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14.2.2 F-Test for Significantly Different Variances
The F-test tests the hypothesis that two samples have different variances by

trying to reject the null hypothesis that their variances are actually consistent. The
statistic F is the ratio of one variance to the other, so values either ! 1 or " 1
will indicate very significant differences. The distribution of F in the null case is
given in equation (6.14.49), which is evaluated using the routine betai. In the most
common case, we are willing to disprove the null hypothesis (of equal variances)
by either very large or very small values of F , so the correct p-value is two-tailed,
the sum of two incomplete beta functions. It turns out, by equation (6.4.3), that the
two tails are always equal; we need compute only one, and double it. Occasionally,
when the null hypothesis is strongly viable, the identity of the two tails can become
confused, giving an indicated probability greater than one. Changing the probability
to two minus itself correctly exchanges the tails. These considerations and equation
(6.4.3) give the routine

void ftest(VecDoub_I &data1, VecDoub_I &data2, Doub &f, Doub &prob) {stattests.h
Given the arrays data1[0..n1-1] and data2[0..n2-1], this routine returns the value of f,
and its p-value as prob. Small values of prob indicate that the two arrays have significantly
different variances.

Beta beta;
Doub var1,var2,ave1,ave2,df1,df2;
Int n1=data1.size(), n2=data2.size();
avevar(data1,ave1,var1);
avevar(data2,ave2,var2);
if (var1 > var2) { Make F the ratio of the larger variance to the smaller

one.f=var1/var2;
df1=n1-1;
df2=n2-1;

} else {
f=var2/var1;
df1=n2-1;
df2=n1-1;

}
prob = 2.0*beta.betai(0.5*df2,0.5*df1,df2/(df2+df1*f));
if (prob > 1.0) prob=2.-prob;

}

CITED REFERENCES AND FURTHER READING:

Spiegel, M.R., Schiller, J., and Srinivasan, R.A. 2000, Schaum’s Outline of Theory and Problem
of Probability and Statistics, 2nd ed. (New York: McGraw-Hill).

Lupton, R. 1993, Statistics in Theory and Practice (Princeton, NJ: Princeton University Press),
Chapter 9.

Devore, J.L. 2003, Probability and Statistics for Engineering and the Sciences, 6th ed. (Belmont,
CA: Duxbury Press), Chapters 7–8.

Norusis, M.J. 2006, SPSS 14.0 Guide to Data Analysis (Englewood Cliffs, NJ: Prentice-Hall).

14.3 Are Two Distributions Different?
Given two sets of data, we can generalize the questions asked in the previous

section and ask the single question: Are the two sets drawn from the same distri-
bution function, or from different distribution functions? Equivalently, in proper



✐
✐

“nr3” — 2007/5/1 — 20:53 — page 731 — #753 ✐
✐

✐ ✐

14.3 Are Two Distributions Different? 731

statistical language, “Can we disprove, to a certain required level of significance, the
null hypothesis that two data sets are drawn from the same population distribution
function?” Disproving the null hypothesis in effect proves that the data sets are from
different distributions. Failing to disprove the null hypothesis, on the other hand,
only shows that the data sets can be consistent with a single distribution function.
One can never prove that two data sets come from a single distribution, since, e.g.,
no practical amount of data can distinguish between two distributions that differ only
by one part in 1010.

Proving that two distributions are different, or showing that they are consistent,
is a task that comes up all the time in many areas of research: Are the visible stars
distributed uniformly in the sky? (That is, is the distribution of stars as a function
of declination — position in the sky — the same as the distribution of sky area as
a function of declination?) Are educational patterns the same in Brooklyn as in the
Bronx? (That is, are the distributions of people as a function of last-grade-attended
the same?) Do two brands of fluorescent lights have the same distribution of burn-
out times? Is the incidence of chicken pox the same for first-born, second-born,
third-born children, etc.?

These four examples illustrate the four combinations arising from two different
dichotomies: (1) The data are either continuous or binned. (2) Either we wish to
compare one data set to a known distribution, or we wish to compare two equally
unknown data sets. The data sets on fluorescent lights and on stars are continuous,
since we can be given lists of individual burnout times or of stellar positions. The
data sets on chicken pox and educational level are binned, since we are given ta-
bles of numbers of events in discrete categories: first-born, second-born, etc.; or 6th
grade, 7th grade, etc. Stars and chicken pox, on the other hand, share the property
that the null hypothesis is a known distribution (distribution of area in the sky, or in-
cidence of chicken pox in the general population). Fluorescent lights and educational
level involve the comparison of two equally unknown data sets (the two brands, or
Brooklyn and the Bronx).

One can always turn continuous data into binned data, by grouping the events
into specified ranges of the continuous variable(s): declinations between 0 and 10
degrees, 10 and 20, 20 and 30, etc. Binning involves a loss of information, however.
Also, there is often considerable arbitrariness as to how the bins should be chosen.
Along with many other investigators, we prefer to avoid unnecessary binning of data.

The accepted test for differences between binned distributions is the chi-square
test. For continuous data as a function of a single variable, the most generally ac-
cepted test is the Kolmogorov-Smirnov test. We consider each in turn.

14.3.1 Chi-Square Test
Suppose that Ni is the number of events observed in the i th bin, and that ni is

the number expected according to some known distribution. Note that the Ni ’s are
integers, while the ni ’s may not be. Then the chi-square statistic is

!2 D
X

i

.Ni ! ni /2
ni

(14.3.1)

where the sum is over all bins. A large value of !2 indicates that the null hy-
pothesis (that the Ni ’s are drawn from the population represented by the ni ’s) is
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rather unlikely.
Any term j in (14.3.1) with 0 D nj D Nj should be omitted from the sum. A

term with nj D 0; Nj ¤ 0 gives an infinite !2, as it should, since in this case the
Ni ’s cannot possibly be drawn from the ni ’s!

The chi-square probability function Q.!2j"/ is an incomplete gamma func-
tion, and was already discussed in #6.14 (see equation 6.14.38). Strictly speaking,
Q.!2j"/ is the probability that the sum of the squares of " random normal vari-
ables of unit variance (and zero mean) will be greater than !2. The terms in the sum
(14.3.1) are not exactly the squares of a normal variable. However, if the number
of events in each bin is large (! 1), then the normal distribution is approximately
achieved and the chi-square probability function is a good approximation to the dis-
tribution of (14.3.1) in the case of the null hypothesis. Its use to estimate the p-value
significance of the chi-square test is standard (but see #14.3.2).

The appropriate value of ", the number of degrees of freedom, bears some ad-
ditional discussion. If the data are collected with the model ni ’s fixed — that is, not
later renormalized to fit the total observed number of events †Ni — then " equals
the number of binsNB . (Note that this is not the total number of events!) Much more
commonly, the ni ’s are normalized after the fact so that their sum equals the sum of
the Ni ’s. In this case, the correct value for " is NB " 1, and the model is said to have
one constraint (knstrn=1 in the program below). If the model that gives the ni ’s
has additional free parameters that were adjusted after the fact to agree with the data,
then each of these additional “fitted” parameters decreases " (and increases knstrn)
by one additional unit.

We have, then, the following program:

void chsone(VecDoub_I &bins, VecDoub_I &ebins, Doub &df,stattests.h
Doub &chsq, Doub &prob, const Int knstrn=1) {

Given the array bins[0..nbins-1] containing the observed numbers of events, and an array
ebins[0..nbins-1] containing the expected numbers of events, and given the number of
constraints knstrn (normally one), this routine returns (trivially) the number of degrees of
freedom df, and (nontrivially) the chi-square chsq and the p-value prob. A small value of prob
indicates a significant difference between the distributions bins and ebins. Note that bins and
ebins are both double arrays, although bins will normally contain integer values.

Gamma gam;
Int j,nbins=bins.size();
Doub temp;
df=nbins-knstrn;
chsq=0.0;
for (j=0;j<nbins;j++) {

if (ebins[j]<0.0 || (ebins[j]==0. && bins[j]>0.))
throw("Bad expected number in chsone");

if (ebins[j]==0.0 && bins[j]==0.0) {
--df; No data means one less degree of free-

dom.} else {
temp=bins[j]-ebins[j];
chsq += temp*temp/ebins[j];

}
}
prob=gam.gammq(0.5*df,0.5*chsq); Chi-square probability function. See !6.2.

}

Next we consider the case of comparing two binned data sets. Let Ri be the
number of events in bin i for the first data set and Si the number of events in the
same bin i for the second data set. Then the chi-square statistic is
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!2 D
X

i

.Ri ! Si /2
Ri C Si

(14.3.2)

Comparing (14.3.2) to (14.3.1), you should note that the denominator of (14.3.2) is
not just the average of Ri and Si (which would be an estimator of ni in 14.3.1).
Rather, it is twice the average, the sum. The reason is that each term in a chi-square
sum is supposed to approximate the square of a normally distributed quantity with
unit variance. The variance of the difference of two normal quantities is the sum of
their individual variances, not the average.

If the data were collected in such a way that the sum of the Ri ’s is necessarily
equal to the sum of Si ’s, then the number of degrees of freedom is equal to one
less than the number of bins, NB ! 1 (that is, knstrn D 1), the usual case. If
this requirement were absent, then the number of degrees of freedom would be NB .
Example: A birdwatcher wants to know whether the distribution of sighted birds
as a function of species is the same this year as last. Each bin corresponds to one
species. If the birdwatcher takes his data to be the first 1000 birds that he saw in each
year, then the number of degrees of freedom is NB ! 1. If he takes his data to be
all the birds he saw on a random sample of days, the same days in each year, then
the number of degrees of freedom is NB (knstrn D 0). In this latter case, note that
he is also testing whether the birds were more numerous overall in one year or the
other: That is the extra degree of freedom. Of course, any additional constraints on
the data set lower the number of degrees of freedom (i.e., increase knstrn to more
positive values) in accordance with their number.

The program is

void chstwo(VecDoub_I &bins1, VecDoub_I &bins2, Doub &df, stattests.h
Doub &chsq, Doub &prob, const Int knstrn=1) {

Given the arrays bins1[0..nbins-1] and bins2[0..nbins-1], containing two sets of binned
data, and given the number of constraints knstrn (normally 1 or 0), this routine returns the
number of degrees of freedom df, the chi-square chsq, and the p-value prob. A small value of
prob indicates a significant difference between the distributions bins1 and bins2. Note that
bins1 and bins2 are both double arrays, although they will normally contain integer values.

Gamma gam;
Int j,nbins=bins1.size();
Doub temp;
df=nbins-knstrn;
chsq=0.0;
for (j=0;j<nbins;j++)

if (bins1[j] == 0.0 && bins2[j] == 0.0)
--df; No data means one less degree of free-

dom.else {
temp=bins1[j]-bins2[j];
chsq += temp*temp/(bins1[j]+bins2[j]);

}
prob=gam.gammq(0.5*df,0.5*chsq); Chi-square probability function. See !6.2.

}

Equation (14.3.2) and the routine chstwo both apply to the case where the total
number of data points is the same in the two binned sets, or to the case where any
difference in the totals is part of what is being tested for. For intentionally unequal
sample sizes, the formula analogous to (14.3.2) is

!2 D
X

i

.
p
S=RRi !

p
R=SSi /

2

Ri C Si
(14.3.3)
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where
R !

X

i

Ri S !
X

i

Si (14.3.4)

are the respective numbers of data points. It is straightforward to make the corre-
sponding change in chstwo. The fact that Ri and Si occur in the denominator of
equation (14.3.3) with equal weights may seem unintuitive, but the following heuris-
tic derivation shows how this comes about: In the null hypothesis that Ri and Si are
drawn from the same distribution, we can estimate the probability associated with
bin i as

ypi D
Ri C Si
RC S (14.3.5)

The expected number of counts is thus

yRi D R ypi and ySi D S ypi (14.3.6)

and the chi-square statistic summing over all observations is

!2 D
X

i

.Ri " yRi /2
yRi

C
X

i

.Si " ySi /2
ySi

(14.3.7)

Substituting equations (14.3.6) and (14.3.5) into equation (14.3.7) gives, after some
algebra, exactly equation (14.3.3). Although there are 2NB terms in equation (14.3.7),
the number of degrees of freedom is actually NB " 1 (minus any additional con-
straints), the same as equation (14.3.2), because we implicitly estimated NB C 1
parameters, the ypi ’s and the ratio of the two sample sizes. This number of degrees
of freedom must thus be subtracted from the original 2NB .

For three or more samples, see equation (14.4.3) and related discussion.

14.3.2 Chi-Square with Small Numbers of Counts

When a significant fraction of bins have small numbers of counts (. 10, say), then the !2

statistics (14.3.1), (14.3.2), and (14.3.3) are not well approximated by a chi-square probability
function. Let us quantify this problem and suggest some remedies.

Consider first equation (14.3.1). In the null hypothesis, the count in an individual bin,
Ni , is a Poisson deviate of mean ni , so it occurs with probability

p.Ni jni / D exp."ni /
n
Ni
i

Ni Š
(14.3.8)

(cf. equation 6.14.61). We can calculate the mean# and variance $2 of the term .Ni"ni /2=ni
by evaluating the appropriate expectation values. There are various analytical ways to do this.
The sums, and the answers, are

# D
1X

NiD0
p.Ni jni /

.Ni " ni /2
ni

D 1

$2 D

8
<

:

1X

NiD0
p.Ni jni /

"
.Ni " ni /2

ni

#29=

; " #
2 D 2C 1

ni

(14.3.9)

Now we can see what the problem is: Equation (14.3.9) says that each term in (14.3.1)
adds, on average, 1 to the value of the !2 statistic, and slightly more than 2 to its variance. But
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the variance of the chi-square probability function is exactly twice its mean (equation 6.14.37).
If a significant fraction of ni ’s are small, then quite probable values of the !2 statistic will
appear to lie farther out on the tail than they actually are, so that the null hypothesis may be
rejected even when it is true.

Several approximate remedies are possible. One is simply to rescale the observed !2

statistic so as to “fix” its variance, an idea due to Lucy [1]. If we define

Y 2 ! " C
s

2"

2" CPi n
!1
i

!
!2 " "

"
(14.3.10)

where " is the number of degrees of freedom (see discussion above), then Y 2 is asymptotically
approximated by the chi-square probability function even when many ni ’s are small. The basic
idea in (14.3.10) is to subtract off the mean, rescale the difference from the mean, and then
add back the mean. Lucy [1] also defines a similar Z2 statistic by rescaling not the !2 sum of
all the terms, but the terms individually, using equation (14.3.9) separately for each.

Another possibility, valid when " is large, is to use the central limit theorem directly.
From its mean and standard deviation, we now know that the !2 statistic must be approxi-
mately the normal distribution,

!2 # N
#
";
h
2" C

X

i

n!1i
i1=2$

(14.3.11)

We can then obtain p-values from equation (6.14.2), computing a complementary error func-
tion. (The p-value is one minus that cdf.)

The same ideas go through in the case of two binned data sets, with counts Ri and Si ,
and total numbers of countsR and S (equation 14.3.3, with equation 14.3.2 as the special case
with R D S). Now, in the null hypothesis, and glossing over some technical issues beyond
our scope, we can think of Ti ! Ri C Si as being fixed, while Ri is a random variable drawn
from the binomial distribution

Ri # Binomial
#
Ti ;

R

RC S

$
(14.3.12)

(see equation 6.14.67). Calculating moments over the binomial distribution, one can obtain as
analogs of equations (14.3.9)

# D 1

$2 D 2C
"
.RC S/2
RS

" 6
#

1

Ri C Si
(14.3.13)

Notice that, now, depending on the values of R and S , the variance can be either greater or
less than its nominal value 2, and that it is less than 2 for the case R D S . The formulas
(14.3.9) and (14.3.13) are originally due to Haldane [2] (see also [3]).

Summing over i , one obtains the analogs of equations (14.3.10) and (14.3.11) simply by
the replacement,

X

i

n!1i "!
"
.RC S/2
RS

" 6
#
X

i

1

Ri C Si
(14.3.14)

In fact, equation (14.3.9) is a limiting form of equation (14.3.13) in just the same limit that
Poisson is a limiting form of binomial, namely

S !1; R

RC S Si ! ni ; Ri ! Ni (14.3.15)

There are also other ways of treating small-number counts, including the likelihood ratio
test [4], the modified Neyman !2 [5], and the chi-square-gamma statistic [5].
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Figure 14.3.1. Kolmogorov-Smirnov statistic D. A measured distribution of values in x (shown as N
dots on the lower abscissa) is to be compared with a theoretical distribution whose cumulative probability
distribution is plotted asP.x/. A step-function cumulative probability distributionSN .x/ is constructed,
one that rises an equal amount at each measured point. D is the greatest distance between the two
cumulative distributions.

14.3.3 Kolmogorov-Smirnov Test
The Kolmogorov-Smirnov (or K–S) test is applicable to unbinned distributions

that are functions of a single independent variable, that is, to data sets where each
data point can be associated with a single number (lifetime of each lightbulb when
it burns out, or declination of each star). In such cases, the list of data points can
be easily converted to an unbiased estimator SN .x/ of the cumulative distribution
function of the probability distribution from which it was drawn: If the N events
are located at values xi ; i D 0; : : : ; N ! 1, then SN .x/ is the function giving the
fraction of data points to the left of a given value x. This function is obviously
constant between consecutive (i.e., sorted into ascending order) xi ’s and jumps by
the same constant 1=N at each xi . (See Figure 14.3.1.)

Different distribution functions, or sets of data, give different cumulative dis-
tribution function estimates by the above procedure. However, all cumulative dis-
tribution functions agree at the smallest allowable value of x (where they are zero)
and at the largest allowable value of x (where they are unity). (The smallest and
largest values might of course be˙1.) So it is the behavior between the largest and
smallest values that distinguishes distributions.

One can think of any number of statistics to measure the overall difference be-
tween two cumulative distribution functions: the absolute value of the area between
them, for example, or their integrated mean square difference. The Kolmogorov-
Smirnov D is a particularly simple measure: It is defined as the maximum value
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of the absolute difference between two cumulative distribution functions. Thus, for
comparing one data set’s SN .x/ to a known cumulative distribution function P.x/,
the K–S statistic is

D D max
!1<x<1

jSN .x/ ! P.x/j (14.3.16)

while for comparing two different cumulative distribution functions SN1.x/ and
SN2.x/, the K–S statistic is

D D max
!1<x<1

ˇ̌
SN1.x/ ! SN2.x/

ˇ̌
(14.3.17)

What makes the K–S statistic useful is that its distribution in the case of the
null hypothesis (data sets drawn from the same distribution) can be calculated, at
least to a useful approximation, thus giving the p-value significance of any observed
nonzero value of D. A central feature of the K–S test is that it is invariant under
reparametrization of x; in other words, you can locally slide or stretch the x-axis in
Figure 14.3.1, and the maximum distance D remains unchanged. For example, you
will get the same significance using x as using log x.

The function that enters into the calculation of the p-value was discussed pre-
viously in !6.14, was defined in equations (6.14.56) and (6.14.57), and was imple-
mented in the object KSdist. In terms of the function QKS , the p-value of an
observed value of D (as a disproof of the null hypothesis that the distributions are
the same) is given approximately [6] by the formula

Probability .D > observed / D QKS
! hp

Ne C 0:12C 0:11=
p
Ne

i
D
"

(14.3.18)

where Ne is the effective number of data points, Ne D N for the case (14.3.16) of
one distribution, and

Ne D
N1N2

N1 CN2
(14.3.19)

for the case (14.3.17) of two distributions, where N1 is the number of data points in
the first distribution and N2 the number in the second.

The nature of the approximation involved in (14.3.18) is that it becomes asymp-
totically accurate as the Ne becomes large, but is already quite good for Ne " 4, as
small a number as one might ever actually use. (See [6].)

Here is the routine for the case of one distribution:

void ksone(VecDoub_IO &data, Doub func(const Doub), Doub &d, Doub &prob) kstests.h
Given an array data[0..n-1], and given a user-supplied function of a single variable func that is
a cumulative distribution function ranging from 0 (for smallest values of its argument) to 1 (for
largest values of its argument), this routine returns the K–S statistic d and the p-value prob.
Small values of prob show that the cumulative distribution function of data is significantly
different from func. The array data is modified by being sorted into ascending order.
{

Int j,n=data.size();
Doub dt,en,ff,fn,fo=0.0;
KSdist ks;
sort(data); If the data are already sorted into as-

cending order, then this call can be
omitted.

en=n;
d=0.0;
for (j=0;j<n;j++) { Loop over the sorted data points.

fn=(j+1)/en; Data’s c.d.f. after this step.
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ff=func(data[j]); Compare to the user-supplied function.
dt=MAX(abs(fo-ff),abs(fn-ff)); Maximum distance.
if (dt > d) d=dt;
fo=fn;

}
en=sqrt(en);
prob=ks.qks((en+0.12+0.11/en)*d); Compute p-value.

}

While the K-S statistic is intended for use with a continuous distribution, it can
also be used for a discrete distribution. In this case, it can be shown that the test is
conservative, that is, the statistic returned is no larger than in the continuous case.
If you allow discrete variables in the case of two distributions, you have to consider
how to deal with ties. The standard way to handle ties is to combine all the tied data
points and add them to the cdf at once (see, e.g., [7]). This refinement is included in
the routine kstwo.

void kstwo(VecDoub_IO &data1, VecDoub_IO &data2, Doub &d, Doub &prob)kstests.h
Given an array data1[0..n1-1], and an array data2[0..n2-1], this routine returns the K–S
statistic d and the p-value prob for the null hypothesis that the data sets are drawn from the
same distribution. Small values of prob show that the cumulative distribution function of data1
is significantly different from that of data2. The arrays data1 and data2 are modified by being
sorted into ascending order.
{

Int j1=0,j2=0,n1=data1.size(),n2=data2.size();
Doub d1,d2,dt,en1,en2,en,fn1=0.0,fn2=0.0;
KSdist ks;
sort(data1);
sort(data2);
en1=n1;
en2=n2;
d=0.0;
while (j1 < n1 && j2 < n2) { If we are not done...

if ((d1=data1[j1]) <= (d2=data2[j2])) Next step is in data1.
do

fn1=++j1/en1;
while (j1 < n1 && d1 == data1[j1]);

if (d2 <= d1) Next step is in data2.
do

fn2=++j2/en2;
while (j2 < n2 && d2 == data2[j2]);

if ((dt=abs(fn2-fn1)) > d) d=dt;
}
en=sqrt(en1*en2/(en1+en2));
prob=ks.qks((en+0.12+0.11/en)*d); Compute p-value.

}

14.3.4 Variants on the K–S Test

The sensitivity of the K–S test to deviations from a cumulative distribution function
P.x/ is not independent of x. In fact, the K–S test tends to be most sensitive around the
median value, where P.x/ D 0:5, and less sensitive at the extreme ends of the distribution,
where P.x/ is near 0 or 1. The reason is that the difference jSN .x/ ! P.x/j does not, in the
null hypothesis, have a probability distribution that is independent of x. Rather, its variance is
proportional to P.x/Œ1!P.x/!, which is largest at P D 0:5. Since the K–S statistic (14.3.16)
is the maximum difference over all x of two cumulative distribution functions, a deviation that
might be statistically significant at its own value of x gets compared to the expected chance
deviation at P D 0:5 and is thus discounted. A result is that, while the K–S test is good at
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finding shifts in a probability distribution, especially changes in the median value, it is not
always so good at finding spreads, which more affect the tails of the probability distribution,
and which may leave the median unchanged.

One way of increasing the power of the K–S statistic out on the tails is to replace
D (equation 14.3.16) by a so-called stabilized or weighted statistic [8-10], for example the
Anderson-Darling statistic,

D! D max"1<x<1
jSN .x/ ! P.x/jp
P.x/Œ1 ! P.x/!

(14.3.20)

Unfortunately, there is no simple formula analogous to equation (14.3.18) for this statistic,
although Noé [11] gives a computational method using a recursion relation and provides a
graph of numerical results. There are many other possible similar statistics, for example

D!! D
Z 1

PD0
ŒSN .x/ ! P.x/!2
P.x/Œ1 ! P.x/! dP.x/ (14.3.21)

which is also discussed by Anderson and Darling (see [9]).
Another approach, which we prefer as simpler and more direct, is due to Kuiper [12,13].

We already mentioned that the standard K–S test is invariant under reparametrizations of the
variable x. An even more general symmetry, which guarantees equal sensitivities at all values
of x, is to wrap the x-axis around into a circle (identifying the points at˙1), and to look for
a statistic that is now invariant under all shifts and parametrizations on the circle. This allows,
for example, a probability distribution to be “cut” at some central value of x and the left and
right halves to be interchanged, without altering the statistic or its significance.

Kuiper’s statistic, defined as

V D DC CD" D max"1<x<1 ŒSN .x/ ! P.x/!C max"1<x<1 ŒP.x/ ! SN .x/! (14.3.22)

is the sum of the maximum distance of SN .x/ above and below P.x/. You should be able
to convince yourself that this statistic has the desired invariance on the circle: Sketch the
indefinite integral of two probability distributions defined on the circle as a function of angle
around the circle, as the angle goes through several times 360ı. If you change the starting
point of the integration, DC and D" change individually, but their sum is constant.

Furthermore, there is a simple formula for the asymptotic distribution of the statistic V ,
directly analogous to equations (14.3.18) – (14.3.19). Let

QKP ."/ D 2
1X

jD1
.4j 2"2 ! 1/e"2j2!2 (14.3.23)

which is monotonic and satisfies

QKP .0/ D 1 QKP .1/ D 0 (14.3.24)

In terms of this function the p-value is [6]

Probability .V > observed / D QKP
!"p

Ne C 0:155C 0:24=
p
Ne
#
V
$

(14.3.25)

Here Ne is N in the one-sample case or is given by equation (14.3.19) in the case of
two samples.

Of course, Kuiper’s test is ideal for any problem originally defined on a circle, for ex-
ample, to test whether the distribution in longitude of something agrees with some theory, or
whether two somethings have different distributions in longitude. (See also [14].)

We will leave to you the coding of routines analogous to ksone, kstwo, and KSdist::
qks. (For " < 0:4, don’t try to do the sum 14.3.23. Its value is 1, to 7 figures, but the series
can require many terms to converge, and loses accuracy to roundoff.)
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Two final cautionary notes: First, we should mention that all varieties of the K–S test
lack the ability to discriminate some kinds of distributions. A simple example is a proba-
bility distribution with a narrow “notch” within which the probability falls to zero. Such a
distribution is of course ruled out by the existence of even one data point within the notch,
but, because of its cumulative nature, a K–S test would require many data points in the notch
before signaling a discrepancy.

Second, we should note that, if you estimate any parameters from a data set (e.g., a mean
and variance), then the distribution of the K–S statisticD for a cumulative distribution function
P.x/ that uses the estimated parameters is no longer given by equation (14.3.18). In general,
you will have to determine the new distribution yourself, e.g., by Monte Carlo methods.
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