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Moments

• Let X be a continuous random variable with density function f (x)
• kth moment of X , if it exists, is:

E [X k ] =

∫ ∞

−∞
xk f (x)dx

• µ = E [X ] is the first moment of X
• kth central moment of X is:

µk = E [(X − µ)k ] =

∫ ∞

−∞
(x − µ)k f (x)dx

• σ =
√
E [(X − µ)2] standard deviation is the square root of the second central moment

• kth standardized moment of X is:

µ̃k =
µk

σk
= E

[
(
X − µ

σ
)k
]
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Skewness

• µ̃1 = E [(X−µ)]/σ = 0 since E [X − µ] = 0

• µ̃2 = E [(X−µ)2]/σ2 = 1 since σ2 = E [(X − µ)2]

• µ̃3 = E [(X−µ)3]/σ3 [(Pearson’s moment) coefficient of skewness]

• Skewness indicates direction and magnitude of a distribution’s deviation from symmetry

• E.g., for X ∼ Exp(λ), µ̃3 = 2 Prove it!
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Kurtosis

• µ̃4 = E [(X−µ
σ )4] [(Pearson’s moment) coefficient of kurtosis]

• For X ∼ N(µ, σ), µ̃4 = 3 µ̃4 − 3 is called kurtosis in excess
• Kurtosis is a measure of the dispersion of X around the two values µ± σ

• µ̃4 > 3 Leptokurtic (slender) distribution has fatter tails. May have outlier problems.
• µ̃4 < 3 Platykurtic (broad) distribution has thinner tails

See R script
4 / 20



Functions of two or more random variables: expectation

• V = πHR2 be the volume of a vase of height H and radius R
• g(H,R) = πHR2 is a random variable (function of random variables)
• PV (V = 3) = PHR(πHR

2 = 3)
• How to calculate E [V ]?

If H ⊥⊥ R:

E [V ] = E [πHR2] =

∫ ∞

−∞

∫ ∞

−∞
πhr2fH(h)fR(r)dhdr
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Linearity of expectations
Theorem. For X and Y random variables, and s, t ∈ R:

E [rX + sY + t] = rE [X ] + sE [Y ] + t

Proof. (discrete case)

E [rX + Ys + t] =
∑
a

∑
b

(ra+ sb + t)P(X = a,Y = b)

=

(
r
∑
a

∑
b

aP(X = a,Y = b)

)
+

(
s
∑
a

∑
b

bP(X = a,Y = b)

)
+

(
t
∑
a

∑
b

P(X = a,Y = b)

)

=

(
r
∑
a

aP(X = a)

)
+

(
s
∑
b

bP(Y = b)

)
+ t = rE [X ] + sE [Y ] + t

Corollary. E [a0 +
∑n

i=1 aiXi ] = ao +
∑n

i=1 aiE [Xi ]

Corollary. X ≤ Y implies E [X ] ≤ E [Y ]
Proof. Z = Y − X ≥ 0 implies E [Z ] = E [Y ]− E [X ] ≥ 0, i.e., E [Y ] ≥ E [X ].
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Applications

• Expectation of some discrete distributions
▶ X ∼ Ber(p) E [X ] = p
▶ X ∼ Bin(n, p) E [X ] = n · p

□ Because X =
∑n

i=1 Xi for X1, . . . ,Xn ∼ Ber(p)

▶ X ∼ Geo(p) E [X ] = 1
p

▶ X ∼ NBin(n, p) E [X ] = n·(1−p)
p

□ Because X =
∑n

i=1 Xi − n for X1, . . . ,Xn ∼ Geo(p)

• Expectation of some continuous distributions
▶ X ∼ Exp(λ) E [X ] = 1/λ
▶ X ∼ Erl(n, λ) E [X ] = n

λ
□ Because X =

∑n
i=1 Xi for X1, . . . ,Xn ∼ Exp(λ)
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Expectation of product and quotients

Theorem. For X ⊥⊥ Y , we have: E [XY ] = E [X ]E [Y ] Prove it!

Corollary. For X ⊥⊥ Y and Y ≥ 0, we have: E [X/Y ] ≥ E [X ]/E [Y ]
Proof. X ⊥⊥ Y implies X ⊥⊥ 1/Y . By theorem above:

E [X/Y ] = E [X · 1/Y ] = E [X ]E [1/Y ] ≥ E [X ]/E [Y ]

because by Jensen’s inequality E [1/Y ] ≥ 1/E [Y ] since 1/y is convex for y ≥ 0. □

Exercise at home. Show that E [X/Y ] = E [X ]/E [Y ] is a false claim.
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Law of iterated/total expectation

Conditional expectation

E [X |Y = b] =
∑
i

aip(ai |b) E [X |Y = y ] =

∫ ∞

−∞
xf (x |y)dx

Theorem. (Law of iterated/total expectation)

EY [E [X |Y ]] = E [X ]

Proof. (for X ,Y discrete random variables)

EY [E [X |Y ]] =
∑
j

∑
i

aipX |Y (ai |bj)pY (bj) =
∑
j

∑
i

aipXY (ai , bj) =
∑
i

aipX (ai ) = E [X ]

Example (cfr the example from Lesson 1 on the Law of total probability)

• Factory 1’s light bulbs working hours ∼ Exp(1/1000)

• Factory 2’s light bulbs working hours ∼ Exp(1/2000)

• Factory 1 supplies 60% of the total bulbs on the market and Factory 2 supplies 40% of it.

• What is the average work hour of a light bulb on the market?
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Variance of the sum and Covariance
Var(X + Y ) = E [(X + Y − E [X + Y ])2] = E [((X − E [X ]) + (Y − E [Y ]))2]

= E [(X − E [X ])2] + E [(Y − E [Y ])2] + 2E [(X − E [X ])(Y − E [Y ])]

= Var(X ) + Var(Y ) + 2Cov(X ,Y )

Covariance

The covariance Cov(X ,Y ) of two random variables X and Y is the number:

Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])]
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Covariance

Theorem. Cov(X ,Y ) = E [XY ]− E [X ]E [Y ] Prove it!
• If X and Y are independent (X ⊥⊥ Y ):

Cov(X ,Y ) = 0 Var(X + Y ) = Var(X ) + Var(Y )

• But there are X and Y uncorrelated (ie., Cov(X ,Y ) = 0) that are dependent!
• Variances of some discrete distributions

▶ X ∼ Ber(p) Var(X ) = p(1− p)
▶ X ∼ Bin(n, p) Var(X ) = np(1− p)

□ Because X =
∑n

i=1 Xi for X1, . . . ,Xn ∼ Ber(p) and independent
▶ X ∼ Geo(p) Var(X ) = 1−p

p2

▶ X ∼ NBin(n, p) Var(X ) = n 1−p
p2

□ Because X =
∑n

i=1 Xi − n for X1, . . . ,Xn ∼ Geo(p) and independent
• Variances of some continuous distributions

▶ X ∼ Exp(λ) Var(X ) = 1/λ2

▶ X ∼ Erl(n, λ) Var(X ) = n
λ2

□ Because X =
∑n

i=1 Xi for X1, . . . ,Xn ∼ Exp(λ) and independent
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Covariance and covariance matrix

• Hence, Var(rX + sY + t) = r2Var(X ) + s2Var(Y ) + 2rsCov(X ,Y )

• Bivariate Normal/Gaussian distribution:

(X ,Y ) ∼ N((µx , µx),

(
σ2
x σxy

σxy σ2
y

)
)

▶ where marginals are X ∼ N(µx , σ
2
x), Y ∼ N(µy , σ

2
y ), and Cov(X ,Y ) = σxy

▶ Covariance matrix Σij = Cov(Xi ,Xj) for a vector X = (X1, . . . ,Xn) of r.v.’s

See R script lesson 08

• Covariance depends on the unit of measure!
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Correlation coefficient

• Correlation coefficient is dimensionless (not affected by change of units)

▶ E.g., if X and Y are in Km, then Cov(X ,Y ), Var(X ) and Var(Y ) are in Km2

• Moreover: −1 ≤ ρ(X ,Y ) ≤ 1

▶ The bounds are derived from the Cauchy–Schwarz’s inequality:

E [|XY |] ≤
√

E [X 2]
√
E [Y 2]

Proof. For any u,w ∈ R, we have 2|uw | ≤ u2 +w2. Therefore, 2|UW | ≤ U2 +W 2 for r.v.’s
U and V . By defining U = X/

√
E [X 2] and W = Y/

√
E [Y 2]

(∗), we have
2 · |XY |/

√
E [X 2]

√
E [Y 2] ≤ X 2

/E [X 2] + Y 2
/E [Y 2]. Taking the expectations, we conclude:

2 · E [|XY |]/
√

E [X 2]
√

E [Y 2] ≤ 2. (*) The case E [X 2] = 0 or E [Y 2] = 0 is left as an exercise. □
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Kullback-Leibler divergence

KL divergence

For X ,Y discrete random variables with p.m.f. pX and pY :

D(X ∥ Y ) =
∑
a

pX (a) log
pX (a)

pY (a)
= H(X ;Y )− H(X )

where H(X ) = −
∑

a pX (a) log pX (a) and H(X ;Y ) = −
∑

a pX (a) log pY (a)

• Measure how distribution of Y (model) can reconstruct the distribution of X (data)
▶ Also called: relative entropy or information gain of X w.r.t. Y
▶ H(X ) is the entropy of X , and H(X ;Y ) is the cross entropy of X w.r..t Y
▶ H(X ;Y ) is the “information” or “uncertainty” or “loss” when using Y to encode X

• Properties
▶ D(X ∥ Y ) = 0 iff P(X = Y ) = 1, D(X ∥ Y ) ̸= D(Y ∥ X ), and
▶ D(X ∥ Y ) ≥ 0 [Gibbs’ inequality]

• For X ,Y continuous: D(X ∥ Y ) =
∫∞
−∞ fX (x) log

fX (x)
fY (x)

dx See R script 14 / 20
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Mutual information

Mutual information
For X ,Y discrete random variables with p.m.f. pX and pY and joint p.m.f. pXY :

I (X ,Y ) = D(pXY ∥ pXpY ) =
∑
a,b

pXY (a, b) log
pXY (a, b)

pX (a)pY (b)
= H(X ) + H(Y )− H((X ,Y ))

where H(X ) = −
∑

a pX (a) log pX (a) and H((X ,Y )) = −
∑

a,b pXY (a, b) log pXY (a, b)

• MI measures how dependent two distributions are
▶ Measure how product of marginals can reconstruct the joint distribution

• Properties
▶ I (X ,Y ) = I (Y ,X ), and I (X ,Y ) ≥ 0
▶ I (X ,Y ) = 0 iff X ⊥⊥ Y
▶ NMI = I (X ,Y )

min {H(X ),H(Y )} ∈ [0, 1] [Normalized mutual information]

• For X ,Y continuous: I (X ,Y ) =
∫∞
−∞

∫∞
−∞ fXY (x , y) log

fXY (x,y)
fX (x)fY (y)

dxdy See R script
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Sum of independent random variables (again!)

• See Lesson 04 and Lesson 08 for convolution formulas

• Examples:

▶ For X ∼ Bin(n, p) and Y ∼ Bin(m, p), Z ∼ Bin(n +m, p)
▶ For X ∼ Geo(p) (days radio 1 breaks) and Y ∼ Geo(p) (days radio 2 breaks):

pZ (X + Y = k) =
k−1∑
l=1

pX (l) · pY (k − l) = (k − 1)p2(1− p)k−2
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Sum of two independent Normal random variables

• See Lesson 04 and Lesson 08 for convolution formulas

Theorem. If X ∼ N(µX , σ
2
X ) and Y ∼ N(µY , σ

2
Y ) and X ⊥⊥ Y , then:

Z = X + Y ∼ N(µX + µY , σ
2
X + σ2

Y )

Proof. See [T, Sect. 11.2] □

• In general: Z = rX + sY + t ∼ N(rµX + sµY + t, r2σ2
X + s2σ2

Y )

• The converse of the theorem also holds: [Lévy-Cramér theorem]
▶ If X ⊥⊥ Y and Z = X +Y is normally distributed, then X and Y follow a normal distribution.
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https://arxiv.org/pdf/1810.01768.pdf


Extremes of independent random variables

• P(Z ≤ a) = P(X1 ≤ a, . . . ,Xn ≤ a) =
∏n

i=1 P(Xi ≤ a) = ((F (a))n

• Example: maximum water level over 365 days assuming water level on a day is U(0, 1)

• Example: maximum of two rolls of a die with 4 sides

• P(V ≤ a) = 1− P(X1 > a, . . . ,Xn > a) = 1−
∏n

i=1(1− P(Xi ≤ a) = 1− ((1− F (a))n
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Product and quotient of independent random variables

• X ,Y ∼ N(0, 1) independent, Z = X/Y ∼ Cau(0, 1) where:

fZ (x) =
1

π(1 + x2)
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Optional reference

For details on entropy, KL divergence, mutual information, NMI, etc.

Kevin P. Murphy (2022)

Probabilistic Machine Learning: An Introduction

Chapter 6: Information Theory

online book
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