̄) · (yi − ȳ)√∑n

i=1(xi − x̄)2 ·
∑n

i=1(yi − ȳ)2

• Support in [−1, 1] due to Cauchy–Schwarz’s inequality: |sxy | ≤ sx · sy }
• Computational cost is O(n)
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Linear correlation of continuous r.v.: Pearson’s r

ρ =
Cov(X ,Y )√

Var(X ) · Var(Y )
=

E [(X − µX ) · (Y − µY )]

σX · σY

• Pearson’s (linear/product-moment) correlation coefficient: [support in [−1, 1]]

r =
sxy

sx · sy
=

∑n
i=1(xi − x̄) · (yi − ȳ)√∑n

i=1(xi − x̄)2 ·
∑n

i=1(yi − ȳ)2
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Rank correlation of continuous/ordinal r.v.: Spearman’s ρ

• Pearsons’s r asseses linear relationships over continuous values
• Let rank(x) be the ranks of xi ’s (position in the ordered sequence)

▶ For x = 7, 3, 5, rank(x) = 3, 1, 2

• Spearman’s correlation coefficient is the Pearson’s coefficient over the ranks:

ρ = r(rank(x), rank(y))
Cov(rank(X ), rank(Y ))√

Var(rank(X )) · Var(rank(Y ))
▶ In case of no ties in x and y :

ρ = 1−
6
∑n

i=1(rank(x)i − rank(y)i )
2

n · (n2 − 1)

• Spearman’s correlation assesses monotonic relationships (whether linear or not)
• Spearman’s applies when Y (or also X ) is ordinal

▶ E.g., association between age and education level (“high-school”, “bachelor”, “master”, . . . )

• Computational cost is O(n · log n)
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Rank correlation of continuous/ordinal r.v.: Kendall’s τ

• Kendall’s τa is another (more robust) rank measure: [support in [−1, 1]]

τxy =
2
∑

i<j sgn(xi − xj) · sgn(yi − yj)

n · (n − 1)
EX1,X2∼FX ,Y1,Y2∼FY

[sgn(X1−X2)·sgn(Y1−Y2)]

Fraction of concordant pairs minus discordant pairs, i.e., probability of observing a
difference between concordant and discordant pairs.

• Correction τb accounting for ties, i.e., xi = xj or yi = yj
▶ Correction to divide by the number of pairs for which sgn(xi − xj) · sgn(yi − yj) ̸= 0

• Computational cost is O(n2)
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Rank correlation of continuous and binary r.v.: Somers’ D

• X continuous and Y binary.

• Somers’D is an asymmetric Kendall’s:

D =
τxy
τyy

=

∑
i<j sgn(xi − xj) · sgn(yi − yj)∑

i<j sgn(yi − yj)2

i.e., fraction of concordand pairs minus discordant pairs conditional to unequal values of y

• Example with probabilistic classifiers [more in future lessons]
▶ x = confidence prediction of being positive, i.e., predict proba(...)[,1] in Python
▶ y true class
▶ D is the Gini index of classifier performances
▶ related to AUC of ROC curve:

D = 2 · AUC − 1 AUC =
D

2
+ 0.5 =

τxy
2 · τyy

+ 0.5
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Gini = D = A/(A+ B)

AUC = A+ 1/2
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Association between nominal variables: Thiel’s U

Mutual information and NMI

I (X ,Y ) =
∑
a,b

pXY (a, b) log
pXY (a, b)

pX (a)pY (b)
NMI =

I (X ,Y )

min {H(X ),H(Y )}
∈ [0, 1]

• Uncertainty coefficient (also called entropy coefficient or Thiel’s U) :

Usym =
I (X ,Y )

(H(X ) + H(Y ))/2
Uasym =

I (X ,Y )

H(X )

where pXY is the empirical joint p.m.f., and pX , pY are the empirical marginal p.m.f.’s

• Uasym what fraction of X can be predicted by Y
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Association between nominal variables: χ2-based

• Several other measures based on Pearson χ2 (introduced in future lessons)
▶ Contingency coefficient C
▶ Cramer’s V
▶ ϕ coefficient (or MCC, Matthews correlation coefficient)
▶ Tschuprov’s T
▶ . . .
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Optional reference

David W. Scott (2015)

Multivariate density estimation: Theory, practice, and visualization.

John Wiley & Sons, Inc.
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Optional references

Harry Khamis (2008)

Measures of Association: How to Choose?

J. of Diagnostic Medical Sonography, Vol. 24, Issue 3, pages 155–162.

Kenneth J. Berry, Janis E. JohnstonPaul, and W. Mielke, Jr. (2018)

The Measurement of Association: A Permutation Statistical Approach.

Springer.
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