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Moments

• Let X be a continuous random variable with density function f (x)
• kth moment of X , if it exists, is:

E [X k ] =

∫ ∞

−∞
xk f (x)dx

• µ = E [X ] is the first moment of X
• kth central moment of X is:

µk = E [(X − µ)k ] =

∫ ∞

−∞
(x − µ)k f (x)dx

• σ =
√
E [(X − µ)2] standard deviation is the square root of the second central moment

• kth standardized moment of X is:

µ̃k =
µk

σk
= E

[
(
X − µ

σ
)k
]
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Skewness

• µ̃1 = E [(X−µ)]/σ = 0 since E [X − µ] = 0

• µ̃2 = E [(X−µ)2]/σ2 = 1 since σ2 = E [(X − µ)2]

• µ̃3 = E [(X−µ)3]/σ3 [(Pearson’s moment) coefficient of skewness]

• Skewness indicates direction and magnitude of a distribution’s deviation from symmetry

• E.g., for X ∼ Exp(λ), µ̃3 = 2 Prove it!
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Kurtosis

• µ̃4 = E [(X−µ
σ )4] [(Pearson’s moment) coefficient of kurtosis]

• For X ∼ N (µ, σ), µ̃4 = 3 µ̃4 − 3 is called kurtosis in excess
• Kurtosis is a measure of the dispersion of X around the two values µ± σ

• µ̃4 > 3 Leptokurtic (slender) distribution has fatter tails. May have outlier problems.
• µ̃4 < 3 Platykurtic (broad) distribution has thinner tails

See R script
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Functions of two or more random variables: expectation

• V = πHR2 be the volume of a vase of height H and radius R
• g(H,R) = πHR2 is a random variable (function of random variables)
• PV (V = 3) = PHR(πHR

2 = 3)
• How to calculate E [V ]?

If H ⊥⊥ R:

E [V ] = E [πHR2] =

∫ ∞

−∞

∫ ∞

−∞
πhr2fH(h)fR(r)dhdr
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Linearity of expectations
Theorem. For X and Y random variables, and s, t ∈ R:

E [rX + sY + t] = rE [X ] + sE [Y ] + t

Proof. (discrete case)

E [rX + Ys + t] =
∑
a

∑
b

(ra+ sb + t)P(X = a,Y = b)

=

(
r
∑
a

∑
b

aP(X = a,Y = b)

)
+

(
s
∑
a

∑
b

bP(X = a,Y = b)

)
+

(
t
∑
a

∑
b

P(X = a,Y = b)

)

=

(
r
∑
a

aP(X = a)

)
+

(
s
∑
b

bP(Y = b)

)
+ t = rE [X ] + sE [Y ] + t

Corollary. E [a0 +
∑n

i=1 aiXi ] = ao +
∑n

i=1 aiE [Xi ]

Corollary. X ≤ Y implies E [X ] ≤ E [Y ]
Proof. Z = Y − X ≥ 0 implies E [Z ] = E [Y ]− E [X ] ≥ 0, i.e., E [Y ] ≥ E [X ].
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Applications

• Expectation of some discrete distributions
▶ X ∼ Ber(p) E [X ] = p
▶ X ∼ Bin(n, p) E [X ] = n · p

□ Because X =
∑n

i=1 Xi for X1, . . . ,Xn ∼ Ber(p)

▶ X ∼ Geo(p) E [X ] = 1
p

▶ X ∼ NBin(n, p) E [X ] = n·(1−p)
p

□ Because X =
∑n

i=1 Xi − n for X1, . . . ,Xn ∼ Geo(p)

• Expectation of some continuous distributions
▶ X ∼ Exp(λ) E [X ] = 1/λ
▶ X ∼ Erl(n, λ) E [X ] = n

λ
□ Because X =

∑n
i=1 Xi for X1, . . . ,Xn ∼ Exp(λ)
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Expectation of product and quotients

Theorem. For X ⊥⊥ Y , we have: E [XY ] = E [X ]E [Y ] Prove it!

Corollary. For X ⊥⊥ Y and Y > 0, we have: E [X/Y ] ≥ E [X ]/E [Y ]
Proof. X ⊥⊥ Y implies X ⊥⊥ 1/Y . By theorem above:

E [X/Y ] = E [X · 1/Y ] = E [X ]E [1/Y ] ≥ E [X ]/E [Y ]

because by Jensen’s inequality E [1/Y ] ≥ 1/E [Y ] since 1/y is convex for y 0. □

Exercise at home. Show that E [X/Y ] = E [X ]/E [Y ] is a false claim.
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Law of iterated/total expectation

Conditional expectation

E [X |Y = b] =
∑
i

aip(ai |b) E [X |Y = y ] =

∫ ∞

−∞
xf (x |y)dx

Theorem. (Law of iterated/total expectation)

EY [E [X |Y ]] = E [X ]

Proof. (for X ,Y discrete random variables)

EY [E [X |Y ]] =
∑
j

∑
i

aipX |Y (ai |bj)pY (bj) =
∑
j

∑
i

aipXY (ai , bj) =
∑
i

aipX (ai ) = E [X ]

Example (cfr the example from Lesson 1 on the Law of total probability)

• Factory 1’s light bulbs working hours ∼ Exp(1/1000)

• Factory 2’s light bulbs working hours ∼ Exp(1/2000)

• Factory 1 supplies 60% of the total bulbs on the market and Factory 2 supplies 40% of it.

• What is the average work hour of a light bulb on the market?
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Variance of the sum and covariance
Var(X + Y ) = E [(X + Y − E [X + Y ])2] = E [((X − E [X ]) + (Y − E [Y ]))2]

= E [(X − E [X ])2] + E [(Y − E [Y ])2] + 2E [(X − E [X ])(Y − E [Y ])]

= Var(X ) + Var(Y ) + 2Cov(X ,Y )

Covariance

The covariance Cov(X ,Y ) of two random variables X and Y is the number:

Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])]
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Covariance

Theorem. Cov(X ,Y ) = E [XY ]− E [X ]E [Y ] Prove it!
• If X and Y are independent (X ⊥⊥ Y ):

Cov(X ,Y ) = 0 Var(X + Y ) = Var(X ) + Var(Y )

• But there are X and Y uncorrelated (ie., Cov(X ,Y ) = 0) that are dependent!
• Variances of some discrete distributions

▶ X ∼ Ber(p) Var(X ) = p(1− p)
▶ X ∼ Bin(n, p) Var(X ) = np(1− p)

□ Because X =
∑n

i=1 Xi for X1, . . . ,Xn ∼ Ber(p) and independent
▶ X ∼ Geo(p) Var(X ) = 1−p

p2

▶ X ∼ NBin(n, p) Var(X ) = n 1−p
p2

□ Because X =
∑n

i=1 Xi − n for X1, . . . ,Xn ∼ Geo(p) and independent
• Variances of some continuous distributions

▶ X ∼ Exp(λ) Var(X ) = 1/λ2

▶ X ∼ Erl(n, λ) Var(X ) = n
λ2

□ Because X =
∑n

i=1 Xi for X1, . . . ,Xn ∼ Exp(λ) and independent
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Covariance and covariance matrix

• Hence, Var(rX + sY + t) = r2Var(X ) + s2Var(Y ) + 2rsCov(X ,Y )

• Bivariate Normal/Gaussian distribution:

(X ,Y ) ∼ N ((µX , µX ),

(
σ2
X σXY

σXY σ2
Y

)
)

▶ where marginals are X ∼ N (µX , σ
2
X ), Y ∼ N (µY , σ

2
Y ), and Cov(X ,Y ) = σXY

▶ Covariance matrix Σij = Cov(Xi ,Xj) for a vector X = (X1, . . . ,Xn) of r.v.’s

• Covariance depends on the unit of measure!

See R script lesson 08
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Correlation coefficient

• Correlation coefficient is dimensionless (not affected by change of units)

▶ E.g., if X and Y are in Km, then Cov(X ,Y ), Var(X ) and Var(Y ) are in Km2

• Moreover: −1 ≤ ρ(X ,Y ) ≤ 1

▶ The bounds are derived from the Cauchy–Schwarz’s inequality:

E [|XY |] ≤
√

E [X 2]
√
E [Y 2]

Proof. For any u,w ∈ R, we have 2|uw | ≤ u2 +w2. Therefore, 2|UW | ≤ U2 +W 2 for r.v.’s
U and V . By defining U = X/

√
E [X 2] and W = Y/

√
E [Y 2]

(∗), we have
2 · |XY |/

√
E [X 2]

√
E [Y 2] ≤ X 2

/E [X 2] + Y 2
/E [Y 2]. Taking the expectations, we conclude:

2 · E [|XY |]/
√

E [X 2]
√

E [Y 2] ≤ 2. (*) The case E [X 2] = 0 or E [Y 2] = 0 is left as an exercise. □
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Bivariate Normal/Gaussian distribution

(X ,Y ) ∼ N ((µX , µY ),

(
σ2
X σXY

σXY σ2
Y

)
)

where marginals are X ∼ N (µX , σ
2
X ), Y ∼ N (µY , σ

2
Y ), and Cov(X ,Y ) = σXY

• Since σXY = ρ(X ,Y ) · σX · σY :

(X ,Y ) ∼ N ((µX , µY ),

(
σ2
X ρ(X ,Y ) · σX · σY

ρ(X ,Y ) · σX · σY σ2
Y

)
)

• Density of N ((0, 0), (1, σXY , σXY , 1)):

f (x , y) =
1

2π
√
1− σ2

XY

e
− 1

2(1−σ2
XY

)
(x2+y2−2xyσXY )

• Useful facts for (X ,Y ) bivariate Normal:

▶ for (X ,Y ) bivariate Normal: ρ(X ,Y ) = 0 iff X ⊥⊥ Y , i.e., uncorrelation equals independence
▶ (X ,Y ) bivariate Normal iff aX + bY is Normal for any a, b ∈ R
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Sum of independent Normal random variables

• See Lesson 04 and Lesson 08 for convolution formulas

Theorem. If X ∼ N (µX , σ
2
X ) and Y ∼ N (µY , σ

2
Y ) and X ⊥⊥ Y , then:

Z = X + Y ∼ N (µX + µY , σ
2
X + σ2

Y )

Proof. See [T, Sect. 11.2] □

• In general: Z = rX + sY + t ∼ N (rµX + sµY + t, r2σ2
X + s2σ2

Y )

• The converse of the theorem also holds: [Lévy-Cramér theorem]
▶ If X ⊥⊥ Y and Z = X +Y is normally distributed, then X and Y follow a normal distribution.
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Extremes of independent random variables

• P(Z ≤ a) = P(X1 ≤ a, . . . ,Xn ≤ a) =
∏n

i=1 P(Xi ≤ a) = ((F (a))n

• Example: maximum water level over 365 days assuming water level on a day is U(0, 1)

• Example: maximum of two rolls of a die with 4 sides

• P(V ≤ a) = 1− P(X1 > a, . . . ,Xn > a) = 1−
∏n

i=1(1− P(Xi ≤ a) = 1− ((1− F (a))n
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Product and quotient of independent random variables

• X ,Y ∼ N (0, 1) independent, Z = X/Y ∼ Cau(0, 1) where:

fZ (x) =
1

π(1 + x2)
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