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Markov's inequality

1 if p(x)

Notation. Indicator function: 1 = :
otation. Indicator function: 1.,(x) { 0 othorwise

» Link expectation to probability of events
> E[lx>a] =32, Ix>a(a)px(a) = 20,54 Px(a) = Px(X = a)

® Question: how much probability mass is near the expectation?

Markov'’s inequality. Assume X >0, and o > O:
_ElX

P(X > «) o

Proof. Take expectations of alx>, < X. O
® Foranon-negative r.v., the probability of a large value is inversely proportional to the value

Corollary. Assume X >0, E[X] > 0 and k > 0. We have: P(X > kE[X]) <
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Chebyshev's inequality

® Question: how much probability mass is near the expectation?

CHEBYSHEV'S INEQUALITY. For an arbitrary random variable Y
and any a > 0:

P([Y —E[Y]|>a) < al—QVar(Y) .

Proof. Let X = (Y — E[Y])? and a = a%. By Markov's inequality:

EIY BV 1)

P(Y — E[Y]| > a) = P((Y — E[Y])? > &) < 2

3/42



Chebyshev's inequality

o “y + afew ¢” rule: Most of the probability mass of a random variable is within a few
standard deviations from its expectation!

® let u=E[Y] and 02 = Var(Y) > 0. For k > 0 (and hence a = ko > 0):

1

1

® For k =2,3,4, the RHS is 3/4,8/9,15/16

® Chebyshev's inequality is sharp when nothing is known about X, but in general it is a
large bound!
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Averages vary less

® E[X]is a key summary of a distribution! How to “guess” it?

® Guessing the weight of a cow

Penelope The Cow

® The Wisdom of Crowds
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https://en.wikipedia.org/wiki/The_Wisdom_of_Crowds

Expectation and variance of an average

® Let Xq,Xa,...,X, be independent r. v. for which E[X;] = p and Var(X;) = o2

X :X1+X2+...+Xn

n
n

EXPECTATION AND VARIANCE OF AN AVERAGE. If X, is the average
of n independent random variables with the same expectation p and
variance o2, then

_ _ 02
E [Xn] =p  and Var(Xn) = —.

n

® Notice that Xi, ..., X, are not required to be identically distributed!
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The (weak) law of large numbers

e Apply Chebyshev's inequality to X,

P(|X L Var(X) = &
(I n—ﬂ\>€)§€7 ar( n)—p

® For n — o0, @°/(n?) — 0
THE LAW OF LARGE NUMBERS. If X, is the average of n independent
random variables with expectation x and variance o, then for any
e>0: _
lim P(|X,, —p| >¢) =0.
n—oo
e probability that X, is far from y tends to 0 as n — ool [Convergence in probability]
® It holds also if o2 is infinite (proof not included)
°

Notice (again!) that Xi,..., X, are not required to be identically distributed!
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https://en.wikipedia.org/wiki/Convergence_of_random_variables

Recovering probability of an event

Objective: We want to know p = P(a < X < b)
® Run n independent measurements

® Model the results as Xi, ..., X, random variables
® Define the indicator variables, for i=1,... n:
1 ifa<X;i<b
Vi = la<xi<b = { 0 otherwise
® Y;'s are independent [by propagation of independence]
[ ]

E[Y;]=P(a< X < b)=pand Var(Y;) = p(1 - p)
Defined Y, = Y1t=tYe by the law of large numbers:

lim P(|Y,—p| >€¢)=0

n—oo

Frequency counting of values (a, b] (e.g., in histograms) is a prob. estimation method!
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Estimating conditional probability

Objective: estimate p=P(C =c|/A=a)=P(A=a,C =c)/P(A=a) = pac/pa
® Run n independent measurement

® Model the results as (A1, C1), ..., (An, Cn)

® Using the approach of previous slide (but with the strong LLN):
» for ¥ = Ta—ac—c: P(liMp_soc Yo = pac) = 1 where p,c = P(A=a,C =)
» for Z; = 1a—as P(limpsoo Zn = pa) = 1 where p, = P(A= a)

if Z, # 0, from previous two statements: (limit of a ratio is the ratio of the limits)

Y,
P(lim =" =Py

n—o0 Zn Pc

Sample usage: almost everywhere in Machine Learning

Issues: when n is small (e.g., rare values)
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https://en.wikipedia.org/wiki/Law_of_large_numbers#Strong_law

Hoeffding bound

Theorem (Hoeffding bound)

If X, is the average of n independent r.v. with expectation  and
P(a < X; < b) =1, then for any € > 0

P(IXn — | > €) < 267 /6=

® For bounded support, a tight upper bound!
® When a=0,b =1 (e.g., Bernoulli trials):

e Other concentration inequalities.
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https://en.wikipedia.org/wiki/Concentration_inequality

The central limit theorem

® Let Xq,Xa,...,X, be independent r. v. for which E[X;] = p and Var(X;) = o2

R R I 2
A “; T ER] = Var(Xy) = =

e Can we derive the distribution of X,?

® Assume X1, ..., Xy ~ N (1, 0?) with i and o known. We have:

_ 2 Xn —
X"NN(:LL70-7) Zn U/f

® |nterestingly, the same conclusion extends to any other distribution!

o N(0,1)
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The central limit theorem

THE CENTRAL LIMIT THEOREM. Let X, Xo,... be any sequence
of independent identically distributed random variables with finite
positive variance. Let u be the expected value and o2 the variance
of each of the X;. For n > 1, let Z,, be defined by

P
Z, ==L,

then for any number a

lim Fz, (a) = ®(a),

n—oo

where @ is the distribution function of the N(0,1) distribution. In
words: the distribution function of Z,, converges to the distribution
function @ of the standard normal distribution.

® |t extends to not identically distributed r.v.’s [Lindeberg’s condition]
® Why is it so frequent to observe a normal distribution?

» Sometime it is the average/sum effects of other variables, e.g., as in “noise”

» This justifies the common use of it to stand in for the effects of unobserved variables
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https://en.wikipedia.org/wiki/Lindeberg%27s_condition

How large should n be?

e How fast is the convergence of Z, to N(0,1)?
® The approximation might be poor when:

» nis small the myth of n > 30
» X; is asymmetric, bimodal, or discrete
» the value to test (0.6 in our example) is far from p
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https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/34906.pdf

Condensed observations: graphical summaries

Probability

—

Data generating process Observed data

\_/

Inference and Data Mining

Probability models governs some random phenomena

Confronted with a new phenomenon, we want to learn about the randomness associated with it
» Parametric (efficient) vs non-parameteric (general) methods

Record observations xi,. .., x, (a dataset)

n can be large: need to condense for easy visual comprehension

Graphical summaries:

» Univariate: empirical distribution functions, histograms, kernel density estimates
» Multi-variate: kernel density estimates, scatter plots
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The empirical CDF

A r.v. X is completely characterized by its CDF F

Record observations xi,. .., x, (a dataset)

Empirical cumulative distribution function (ECDF):
il | x <)

Fa(x) ;

Empirical complementary cumulative distribution function (ECCDF):  F,(x) = 1 — Fn(x)

Estimating F through F, [Glivenko-Cantelli Thm)]

P( lim sup|F(x) — Fa(x)| =0) =1

n—oo
allow for estimating other quantities by plugging F, in the place of F, e.g., E[X] as
{ilxi=a}l 1
E[X] = -P(X =a)= N LS S ErE g :

What about p.m.f. and d.f.?
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https://en.wikipedia.org/wiki/Glivenko%E2%80%93Cantelli_theorem

p.m.f.: Barplots

® For discrete data, barplots provide frequency counts for values
» approximate the p.m.f. due to the law of large numbers

150

100

50

® For continuous data, frequency counting of distinct values do not work. Why?
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d.f.: Histograms

® Histograms provide frequency counts for ranges of values.
® Split the support to m intervals, called bins:

Bi,...,Bm

where the length |B;| is called the bin width

e Count observations in each bin and normalize them:

Ai — ’{J € [17'7]”‘ Xj € BI}| ~ P(X c B,)

® Plot bars whose area is proportional to A;

el € B
A= B H, Hi:|{J€[>n]’XJ€ }
n|B;|
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Choice of the bin width

® Bins of equal width:
Bi=(r+(i—1)b,r+ib] forie[l,m|

where r < minimum point and b is the bin width

0.01 o

0.01 A 0.01 A

T T T T Tr 1T 177
60 180 300 60 180 300 60 180 300

0+

Bin width 2 Bin width 30 Bin width 90
Fig. 15.2. Histograms of the Old Faithful data with different bin widths.

® Mean Integrated Square Error (MISE), for f density estimation of f:

MISE — E[ / ) — £(£))2dt] = / / (F(£) = F(£))F(x1) . .. F(xn)dtdx . .. dn

® Scott's normal reference rule (minimize MISE for Normal density):

b=3.49-5-n""% where s =5 = \/n 7 >i—1(xi — X)? is the sample standard deviation
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Choice of the bin width

® b=2-IQR-n""3 where IQR = Q3 — @ [Freedman-Diaconis’ choice]
> It replaces 3.49 - s in the Scott’s rule by 2 - IQR (more robust to outlier)
» Q3 is 75% percentile of xq,...,x,
» Q1 is 25% percentile of xq,...,x,

® Variable bin width

» Logarithmic binning in power laws

e Alternative strategy: number of bins given equal bin width b: [other methods]
> m = [meceminx ]
- m= [

» Sturges's formula: m = [log, n] + 1
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https://en.wikipedia.org/wiki/Histogram#Number_of_bins_and_width

d.f.: Kernels

® Problem with histograms: as m increases, histograms become unusable
® |dea: estimate density function by putting a pile (of sand) around each observation
® Kernels state the shape of the pile

1.2 A 1.2 1.2
» Epanechnikov 3(1—t?) for -1 <t <1 ] 1 ]
0.8 0.8 o 0.8
» Triweight %(1 —t?)P3 for—1<t<1 1 1 1
0.4 - \ 0.4 - 0.4 o
1 -1 ] i |
» Normal —==e™ 2" for —oco < t < 00 \ / \
27T < < ﬂ”_l T T T T ”ﬂ_l T T T T ””_l T T T T
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
Triangular kernel Cosine kernel Epanechnikov kernel
1.2 1.2 1.2
4 4 /'\\ 1
0.8 0.8 - / 0.8 |
0.4 0.4+ 0.4 —/\
0.0 A 0.0+ 0.0 4
T T T T T T T T T T T T T T T
2 -1 0 1 2 2 -1 0 1 2 2 -1 0 1 2
Biweight kernel Triweight kernel Normal kernel

Fig. 15.4. Examples of well-known kernels K. 20/42



Kernel density estimation (KDE)

A Kernel is a function K : R — R such that
* K is a probability density, i.e., K(t) > 0and [~ K(t)dt =1
® K is symmetric, i.e., K(—t) = K(t)

® [sometime, it is required that] K(t) = 0 for |t| > 1, i.e., support is [—1,1]
A bandwidth h is a scaling factor over the support of K from [—1,1] to [—h, h]

® h controls for how the probability density extends around 0

* if X ~ K(t), then hX ~ $+K(%) [Change-of-units transformation, see Lesson 09]
1 . [t
K <E> CHANGE-OF-UNITS TRANSFORMATION. Let X be a continuous ran-

h
/ dom variable with distribution function Fy and probability density

function fx. If we change units to Y = rX + s for real numbers » > 0
and s, then

m Fy(y) = Fx (Zl 7— 9) and  fy(y) = %fx (?) .
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Kernel density estimation (KDE)

L[t
/’ﬁh’(h>

_/ /\
\ : _/ L
T T T 1T T T T 1T T T T 1T
-2 -1 0 1 2 2 -1 0 1 2 -2 -1 0 1 2
Kernel and scaled kernel Shifted kernel Kernel density estimate
Let xq,..., X, be the observations
® if X ~ K, then hX + x; ~ + K(13%) [Change-of-units transformation]

® K scaled and shifted at x;, with support [x; — h, x; + h]

The kernel density estimate is defined as the mixture of scaled and shifted kernel densities:

nh nhz tix’

® |t is a probability density function! [Prove it!]
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Histograms vs KDE

KDE, max variation = 0.057

— KDE (bw = 0249)
-- Mo

® KDE has less variability than histograms!
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Choice of the bandwidth

® Note. The choice of the kernel is not critical: different kernels give similar results
® A problem. The choice of the bandwith h is critical (and it may depend on the kernel)
® Mean Integrated Squared Error (MISE) is

| / (e — F(0)2dt] = / /  fun(t) — F(O)2F(x1) . Fxn)dtds . d,

where f(t) is the true density function and observations are independent
® For f(t) being the Normal density, the MISE is minimized for

1 1
h=(3)5-s-n"5 [normal reference method]
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Kernel density estimation (KDE)

A problem. The choice of the bandwith h is critical (and it may depend on the kernel)
Automatic selection of h

» Plug-in selectors (iterative bandwith selection)
» Cross-validation selectors (part of data for estimation and part for evaluation)

Another problem. When the support is finite, symmetric kernels give meaningless results

Boundary kernels

Kernel (truncation) and renormalization
Linear (combination) kernel

Beta boundary kernels

Reflective kernels (density=0 at boundaries)

® See [Khamis, 2008] for a complete book on KDE

v

v vy

25 /42



Condensed observations: numerical summaries

Probability

—

Data generating process Observed data

\_/

Inference and Data Mining

Probability models governs some random phenomena

Confronted with a new phenomenon, we want to learn about the randomness associated with it
» Parametric (efficient) vs non-parameteric (general) methods

Record observations xi,. .., x, (a dataset)
® 1 can be large: need to condense for easy comprehension and processing

® Numerical summaries (useful for automated processing):

» Univariate: sample/empirical mean, median, standard deviation, quantiles, MAD
» Multi-variate: Pearson's, Spearman’s, Kendall's correlation coefficients
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Sample summaries

Main idea (plug-in method): translate summaries of empirical distribution F,, of a sample of
realizations to estimate summaries of the generating distribution F

® Sample mean:

X1+ ...+ Xn

gy = e EIX],
X - [X], w
® Median for sorted xi, ..., Xp:
X(n+1) if nis odd 1
Med(x1,...,%n) = 2 L F~2(0.5)
(x2 +x241)/2 if nis even

E.g., Med(2,3,4) = 3 and Med(2,3,4,5) = 3.5
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Measures of variability

® Sample variance:

1 . _ 1 : n _
R N I LR Var(X), o2
Divide by n — 1 for a sample, and by n for a population! [Bessel’s correction]

® Sample standard deviation:

Sn = \/S? Var(X), o
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Order statistics and empirical quantiles

® let x(1),...,X(n) besorted x,...,x,. We call x;;y the i-th order statistics.

» The order statistics consist of the same elements in the dataset, but in ascending order
e Distribution quantiles g, = inf {P(X < x) > p} = inf,{F(x) > p}
® Empirical quantiles: g(p) = inf,{F,(x) > p} = inf, {|{i | x; < x}|/n > p}
® What is g(p) when p- (n+ 1) is not an integer?
q(p) = x(ky + alXk+1) = X(k))

where k = |p-(n+1)] and a = p-(n+ 1) — k (remainder)
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The box-and-whisker plot

Interquartile Range
Outliers b Outliers
° ”{ |:;:>
"Minimum" "Maximum"
(Q1 - 1.5*%IQR) Q1 Median Q3 (Q3 + 1.5*IQR)
(25th Percentile) (75th Percentile)
-4 -3 -2 -1 0 1 2 3 4

® Axis here is with reference to a standard Normal distribution

¢ See John Tukey (designed FFT, coined 'bit" & 'software’, and visionary of data science)
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https://en.wikipedia.org/wiki/John_Tukey
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/

Association and correlation

® Bivariate analysis of joint distribution of X and Y or of a sample (x1, 1), .., (Xn, ¥n)
® Association: one variable provides information on the other

» X 1 Y independent, i.e., P(X]Y) = P(X): zero information

» Y = f(X) deterministic association with f invertible: maximum information
® Correlation: the two variables show an increasing/decreasing trend

» X 1L Y implies Cov(X,Y) =0

> the converse is not always true

® Coefficient or measure of association/correlation: determine the strength of
association/correlation between two variables and the direction of the relationship

a Association and correlation b Correlation coefficients (€ Anscombe’s quartet

Associated Not associated

ategmengenommens® s ..-"... _,/'.. S e
. rs 11 0911 0.82 0.82
. Correlated ° N : ottt ‘

00.04 0.78 1 0.82 0.82 31/42



Measures of association

Variable X
Variable Y  Nominal Ordinal Continuous
Nominal Qori Rank biserial ~ Point biserial
Ordinal Rank biserial T, or Spearman T, or Spearman
Continuous  Point biserial T, or Spearman Pearson or

Spearman

¢ = phi coefficient, A = Goodman and Kruskal’s lambda,
T, = Kendall’s 7,.

® Dimension: level of measurement

low”, “medium”, “severe” risks
", “train” transportation

» Ordinal: discrete but ordered, e.g., 0,1, 2 for
» Nominal: discrete without any order, e.g., 0,1,2 for “bus”, “car

See [Khamis, 2008] for a guide to the selection

See [Berry et al., 2018] for extensive introduction

See mhabhsler.github.io for a list of measures in association rule mining X = Y
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https://mhahsler.github.io/arules/docs/measures

Linear correlation of continuous r.v.: Pearson's r

® Bivariate analysis of joint distribution of X and Y or of a sample (x1, 1), .., (Xn, ¥n)

® Sample covariance:

Sy = 7 (=R (=) Cov(X. ¥) = E[(X — px) - (¥ = 1))

n

Apply plug-in method to correlation between X and Y
L CovX.Y) X w)-(Y )
Pearson’s (linear/product-moment) correlation coefficient:
Sxy Sia(xi = %) (i = 7)
S8 S = 02 S - 7

Support in [—1, 1] due to Cauchy-Schwarz's inequality: |s,,| < s -s, }

r =

® Computational cost is O(n)
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Linear correlation of continuous r.v.: Pearson's r

Cov(X,Y) E[(X = px) - (Y = py)]

P= \/Var(X)-Var(Y)_ ox 0y

® Pearson’s (linear/product-moment) correlation coefficient: [support in [—1,1]]

Sxy _ 27:1(Xi_)_<)’()/i_)7)
Sx * Sy \/27:1(Xi —X)?%- Z?:l()/i —¥)?

r Interpretation of Linear Relationship
0 0.8 Strong positive
0.5 Moderate positive
-2 0.2 Weak positive
———— ———r——r ———r——r 0.0 No relationship
-2 0 2 -2 0 2 -2 0 2 -0.2 ‘Weak negative
-0.5 Moderate negative
Uncorrelated Positively correlated Negatively correlated 038 Strong negative
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Rank correlation of continuous/ordinal r.v.: Spearman'’s p

Pearsons's r asseses linear relationships over continuous values
Let rank(x) be the ranks of x;'s (position in the ordered sequence)
» For x=7,3,5, rank(x) = 3,1,2
Spearman’s correlation coefficient is the Pearson's coefficient over the ranks:
Cov(rank(X), rank(Y))
\/Var(rank(X)) - Var(rank(Y))

p = r(rank(x), rank(y))

» In case of no ties in x and y:

6> ", (rank(x); — rank(y);)?
n-(n?—1)

p=1-

Spearman’s correlation assesses monotonic relationships (whether linear or not)
Spearman’s applies when Y (or also X) is ordinal

» E.g., association between age and education level ( “high-school”, “bachelor”, “master”, ...

Computational cost is O(n - log n)

)
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Rank correlation of continuous/ordinal r.v.: Kendall's 7

e Kendall's 7, is another (more robust) rank measure: [support in [-1,1]]

2% sl —x) - senlyi )
v n-(n—1)

Ex, Xo~Fx,Y1,Ya~Fy [58N(X1—X2)-5gn( Y1—Y2)]

Fraction of concordant pairs minus discordant pairs, i.e., probability of observing a
difference between concordant and discordant pairs.
® Correction 75, accounting for ties, i.e., x; = x; or y; = y;
» Correction to divide by the number of pairs for which sgn(x; — x;) - sgn(y; — y;) # 0

e Computational cost is O(n?)
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Rank correlation of continuous and binary r.v.: Somers’ D

X continuous and Y binary.
Somers'D is an asymmetric Kendall's:
Ty 2icjS8N(Xi — X;) - sgn(yi — yj)
D = — = 5
Tyy Zi<j sgn(yi — yj)

i.e., fraction of concordand pairs minus discordant pairs conditional to unequal values of y

Example with probabilistic classifiers [more in future lessons]
» x = confidence prediction of being positive, i.e., predict_proba(...) [,1] in Python
> y true class

» D is the Gini index of classifier performances
» related to AUC of ROC curve:

D o
D=2.-AUC—-1 AUC=—=+05=-—"_405
2 2 “Tyy
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Percentage of defaulting debtors

True Positive Rate

CAP Curves

0.00 T T T T T T r T

0.00 010 020 030 040 050 060 070 0.80
Percentage of total debtors
ROC Curves

1.00 7

0.80

2.604

2.40

2.204

0.00

0.00 0.20 0.40 0.60 0.80 1.00

False Positive Rate

Scoringl —-—-- Scoring2

Random Scoring

—==- Perfect Forescaster

0.90 1.00

't Forescaster

Gini=D = A/(A+ B)

AUC = A+1)2
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Association between nominal variables: Thiel's U

Mutual information and NMI

. 3 o pxy(a, b) _ /(X, Y)
I06Y) =2 o) loe p Grorrsy M1 = g, vy < 04

® Uncertainty coefficient (also called entropy coefficient or Thiel's U) :

I(X,Y) U X Y)
(H(X) + H(Y))/2 mOH(X)

Usym =

where pxy is the empirical joint p.m.f., and px, py are the empirical marginal p.m.f.’s

® U,sym What fraction of X can be predicted by Y
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Association between nominal variables: y?-based

e Several other measures based on Pearson x? (introduced in future lessons)
» Contingency coefficient C
» Cramer's V
» ¢ coefficient (or MCC, Matthews correlation coefficient)
» Tschuprov's T
>
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Optional reference

(4 David W. Scott (2015)
Multivariate density estimation: Theory, practice, and visualization.
John Wiley & Sons, Inc.
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Optional references

[3 Harry Khamis (2008)
Measures of Association: How to Choose?
J. of Diagnostic Medical Sonography, Vol. 24, Issue 3, pages 155-162.

@ Kenneth J. Berry, Janis E. JohnstonPaul, and W. Mielke, Jr. (2018)
The Measurement of Association: A Permutation Statistical Approach.

Springer.
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