EXERCISE AT HOME: MODERATELY DIFFICULT REPORTS
WITH COMPARISON ACROSS AGGREGATION LEVELS

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Revenus by Brand and Product
January 2008
Brand Froduct Revenue Percent Fercent

=] of Brand of Total
Revenue Revenue

M1 P1 175, 000 4a% 21%
P2 BE, G0 2555 1256
F3 194, 000 RS 145
M1 All products 365,000 100%: A%
M2 P4 102,400 23% 12%
P5 BE, 200 225 125
PG 124,000 285 13%%
PT 120, 000 2 145
M2 All products 442, 600 10054 53%
All bramds BT, 0040 1007

Analytic SQL



SOLUTION

GROUPING(A) = 1 for GROUP
BY's where A is not included

WITH temp AS
( SELECT Brand, Product,SUM( nue) AS prodRevenue,
SUM(CASE WHEN GROUPING(Product)=1 THEN O ELSE SUM(Revenue) END)
OVER(PARTITION BY Brand) AS TotalBrand,
SUM(CASE WHEN GROUPING(Product)=1 THEN O ELSE SUM(Revenue) END)
OVER() AS Total
FROM sales
GROUP BY ROLLUP(Brand, Product)
)
SELECT Brand, Product, prodRevenue,
CASE WHEN TotalBrand>0 THEN 100*prodRevenue/TotalBrand ELSE O END as pctBrand,
100*prodRevenue/Total EL END as pctTotal
FROM ftemp
ORDER BY Brand, Product

TotalBrand = O when Brand = NULL,
coming from grouping on ()

Analytic SQL



VERY DIFFICULT REPORTS WITHOUT ANALYTIC SQL:

EXERCISE AT HOME!

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

We want to partition the customers into four groups:

- Top5%, with 5% of customers with the highest amount of revenues.

- Next15%, with 15% of other customers with the highest amount of revenues.

- Middle30%, with 30% of other customers with the highest amount of revenues.
- Bottomb50%, with B0 % of the customers with the lowest amount of revenues.

For each customer group we want to know their number, and the percentage

of the sum of their revenues compared to total revenue of all sales.

Group Number of Percent of total
customers revenue
Top5% 1 20
Next15% 3 50
Middle30% 6 20
Bottom50% 10 10

Analytic SQL




SOLUTION

WITH temp AS
( SELECT Customer, SUM(Revenue) AS CustRevenue,
CUME_DIST() OVER (ORDER BY SUM(Revenue) DESC) AS Cum
FROM sales
GROUP BY Customer
), temp2 AS
( SELECT Customer, CustRevenue,
CASE WHEN Cum <= 0.05 THEN 'Top5%'
WHEN Cum <= 0.20 THEN 'Next15%'
WHEN Cum <= 0.50 THEN 'Middle30%'
ELSE 'Bottomb0%'
END AS Gr
FROM temp
)
SELECT Gr, COUNT(*) AS NCustomers,
100.0*SUM(CustRevenue)/SUM(SUM(CustRevenue)) OVER () AS PctRevenue
FROM temp2
GROUP BY 6Gr
ORDER BY Gr DESC

Analytic SQL



EXERCISE AT HOME: SOLUTION USING LAG-LEAD (and NO JOIN)

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Comparison between Revenue by Brand and by Product

2009 - 2008
Brand Product Revenue(€) Revenue (€) Delta
2009 2008 (%)
B1 P1 2100 13560 —546
P2 3720 23640 —535
P3 15300 20340 —33
B2 P4 12600 1440 89
P5 22500 2100 91
P6 48 300 100

Delta = 100 x (Revenue2009 - Revenue2008)/Revenue2009

A product may have been sold in one year, but not in the other !

Analytic SQL



SOLUTION USING LAG-LEAD (and NO JOIN)

WITH temp AS (
SELECT Brand, Product, Year(Date) AS Year, SUM(Revenue) AS Revenue
FROM Sales
WHERE Year(Date) IN (2008, 2009)
GROUP BY Brand, Product, Year(Date)
),
laglead AS (
SELECT Brand, Product, Year, Revenue,
LAG(Revenue, 1, 0) OVER(PARTITION BY Brand, Product ORDER BY Year) AS PrevR,
LEAD(Revenue) OVER(PARTITION BY Brand, Product ORDER BY Year) AS NextR
FROM ftemp
)
SELECT Brand, Product, Revenue AS Revenue2009, PrevR AS Revenue2008,
CASE WHEN Year = 2008 THEN -100
ELSE Round(100*(Revenue-PrevR)/Revenue) END AS Delta
FROM laglead
WHERE Year = 2009 OR (Year = 2008 AND NextR IS NULL)
ORDER BY Brand, Product

Analytic SQL



VERY DIFFICULT REPORTS WITHOUT ANALYTIC SQL:
RUNNING TOTALS

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Product P1 Revenue by Quarter and Month

Year 2009
Quarter Month Revenue Revenue QtoD Revenue YtoD
(€) (€) (€)
Q1 January 16500 16500 16 500
Q1 February 14220 30720 30720
Q1 March 27 480 58200 58 200
Q2 April 7 920 7920 66120
Q2 May 1200 9120 67 320
Q2 June 1260 10380 68 580
Q3 July 5400 5400 73980
Q3 August 11730 17130 85710
Q3 September 10860 27990 96 570
Q4 October 5850 5850 102420
Q4 November 2100 7950 104 520

Q4 December

Analytic SQL



WINDOWING

<AggregateFunction>(<expr=)
OVER(

[PARTITION BY <attribute list>>]

[ORDER BY <sort attribute list>

[<ROWS or RANGE > <window size specification>]]
) [ AS Ide ]

Windowing functions are used to compute cumulative, moving and centered aggregates.

Window functions add a value to each row that depends on the other rows in the
window, based on distance (ROWS) or value (RANGE)

Examples of window specifications (fogether with ORDER BY Date):

0 ROWS UNBOUNDED PRECEDING. The window begin with the first record of the
partition and ends with the current record.

0 ROWS BETWEEN 5 PRECEDING AND 5 FOLLOWING. The window include all
records that fall within the given offset of preceding and following number of rows.

0O RANGE BETWEEN INTERVAL 5 DAYS PRECEDING AND CURRENT ROW. The
window include all records that fall within 5 days from current date.

Analytic SQL



WINDOWING EXAMPLE

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Product P1 Revenue by Quarter and Month

Year 2009
Quarter Month Revenue Revenue QtoD Revenue YtoD
(€) (€) (€)

Q1 January 16 500 16500 16 500
Q1 February 14220 30720 30720
Qi March 27 480 58200 58200
Q2 April 7920 7920 66 120
Q2 May 1200 9120 67 320
Q2 June 1260 10380 68 580
Q3 July 5400 5400 73980
Q3 August 11730 17130 85710
Q3 September 10860 27990 96 570
Q4 October 5850 5850 102420
Q4 November 2100 7950 104 520
Q4 December

Analytic SQL



WINDOWING EXAMPLE

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

SELECT Quarter_ Name(QUARTER(Date)) AS Quarter
, Month_Name(MONTH(Date)) AS Month
, SUM(Revenue) AS Revenue
, SUM(SUM(Revenue)) OVER
(PARTITION BY QUARTER(Date)
ORDER BY MONTH(Date)
ROWS UNBOUNDED PRECEDING) AS RevenueQToD
, SUM(SUM(Revenue)) OVER
(ORDER BY MONTH(Date)
ROWS UNBOUNDED PRECEDING) AS RevenueYToD

FROM Sales

WHERE YEAR(Date) = 2009

GROUP BY QUARTER(Date), MONTH(Date) PRI O T

uarier onin: Quarter Month Revenue Revenue QtoD Revenue YtoD
' ' € © (€
Q1 January 16 500 16500 16 500
Q1 February 14220 30720 30720
Q1 March 27 480 58200 58200
Q2 April 7920 7920 66 120
Q2 May 1200 9120 67320
Q2 June 1260 10380 68 580
Q3 July 5400 5400 73980
Q3 August 11730 17130 85710
Q3 September 10860 27990 96 570
Q4 October 5850 5850 102420
Q4 November 2100 7950 104 520
Q4 December
Analytic SQL

10



EXAMPLE

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

A moving average of total revenue, with a moving window of 3 months, by month.

SELECT MONTH(Date) AS Month

FROM Sales
GROUP BY MONTH(Date)
ORDER BY Month;

Analytic SQL 1



EXAMPLE

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

A moving average of total revenue, with a moving window of 3 months, by month.

SELECT MONTH(Date) AS Month
, ROUND(AVG(SUM(Revenue))
OVER (ORDER BY MONTH(Date)
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING), 2)

AS MovingAverageRevenue
FROM Sales
GROUP BY MONTH(Date)
ORDER BY Month;

Result visualization ...

Analytic SQL 12



MOVING AVERAGE OF TOTAL REVENUE BY MONTHS OF A YEAR

- 4.800
3% g; 4,600 M 3,000.01
i I 2.820 02
s 4.400 I 4.980 03
P 4.200 231004
= = M 1.350 05
s 4.000 1 1.080 08
o 3.800 W 165007
04 35600 B 17000
o 3.400 1.230 10
po 3.200 1380 11
95 960 12
3.000 L
2,800
25600
2.400
2200
2,000
1.800
1,600
1.400
1.200 ]
1,000
800
600
400
200
)
01 02 03 04 0s 06 07 08 09 10 11 12

3.600
3.500
3.400
3.300
3.200
3.100
3.000
2900
2.800
2.700
2,600
2,500
2.400
2.300
2200
2100
2.000
1.900
1.800
1.700
1.800
1.500
1.400
1.300

1.200
12 01

01 02 03 04 05 06 07

1 0s 08

Moving Average Monthly Total Revenue (Window 3 or 5)

13



SUMMARY

SQL is not select-from-where only.
Grouping and aggregation is a major part of SQL.

SQL has been extended for OLAP operations, because of intensive data
warehouse applications during the last decade.

Make sure you understand SQL. It is much more than syntax.

Analytic SQL

14



	Slide 1: EXERCISE AT HOME: MODERATELY DIFFICULT REPORTS WITH COMPARISON ACROSS AGGREGATION LEVELS
	Slide 2: SOLUTION
	Slide 3: VERY DIFFICULT REPORTS WITHOUT ANALYTIC SQL: EXERCISE AT HOME!
	Slide 4: SOLUTION
	Slide 5: EXERCISE AT HOME: SOLUTION USING LAG-LEAD (and NO JOIN)
	Slide 6: SOLUTION USING LAG-LEAD (and NO JOIN)
	Slide 7: VERY DIFFICULT REPORTS WITHOUT ANALYTIC SQL: RUNNING TOTALS
	Slide 8: WINDOWING
	Slide 9: WINDOWING EXAMPLE
	Slide 10: WINDOWING EXAMPLE
	Slide 11: EXAMPLE
	Slide 12: EXAMPLE
	Slide 13: MOVING AVERAGE OF TOTAL REVENUE BY MONTHS OF A YEAR
	Slide 14: SUMMARY

