DB and DBMS

A database is a collection of persistent data:

+ The schema (or meta-data), a collection of time-invariant definitions which describe
the structure of admissible data, as well as constraints on legal data values, i.e.
integrity constraints (abstract knowledge)

E.g., relation schemes in the relational data model

* The data, a time-variant representation of specific facts (concrete knowledge)
E.g., a relation in the relational data model

- A Data Base Management System (DBMS) is a centralized or distributed software
system, which provides the tools to:

» define the database schema, and add/modify/delete data,
* to select the data structures needed to store and retfrieve data easily,

- and to access the data, interactively using a query language or by means of a
programming language.

The relational model 1



Functions of a DBMS

* Data Description Language (DDL) Data Manipulation Language (DML)

* Data Query Language (DQL) Database administrator (DBA)

Logical view level

s § CREATE VIEW PersonsForAdministration AS CREATE VIEW PersonsForLibrary AS
S o SELECT Name, FiascalCode, Salary, Status SELECT Name, Address
O © FROM Persons FROM Persons
S O
- Q.
o o
S 2 Logical level CREATE TABLE Persons (Name CHAR(30),
- 0 FiscalCode  CHAR(15),

2 SN Salary INTEGER,

= 5 Status CHAR(6),

— T Address CHAR(8))

S O

o a

>~ 9 :

= 2 Physical level MODIFY Persons TO HASH ON Name

The relational model



Functions of a DBMS

- A user-accessible system catalog

Table Type of Information
SYSTABLES Information about the relational tables
SYSCOLUMNS Information about the columns in tables and views
SYSVIEWS Information about views
. SYSINDEXES Information about the indexes on tables
Data control SYSKEYS Information about the keys on tables

- Access control
GRANT ALL PRIVILEGES
* Integrity control ON MyTable
TO MyFriend WITH GRANT OPTION;

+ Concurrency control GRANT  SELECT, UPDATE(Grade)

ON Exams

- Data recovery TO Abbano:
GRANT SELECT
ON Students
TO PUBLIC;

 Facilities for the DBA

REVOKE SELECT
ON Students
FROM PUBLIC;

The relational model



SQL (Structured Query Language)

* First defined in 1974

- Standard (ANSI/ISO): SQL-84, SQL-89, SQL-92 (SQL2), SQL:1999 (SQL3),
SQL:2003 (4), SQL:2006 (5), SQL:2008 (6), SQL:2011 (7), SQL:2016 (8)

+ SQL-92: entry, intermediate and full SQL.
- SQL:1999: include GROUP BY ROLLUP, CUBE,

+ SQL:2003: include analytic functions and windowing

The relational model



SQL: Objects

SQL
environment

implementation authorization catalog client ~—
identifier * module privilege
schema I
I— role
character set ' trigger
‘ : table
couaﬁ‘ﬂn translation viewed —
. domain e
routine * tﬂ'bl/e \as;mnn typ
‘/* constraint *
Sl i ’ constraint
function
method

The relational model



SQL: Data Definition Language

* Create/Alter/Drop Table/View

CREATE TABLE Students
Name CHAR(20) NOT NULL,
StudentCode ~ CHAR(8) NOT NULL,
City CHAR(20),

BirthYear INTEGER NOT NULL,
PRIMARY KEY  (StudentCode),
UNIQUE (Name, BirthYear)
CHECK (BirthYear > 1900));

CREATE TABLE ExamResults (
Subject CHAR(20) NOT NULL,
Candidate CHAR(8) NOT NULL,
Date CHAR(8) NOT NULL,
Grade INTEGER NOT NULL,

PRIMARY KEY (Subject, Candidate),
FOREIGN KEY (Candidate)
REFERENCES Students
ON DELETE NO ACTION);

CREATE VIEW PisaStudents AS
SELECT Name, StudentCode, BirthYear

FROM  Students

WHERE City = 'Pisa’;

The relational model



SQL: Data Manipulation Language

+ Insert/Update/Delete

INSERT INTO Students (Name, StudentCode, City, BirthYear)
VALUES ('Rossi’, '01234', 'Pisa’, 1990);

UPDATE Students
SET City = 'Florence’
WHERE StudentCode = '01234;

DELETE FROM Students
WHERE City = 'Pisa’;

The relational model



SQL: Data Query Language

SELECT DISTINCT Aftributes

FROM Tables
WHERE Condition
ORDER BY Atftributes:

where

Aftributes = = | Aftribute {, Aftribute }
Tables ::= Table [Ide] {, Table [Ide]}

(<subquery=)UNION[ ALL ] (<subquery =)
(<subquery=) INTERSECT|[ALL ](<subquery=)
(<subquery>) EXCEPT[ALL ] (<subguery=)

The relational model



FROM SQL (WHAT) TO ALGEBRA (HOW)

In SQL the tables of a database may be without keys and so they are not sets ({T} )
but multisets (bags) ({{T}} ). To understand the semantics of an SQL query in terms

of a relational algebra expression, the relational algebra is extended on multisets
using the following operators.

. . . - i b
Project with duplicates. The result is a multiset. Ty Ap... A, (R)
Duplicate elimination. The result is a set. 6(R)

Sort. The result is a list (seq T). TA, A,.... A, (R)
IREESSEAREEES .

The other operators of relational algebra extends naturally to multisets
Multiset union, intersection and difference. The result is multiset.
(R Ub S):' (R mb 8): (R —° S)

9

The relational model



Multiset union, intersection and difference

If an element t appears n times in R and m times in S, then

T appears n + m times in the multiset union of R and S:

11233UP {22341 ={11232234)

T appears min(n, m) times in the multiset intersection of R and S:

(11233NP{2.234}={23)

t appears max(0, n - m) times in the multiset difference of R and S:

(1123}-P{1234)=(1)

The relational model

10



FROM SQL (WHAT) TO ALGEBRA (HOW)

SELECT DISTINCT S, Sar

FROM 1

WHERE We
GROUP BY G
HAVING He

ORDER BY 0O.;
Some clauses are optional

The clauses HAVING and
SELECT use only:

-expr on grouping attributes
i.e.,(SA g GA)

-aggregation functions Sar
and Har (used in Hc) over
hon- grouping attributes.

The relational model

(a) SOL guery

(b) Logical guery plan

11



FROM SQL (WHAT) TO ALGEBRA (HOW)

SELECT
FROM
WHERE
GROUP BY
HAVING
ORDER BY

DISTINCT S, Sar
T

We

(4

He

a;

Some clauses are optional

The clauses HAVING and
SELECT use only:
-expr on grouping attributes
e, (S4CGa)
-aggregation functions Sar

and Har (used in Hc) over
hon- grouping attributes.

The relational model

ORDER BY 0O

DISTINCT

SELECT 5S4, Sar

HAVING Hc

GROUP BY Ga

WHERE W,

FROM R, S

(a) SOL guery

(b) Logical guery plan



The COUNT bug of SQL: without GROUP BY vs GROUP BY ()

SELECT Count(*) VS SELECT Count(*)
FROM R FROM R
GROUP BY ()
Y Count(*)
R

Same result when R is non-empty.

What is the result if R is empty?

The relational model

13



SQL: WITH Clause (subquery factoring)

- Simplify complex SQL queries, prevent using temporary views/table

WITH subquery_name AS
(
SQL query defining subquery

)

SQL query using subquery_name as a table name

- Exercise: Average number of students per year that passed 'BSD'

WITH agg AS CREATE TABLE ExamResults (
(SELECT Count(*) As N Subject CHAR(20) NOT NULL,
Candidate CHAR(8) NOT NULL,
FROM ExamResults Date CHAR(8) NOT NULL,
WHERE Subject='BSD Grade INTEGER NOT NULL,
GROUP BY Year(Date)) PRIMARY KEY  (Subject, Candidate),
FOREIGNKEY  (Candidate)
SELECT Avg(N) REFERENCES Students
FROM agg ON DELETE NO ACTION);

The relational model 14



EXERCISE AT HOME FROM A PREVIOUS LESSON

Customer

- Write a SQL query that returns all constant
customers

CustomerPK
StartDate KeyValidity
Name

Gender

Birthdate

Profession
Cualification

City

Region

| Product

Sales

TyimlugyAge

ProductPK
ProductMame
ProductType
ProductCategory
Production'Year

« Constant: with at least fwo orders per month
for at least three months in the last four |
months.

Supplier
SupplierPK
SupplierMame
SupplierCity
SupplierRegion

| Return
ReturnPK
Disposition
Reason

ProductFK

DateFK

CustomerFK
TypologyAgeFK
ReturnFK
PromotionFK
SupplierFK
CluantityOrdered
Cluantity Sold
CluantityReturned
ProductExtendedPrice
ProductBeturnValue
ProductExtendedCost
ProductPromotionCost
ProductReturnCost
ProductExtendedDiscount
Revenue

Margin

OnTimeCount
OrderCompleteCount
Damage FreeCount
OrderMumber DDz
Channel «=DD=
InitialCustomerkey « DD

TypologyAgePK
Typology
AgeRange

Date

DatePK
Month
Cluarter
Year

Promotion

The rela

DatePK
StartDate
EndDate
PromoType
PromoValue
PromoMedium
PromoCost

15



EXERCISE AT HOME - SOLUTION
Assuming that a month is a number in the format MM (hence Month -> Year NOT holds)

WITH NOrders AS (
SELECT InitialCustomerKey, COUNT(DISTINCT OrderNumber) AS norders
FROM Sales, Date
WHERE DateFK = DataPK
WHERE Year*12+Month BETWEEN f_lastMonth-3 AND f_lastMonth
GROUP BY InitialCustomerKey, Month, Year

)

SELECT InitialCustomerKey

FROM NOrders

WHERE norders > 1

GROUP BY InitialCustomerKey

HAVING COUNT(*) > 2

The rela 16



EXERCISE AT HOME - SOLUTION

Assuming that a month is a number in the format YYYYMM (hence Month -> Year holds)
Let f(YYYYMM) = YYYY*12 + MM E.g., f(n) = (n / 100)*12 + n % 100
Let f_lastMonth = f(lastMonth) E.g., f_lastMonth = f(202410) = 24298

WITH NOrders AS (
SELECT InitialCustomerKey, COUNT(DISTINCT OrderNumber) AS norders
FROM Sales, Date
WHERE DateFK = DataPK
WHERE (Month/100)*12+Month7%100 BETWEEN f_lastMonth-3 AND f_lastMonth
GROUP BY InitialCustomerKey, Month

)

SELECT InitialCustomerKey

FROM NOrders

WHERE norders > 1

GROUP BY InitialCustomerKey

HAVING COUNT(*) > 2

The rela 17



SQL: Nested Queries

- Student code and name who passed at least one exam with grade ‘A’

SELECT S'I'uden'I'Code, Name CREATE TABLE Students (
Name CHAR(20) NOT NULL,
FROM Students StudentCode ~ CHAR(8) NOT NULL,
WHERE StudentCode IN (SELECT Candidate SO ST
PRIMARY KEY  (StudentCode),
FROM ExamResults UNIQUE (Name, BirthYear)
CHECK (BirthYear > 1900)):

WHERE Grade='A")

Student code and name who did not passed any exam
CREATE TABLE ExamResults (

Subject CHAR(20) NOT NULL,
SELECT StudentCode, Name Candidate CHAR(8) NOT NULL,
Date CHAR(8) NOT NULL.
FROM Students Grade INTEGER NOT NULL,
WHERE StudentCode NOT IN (SELECT Candidate FOREIGNKEY  (Cantidasy
REFERENCES Students
FROM ExamResults) ON DELETE NO ACTION):

The relational model 19



SQL: NULLs

* Missing or unknown values of attributes are modelled with the NULL value

» Problems introduced by the NULL value:

- Test whether a value is NULL: WHERE age IS [NOT] NULL

* Truth value of: age > 25 when age is NULL?

* Three-valued logic

X y X AND y xORYy NOT x
TRUE TRUE TRUE TRUE FALSE
TRUE UNKNOWN UNKNOWN TRUE FALSE
TRUE FALSE FALSE TRUE FALSE
UNKNOWN TRUE UNKNOWN TRUE UNKNOWN
UNKNOWN UNKNOWN UNKNOWN UNKNOWN  UNKNOWN
UNKNOWN FALSE FALSE UNKNOWN  UNKNOWN
FALSE TRUE FALSE TRUE TRUE
FALSE UNKNOWN FALSE UNKNOWN TRUE
FALSE FALSE FALSE FALSE TRUE

Figure 1: Truth table for three-valued logic

» Which tuples satisfy WHERE C? those where C evaluates to TRUE

The relational model

23



SQL: NULLs

- Features intfroduced by the NULL value:

* New join operator: R(Aq, ...,A,) S(By, ..., B,) relations!
RLEFT OUTER JOIN SONR.A. =S

(R P<R.ai=s 8 S)U[(R-°7s _an(R ><lr Ai=5.8 S)) X{{B;NULL, ..., B;;:NULL} } ]

Tuples with no match ]

R | Name StudentCode Subject | Candidate | Grade S
Mario 1 BSD 1 A
Lucia 2 DM1 2 B
Anna 3 BSD 2 B
Name StudentCode | Subject | Candidate | Grade
Mario 1 BSD 1 A
Lucia 2 DM1 2 B
Lucia 2 BSD 2 B
Anna 3 NULL NULL NULL

Others: RIGHT OUTER JOIN, FULL OUTER JOIN

The relational model



SQL: CASE

- SQL to compute

Name Gender | StudentCode Subject Candidate | Grade
Mario M 1 BSD 1 A
Lucia F 2 DM1 2 B
Anna F 3 BSD 2 B

Subject | NExamsF | NExamsM

BSD 1 1

DM1 1 0

SELECT Subject, Gender, Count(*)

FROMR, S

GROUP BY Subject, Gender

The relational model

P

WHERE StudentCode = Candidate o

25



SQL: CASE

- SQL to compute

SELECT Subject, SUM( CASE WHEN Gender="F' THEN 1 ELSE O END ) As NExamsF,
SUM( CASE WHEN Gender="M' THEN 1 ELSE O END ) As NExamsM

FROMR, S

Name Gender | StudentCode Subject Candidate | Grade
Mario M 1 BSD 1 A
Lucia F 2 DM1 2 B
Anna F 3 BSD 2 B

Subject | NExamsF | NExamsM

BSD 1 1

DM1 1 0

WHERE StudentCode = Candidate

GROUP BY Subject

The relational model

26



TEST

L. (5 points) (Mandatory) Let us consider the following database, without null val-
ues:

SELECT FkP, SUM(Qty*UnitPrice)

Products Sales FROM Sales, Products
PkP UnitPrice ... FKP Qty ... WHERE FkP = PkP
10 5 10 50 ... GROUP BY FkP

20 10 e 20 10 ...

30 20 30 20 ... SELECT FkP, SUM(Qty*UnitPrice)
10 30 ... FROM Sales, Products
20 100 ... WHERE FkP = PkP AND UnitPrice > 5
30 10 ... GROUP BY FkP
10 30 ... HAVING COUNT(*)>5

(a) Write an SQL query to find the total sales revenue by product.

(b) Give a logical query plan for the SQL query, the type and the value of the
result.
Modify the logical query plan to consider only products with UnitPrice > 5
sold each of them more than 5 times.

The relational model 28



	Slide 1: DB and DBMS
	Slide 2: Functions of a DBMS
	Slide 3: Functions of a DBMS
	Slide 4: SQL (Structured Query Language)
	Slide 5: SQL: Objects
	Slide 6: SQL: Data Definition Language
	Slide 7: SQL: Data Manipulation Language
	Slide 8: SQL: Data Query Language
	Slide 9: FROM SQL (WHAT) TO ALGEBRA (HOW)
	Slide 10: Multiset union, intersection and difference
	Slide 11: FROM SQL (WHAT) TO ALGEBRA (HOW)
	Slide 12: FROM SQL (WHAT) TO ALGEBRA (HOW)
	Slide 13: The COUNT bug of SQL: without GROUP BY vs GROUP BY () 
	Slide 14: SQL: WITH Clause (subquery factoring)
	Slide 15: EXERCISE AT HOME FROM A PREVIOUS LESSON
	Slide 16: EXERCISE AT HOME – SOLUTION
	Slide 17: EXERCISE AT HOME – SOLUTION
	Slide 19: SQL: Nested Queries
	Slide 23: SQL: NULLs
	Slide 24: SQL: NULLs
	Slide 25: SQL: CASE 
	Slide 26: SQL: CASE 
	Slide 28: TEST

