
1

SPARK
SPARK95_IO - Input/Output for
SPARK95 Programs

 SPARK95_IO
Issue: 3.5
Status: Definitive
22 November 2005

 Originator

 SPARK Team

 Approver

 SPARK Team Line Manager

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 2 of 35

Copyright

The contents of this manual are the subject of copyright and all rights in it are reserved. The manual
may not be copied, in whole or in part, without the written consent of Praxis High Integrity Systems
Limited.

The software tools referred to in this manual are the subject of copyright and all rights in them are
reserved. The rights in these tools are owned by Praxis High Integrity Systems Limited, and they may not
be copied, in whole or in part, without the written consent of this company, except for reasonable back-
up purposes. The same proprietary and copyright notices must be affixed to any permitted copies as
were affixed to the original. This exception does not allow copies to be made for others, whether or not
sold, and none of the material purchased may be sold, given or loaned to another person or
organisation. Under law copying includes translating into another language or format.

1991-2006 Praxis High Integrity Systems Limited, 20 Manvers Street, Bath BA1 1PX

Limited Warranty

Praxis High Integrity Systems Limited save as required by law makes no warranty or representation,
either express or implied, with respect to this software, its quality, performance, merchantability or
fitness for a purpose. As a result, the licence to use this software is sold ‘as is’ and you, the purchaser,
are assuming the entire risk as to its quality and performance.

Praxis High Integrity Systems Limited accepts no liability for direct, indirect, special or consequential
damages nor any other legal liability whatsoever and howsoever arising resulting from any defect in the
software or its documentation, even if advised of the possibility of such damages. In particular Praxis
High Integrity Systems Limited accepts no liability for any programs or data stored or processed using
Praxis High Integrity Systems Limited products, including the costs of recovering such programs or data.

SPADE is a registered trademark of Praxis High Integrity Systems Limited.

Note: The SPARK programming language is not sponsored by or affiliated with SPARC International Inc. and is not
based on SPARC™ architecture.

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 3 of 35

Contents

1 Introduction 4

2 External Files and File Objects 5

3 Text Input-Output 6
3.1 Types and Constants 6
3.2 File Management 6
3.3 Default Input and Output Files 9
3.4 Specification of Line and Page Lengths 10
3.5 Operations on Columns, Lines and Pages 11
3.6 Get and Put Procedures 14
3.7 Input-Output of Characters and Strings 15
3.8 Input-Output for Integer Types 17
3.9 Input-Output for Real Types 20
3.10 Input-Output for Enumeration Types 21
3.11 Specification of the Package Spark_IO 22

4 Exceptions in Input-Output 30

5 Example of Input-Output 31

Document Control and References 35
File under 35
Changes history 35
Changes forecast 35

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 4 of 35

1 Introduction

The SPARK1 95 language has no predefined packages for Input-output, since the standard Ada input-
output packages contain features not supported by SPARK.

However, the Examiner is supplied with a package Spark_IO which defines operations for file
manipulation and input-output of the predefined types Character, String , Integer and Float . If
required, facilities for input-output of new integer and floating point types, fixed point types and
enumeration types may be provided by the user, based on procedures in Spark_IO, whose
specification and body are supplied in machine-readable form with the SPARK Examiner.

This document describes the SPARK 95 variant of package Spark_IO.

The specification of the package Spark_IO obeys the rules of SPARK and can be used with other
packages written in SPARK. Its subprograms, implemented as in the supplied version of the package
body, will not raise unhandled exceptions.

As well as providing input-output facilities, Spark_IO also serves as a practical example of how to
construct a SPARK interface to non-SPARK software, including use of the SPARK Examiner hide
directive.

1 Note: The SPARK programming language is not sponsored by or affiliated with SPARC International Inc. and is not
based on SPARC™ architecture.

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 5 of 35

2 External Files and File Objects

Values input from the external environment of the program, or output to the environment, are
considered to occupy external files. An external file can be anything external to the program that can
produce a value or receive a value to be written. An external file is identified by a string - the name. A
second string — the form — gives further system-dependent characteristics that may be associated with
the file.

Input and output operations are expressed as operations on objects of some file type, rather than
directly in terms of the external files. In the remainder of this chapter, the term file is always used to
refer to a file object; the term external file is used otherwise. The values transferred for a given file must
all be of one type.

The Spark_IO package declares three own variables Inputs, Outputs and State. Inputs
represents the set of external input files used by a program and Outputs represents the set of
external output files. State represents the internal essential state of the Spark_IO package. The file
Spark_IO.Standard_Input is considered to be a member of Inputs, while
Spark_IO.Standard_Output is considered to be a member of Outputs. A variable of type
Spark_IO.File_Type is used to identify a particular file within the set of input or output files (just as
an index is used to identify a particular element in an array); this variable does not represent the file
itself.

The use of three own variables prevents unwanted coupling of outputs with inputs and complies with
the guidelines in the INFORMED method for SPARK design.

Before performing any operation on an external file the file must have been opened (by Open if the file
already exists or by Create if not). An open file has a current mode which is a value of the enumeration
type

type File_Mode is (In_File, Out_File, Append_File);

Before reading from a file (with one of the Get operations), the file must have been opened for input
(mode In_File). Before writing to a file (with one of the Put operations), the file must have been
opened for output (mode Out_File or Append_File).

The standard Ada input-output routines generate exceptions if error conditions are encountered, but
exceptions are not allowed in SPARK. Instead, where appropriate a routine has a status parameter,
whose returned value indicates whether an error condition has arisen. (If this status is not checked by a
program, after every call of the routine, the SPARK Examiner will report the existence of data-flow
anomalies - specifically the updating without subsequent reading of the status variable).

If a status variable indicates that an error has occurred, any other returned values are undefined, and
the onus is on the programmer to organise appropriate recovery actions. For routines which do not
return status information, the programmer should establish that their pre-conditions are always
satisfied.

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 6 of 35

3 Text Input-Output

This section describes the facilities provided by the package Spark_IO for input and output in human-
readable form. The package Spark_IO replaces the predefined Ada package Ada.Text_IO.

3.1 Types and Constants

Spark_IO declares a number of types and constants used throughout the package. These are as
follows:

type File_Type is private;
type File_Mode is (In_File, Out_File, Append_File);
type File_status is (Ok, Status_Error, Mode_Error, Name_Error,
 Use_Error, Device_Error, End_Error, Data_Error,
 Layout_Error, Storage_Error, Program_Error);

subtype Number_Base is Integer range 2 .. 16;

Standard_Input : constant File_Type;
Standard_Output : constant File_Type;
Null_File : constant File_Type;

3.2 File Management

The procedures and functions described in this section provide for the control of external files.

procedure Create(File : out File_Type;
 Name_Of_File : in String;
 Form_Of_File : in String;
 Status : out File_Status)
--# global in out State;
--# derives State,
--# File,
--# Status from State, Name_Of_File, Form_Of_File;

If File does not identify a file within Outputs a new file is added to Outputs and File will be set to
identify it. A new external file is created, with the given name and form. This external file is then
associated with the file within Outputs identified by File . The external file is opened.

The current mode of the specified file is set to Out_File and the page length and line length are
unbounded. The current column, the current line and the current page numbers are set to one.

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 7 of 35

A null string for Name_Of_File specifies an external file that is not accessible after the completion of
the main program (a temporary file). A null string for Form_Of_File specifies the use of the default
options of the implementation for the external file.

The Status parameter is set to Ok if no error condition is encountered. It is set to Status_Error if
the specified file is already open, to Name_Error if the string given as Name does not allow the
identification of an external file, or to Use_Error if, for the specified mode, the environment does not
support creation of an external file with the given name (in the absence of Name_Error) and form.

Note that trying to use either Standard_Input or Standard_Output as the File parameter is not
allowed. By the rules of Ada, a constant cannot be used as an “out” parameter.

procedure Open(File : out File_Type;
 Mode_Of_File : in File_Mode;
 Name_Of_File : in String;
 Form_Of_File : in String;
 Status : out File_Status)
--# global in out State;
--# derives State,
--# File,
--# Status from State, Mode_Of_File, Name_Of_File,
--# Form_Of_File;

If File does not identify a file within Inputs or Outputs a new file is added to the appropriate set
and File will be set to identify it. The external file, of the given name, is then associated with the file
within Inputs or Outputs identified by File. The external file is opened.

The current mode of the specified file is set to the given access mode. If the current mode of the
specified file is Out_File the page length and line length are unbounded. The current column, the
current line and the current page numbers are set to one.

The Status parameter is set to Ok if no error condition is encountered. It is set to Status_Error if
the specified file is already open, to Name_Error if the string given as Name does not allow the
identification of an external file (in particular if no external file with the given name exists), or to
Use_Error if, for the specified mode, the environment does not support opening of an external file
with the given name (in the absence of Name_Error) and form.

Note that trying to use either Standard_Input or Standard_Output as the File parameter is not
allowed. By the rules of Ada a constant cannot be used as an “out” parameter.

procedure Close(File : in File_Type;
 Status : out File_Status)
--# global in out State;
--# derives State,
--# Status from State, File;

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 8 of 35

The association between the file in Inputs or Outputs identified by File and its associated external
file is severed. The specified file is closed.

If the file has current mode Out_File or Append_File, has the effect of calling New_Page, unless
the current page is already terminated; then outputs a file terminator.

The Status parameter is set to Ok if no error condition is encountered. It is set to Status_Error if
the specified file is not open. It is set to Use_Error if File is Standard_Input or
Standard_Output.

procedure Delete(File : in File_Type;
 Status : out File_Status)
--# global in out State;
--# derives State,
--# Status from State, File;

The external file associated with the file in Inputs or Outputs identified by File is deleted. The
specified file is closed and the external file ceases to exist.

The Status parameter is set to Ok if no error condition is encountered. It is set to Status_Error if
the given file is not open or to Use_Error if deletion of the external file is not supported by the
environment or if File is Standard_Input or Standard_Output .

procedure Reset(File : in out File_Type;
 Mode_Of_File : in File_Mode;
 Status : out File_Status);
--# derives File,
--# Status from File, Mode_Of_File;

The file identified by File is reset so that reading from or writing to its elements can be restarted from
the beginning of the file.

If the file has the current mode Out_File or Append_File , has the effect of calling New_Page,
unless the current page is already terminated; then outputs a file terminator. If the new file mode is
Out_File or Append_File, the page and line lengths are unbounded. The current column, line and
page numbers are set to one.

The Status parameter is set to Ok if no error condition is encountered. It is set to Status_Error if
the specified file is not open and to Use_Error if the environment does not support resetting for the
external file or if the environment does not support resetting to the specified mode for the external file.

Note that trying to use either Standard_Input or Standard_Output as the File parameter is not
allowed. By the rules of Ada a constant cannot be used as an “in out” parameter.

function Valid_File(File : File_Type) return Boolean;

This function checks that File is a valid identification for a file and returns the result of the check.

function Mode(File : File_Type) return File_Mode;

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 9 of 35

Returns the current mode of the file identified by File. If the specified file is not open the result is
undefined.

procedure Name(File : in File_Type;
 Name_Of_File : out String;
 Stop : out Natural);
--# derives Name_Of_File,
--# Stop from File;

If File is currently valid and open, copies into Name_Of_File a string which uniquely identifies the
external file currently associated with the file identified by File (and may thus be used in an Open
operation). If an environment allows alternative specifications of the name (for example, abbreviations),
the string copied should correspond to a full specification of the name. If Name_Of_File is not big
enough to hold the string, the string is truncated and Stop is set to Name_Of_File 'LENGTH + 1.
Otherwise Stop is set to the length of the string copied into Name_Of_File .

If the specified file is not open or is invalid then the result is undefined.

procedure Form (File : in File_Type;
 Form_Of_File : out String;
 Stop : out Natural);
--# derives Form_Of_File,
--# Stop from File;

If File is valid and open, copies into Form_Of_File the form string for the external file currently
associated with the file in Inputs or Outputs identified by File. If an environment allows
alternative specifications of the form (for example, abbreviations using default options), the string
copied should correspond to a full specification (that is, it should indicate explicitly all options selected,
including default options). If Form_Of_File is not big enough to hold the string, the string is
truncated and Stop is set to Form_Of_File'Length + 1. Otherwise Stop is set to the length of
the string copied into Form_Of_File .

If the specified file is invalid or not open then the result is undefined.

function Is_Open(File : File_Type) return Boolean;
--# global State;

Returns True if the file identified by File is open (that is, if it is associated with an external file),
otherwise returns False.

3.3 Default Input and Output Files

Since SPARK does not allow overloading or default parameters, file parameters cannot be omitted from
input-output operations which require them. Hence, Spark_IO does not support the concept of default
input and output files and no routines are provided for their manipulation.

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 10 of 35

3.4 Specification of Line and Page Lengths

Spark_IO does not currently support the setting of line and page lengths. Therefore, files of mode
Out_File or Append_File always have unbounded line and page lengths (that is, they have the
conventional value zero). New lines and new pages are only started when explicitly called for.

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 11 of 35

3.5 Operations on Columns, Lines and Pages

The subprograms described in this section provide for explicit control of line and page structure.
Currently Spark_IO does not support page operations on files of mode In_File.

procedure New_Line(File : in File_Type;
 Spacing : in Positive);
--# global in out Outputs;
--# derives Outputs from Outputs, File, Spacing;

Operates on a file of mode Out_File .

For a Spacing of one: Outputs a line terminator and sets the current column number to one. Then
increments the current line number by one, except in the case that the current line number is already
greater than or equal to the maximum page length, for a bounded page length; in that case a page
terminator is output, the current page number is incremented by one, and the current line number is set
to one.

For a Spacing greater than one, the above actions are performed Spacing times.

No action is performed if the mode of the file identified by File is not Out_File or File is not a valid
file identifier.

procedure Skip_Line(File : in File_Type;
 Spacing : in Positive);
--# global in out Inputs;
--# derives Inputs from Inputs, File, Spacing;

Operates on a file of mode In_File .

For a Spacing of one: Reads and discards all characters until a line terminator has been read, and
then sets the current column number to one. If the line terminator is not immediately followed by a
page terminator, the current line number is incremented by one. Otherwise, if the line terminator is
immediately followed by a page terminator, then the page terminator is skipped, the current page
number is incremented by one, and the current line number is set to one.

For a Spacing greater than one, the above actions are performed Spacing times, or until a file
terminator is reached.

No action is performed if the mode of the file identified by File is not In_File, an attempt is made to
read a file terminator or File is not a valid file identifier.

procedure New_Page (File : in File_Type);
--# global in out Outputs;
--# derives Outputs from Outputs, File;

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 12 of 35

Operates on a file of mode Out_File.

Outputs a line terminator if the current line is not terminated, or if the current page is empty (that is, the
current column and line numbers are both equal to one). Then outputs a page terminator, which
terminates the current page. Adds one to the current page number and sets the current column and line
numbers to one.

No action is performed if the mode of the file identified by File is not Out_File or File is not a valid
file identifier.

function End_Of_Line(File : File_Type) return Boolean;
--# global Inputs;

Operates on a file of mode In_File .

Returns True if File is a valid identifier of an open file of mode In_File and a line terminator or a
file terminator is next; Returns False if File is a valid identifier of an open file of mode In_File and
a line terminator or a file terminator is not next; otherwise the result is undefined.

function End_Of_File(File : File_Type) return Boolean;
--# global Inputs;

Operates on a file of mode In_File .

Returns True if File is a valid identifier of an open file of mode In_File and a file terminator is next,
or if the combination of a line and/or a page terminator followed by a file terminator is next; Returns
False if File is a valid identifier of an open file of mode In_File and a line terminator is not next, or
if the combination of a line and/or a page terminator followed by a file terminator is not next; otherwise
the result is undefined.

procedure Set_In_File_Col(File : in File_Type;
 Posn : in Positive);
--# global in out Inputs;
--# derives Inputs from Inputs, File, Posn;
--# pre Mode (File) = In_File;

Reads (and discards) individual characters, line terminator, and page terminators, until the next
character to be read has a column number that equals the value specified by Posn; there is no effect if
the current column number already equals this value. Each transfer of a character or terminator
maintains the current column, line and page numbers in the same way as a Get procedure. (Short lines
will be skipped until a line is reached that has a character at the specified column position.) No action
is performed if an attempt is made to read a file terminator.

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 13 of 35

procedure Set_Out_File_Col(File : in File_Type;
 Posn : in Positive);
--# global in out Outputs;
--# derives Outputs from Outputs, File, Posn;
--# pre Mode (File) = Out_File or
--# Mode (File) = Append_File;

If the value specified by Posn is greater than the current column number, outputs spaces, adding one
to the current column number after each space, until the current column number equals the specified
value. If the value specified by Posn is less than the current column number, has the effect of calling
New_Line (with a spacing of one), then outputs (Posn - 1) spaces, and sets the current column
number to the specified value.

No action is performed if the value specified by Posn exceeds the line length when the line length is
bounded (that is, when it does not have the conventional value zero).

function In_File_Col(File : File_Type) return Positive;
--# global Inputs;
--# pre Mode (File) = In_File;

If File is a valid identifier of an open file then returns the current column number; otherwise the result
is undefined.

function Out_File_Col(File : File_Type) return Positive;
--# global Outputs;
--# pre Mode (File) = Out_File or
--# Mode (File) = Append_File;

If File is a valid identifier of an open file then returns the current column number; otherwise the result
is undefined.

function In_File_Line(File : File_Type) return Positive;
--# global Inputs;
--# pre Mode (File) = In_File;

If File is a valid identifier of an open file then returns the current line number; otherwise the result is
undefined.

function Out_File_Line(File : File_Type) return Positive;
--# global Outputs;
--# pre Mode (File) = Out_File or
--# Mode (File) = Append_File;

If File is a valid identifier of an open file then returns the current line number; otherwise the result is
undefined.

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 14 of 35

3.6 Get and Put Procedures

To avoid overloading, a set of get and put procedures is provided (for example Get_Char , Put_Char,
Get_String, Put_String). Features that are common to these procedures are described in this
section.

Most of the Get and Put procedures operate on files and so they have a file parameter, written first.
(The exceptions are the “get from string” and “put to string” procedures). Unlike Ada.Text_IO , in
Spark_IO this file parameter cannot be omitted. The Get procedures operate on a file of mode
In_File and the Put procedures operate on a file of mode Out_File or Append_File.

The Get and Put procedures maintain the current column, line and page numbers of the specified file,
in the same way as Ada.Text_IO.

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 15 of 35

3.7 Input-Output of Characters and Strings

For an item of type Character or String the following procedures are provided.

procedure Get_Char(File : in File_Type;
 Item : out Character);
--# global in out Inputs;
--# derives Inputs,
--# Item from Inputs, File;

Operates on a file of mode In_File .

After skipping any line terminators and any page terminators, reads the next character from the
specified input file and returns the value of this character in the out parameter Item .

If an attempt is made to skip a file terminator, no action is performed and the value of Item is
undefined.

procedure Get_Char_Immediate (File : in File_Type;
 Item : out Character;
 Status : out File_Status);
--# global in out Inputs;
--# derives Inputs,
--# Item,
--# Status from Inputs,
--# File;

Operates on a file of mode In_File . Only the variant of Get_Immediate that waits for a character to
become available is supported.

On return Status is one of Ok, Mode_Error or End_Error. See ALRM A.10.7

Item is set to Character'First if Status /= Ok

procedure Put_Char(File : in File_Type;
 Item : in Character);
--# global in out Outputs;
--# derives Outputs from Outputs, File, Item;

Operates on a file of mode Out_File or Append_File .

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 16 of 35

If the line length of the specified output file is bounded (that is, does not have the conventional value
zero), and the current column number exceeds it, has the effect of calling New_Line with a spacing of
one. Then, or otherwise, outputs the given character to the file.

procedure Get_String(File : in File_Type;
 Item : out String;
 Stop : out Natural);
--# global in out Inputs;
--# derives Inputs,
--# Item,
--# Stop from Inputs, File;

Operates on a file of mode In_File .

Determines the length of the given string and attempts that number of Get_Char operations for
successive characters of the string. If characters are read, returns in Stop the index value such that
Item(Stop) is the last character replaced (the index of the first character replaced is Item'FIRST).
If no characters are read returns in Stop an index value which is one less than Item'FIRST.

procedure Put_String(File : in File_Type;
 Item : in String;
 Stop : in Natural);
--# global in out Outputs;
--# derives Outputs from Outputs, File, Item,
--# Stop;

Operates on a file of mode Out_File or Append_File .

If Stop is zero determines the length of the given string and attempts that number of Put_Char
operations for successive characters of the string. If Stop is less than or equal to Item'Last then
characters from Item'First up to and including Stop are output. If Stop is larger than
Item'Last then all characters in Item are output, followed by spaces up to and including the width
specified by Stop.

procedure Get_Line(File : in File_Type;
 Item : out String;
 Stop : out Natural)
--# global in out Inputs;
--# derives Inputs,
--# Item,
--# Stop from Inputs, File;

Operates on a file of mode In_File .

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 17 of 35

Replaces successive characters of the specified string by successive characters read from the specified
input file. Reading stops if the end of the line is met, in which case the procedure Skip_Line is then
called (in effect) with a spacing of one; reading also stops if the end of the string is met. Characters not
replaced are left undefined.

If characters are read, returns in Last the index value such that Item(Last) is the last character
replaced (the index of the first character replaced is Item'FIRST). If no characters are read, returns in
Last an index value that is one less than Item'FIRST . This value is also returned if an attempt is
made to skip a file terminator.

procedure Put_Line(File : in File_Type;
 Item : in String
 Stop : in Natural);
--# global in out Outputs;
--# derives Outputs from Outputs, File, Item, Stop;

Operates on a file of mode Out_File or Append_File .

Calls the procedure Put_String for the given string, and then the procedure New_Line with a
spacing of one.

3.8 Input-Output for Integer Types

Since SPARK does not support generic packages, input-output routines are only provided for the
predefined integer type Integer.

Values are output as decimal or based literals, without underline characters or exponent and preceded
by a minus sign if negative. The format is specified by a non-negative field width parameter. Values of
bases are of the Integer subtype Number_base,

subtype Number_base is Integer range 2 .. 16;

Since SPARK does not allow the specification of default parameters there is no default field width or
base.

procedure Get_Integer(File : in File_Type;
 Item : out Integer;
 Width : in Natural;
 Read : out Boolean);
--# global in out Inputs;
--# derives Inputs,
--# Item,
--# Read from Inputs, File, Width;

Operates on a file of mode In_File .

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 18 of 35

If the value of the parameter Width is zero, skips any leading blanks, line terminators, or page
terminators, then reads a plus or a minus sign if present, then reads according to the syntax of an
integer literal (which may be a based literal). If a non-zero value of Width is supplied, then exactly
Width characters are input, or the characters (possibly none) up to a line terminator, whichever comes
first; any skipped leading blanks are included in the count.

If successful sets Read to True and returns, in the parameter Item , the Integer that corresponds
to the sequence input. Otherwise sets Read to False and the value of Item is undefined.

procedure Put_Integer(File : in File_Type;
 Item : in Integer;
 Width : in Natural;
 Base : in Number_base);
--# global in out Outputs;
--# derives Outputs from Outputs, File, Item,
--# Width, Base;

Operates on a file of mode Out_File or Append_File .

Outputs the value of the parameter Item as an integer literal, with no underlines, no exponent, and no
leading zeros (but a single zero for the value zero), and a preceding minus sign for a negative value.

If the resulting sequence of characters to be output has fewer than Width characters, then leading
spaces are first output to make up the difference.

Uses the syntax for decimal literal if the parameter Base has the value ten; otherwise, uses the syntax
for based literal, with any letters in upper case.

procedure Get_Int_From_String(Source : in String;
 Item : out Integer;
 Start_Pos: in Positive;
 Stop : out Natural);
--# derives Item,
--# Stop from Source, Start_Pos;

Reads an integer value from the beginning at Source(Start_Pos) from the given string, following
the same rules as the Get_Integer procedure, but treating the end of the string as a file terminator.
Returns, in the parameter Item, the Integer that corresponds to the sequence input. Returns in Stop
the index value such that Source(Stop) is the last character read.

If the sequence input does not have the required syntax then Stop is one less than Start_Pos and
the value of Item is undefined.

procedure Put_Int_To_String(Dest : in out String;
 Item : in Integer;
 Start_Pos : in Positive;
 Base : in Number_Base);

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 19 of 35

--# derives Dest from Dest, Item, Start_Pos, Base;

Outputs the value of the parameter Item to the given string such that the first digit (or sign) is at
Dest(Start_Pos), following the same rule as for output to a file, using Dest'Last -
Start_Pos + 1 as the value for Width.

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 20 of 35

3.9 Input-Output for Real Types

Since SPARK does not support generic packages, input-output routines are only provided for the
predefined real type Float .

Values are output as decimal literals without underline characters. The format of each value consists of
a Fore field, a decimal point, an Aft field, and (if a nonzero Exp parameter is supplied) the letter E
and an Exp field.

Since SPARK does not allow the specification of default parameters there is no default Fore, Aft or
Exp.

procedure Get_Float(File : in File_Type;
 Item : out Float;
 Width : in Natural;
 Read : out Boolean);
--# global in out Inputs;
--# derives Inputs,
--# Item,
--# Read from Inputs, File, Width;

Operates on a file of mode In_File .

If the value of the parameter Width is zero, skips any leading blanks, line terminators, or page
terminators, then reads a plus or a minus sign if present, then reads according to the syntax of a float
literal (which may be a based literal). If a non-zero value of Width is supplied, then exactly Width
characters are input, or the characters (possibly none) up to a line terminator, whichever comes first;
any skipped leading blanks are included in the count.

If successful sets Read to True and returns, in the parameter Item, the Float that corresponds to
the sequence input. Otherwise sets Read to False and the value of Item is undefined.

procedure Put_Float(File : in File_Type;
 Item : in Float;
 Fore : in Natural;
 Aft : in Natural;
 Exp : in Natural);
--# global in out Outputs;
--# derives Outputs from Outputs, File, Item,
--# Fore, Aft, Exp;

Operates on a file of mode Out_File or Append_File.

Outputs the value of the parameter Item as a Float literal, with the format defined by Fore, Aft and
Exp. If the value is negative, a minus sign is included in the integer part. If Exp has the value zero,

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 21 of 35

then the integer part to be output has as many digits as are needed to represent the integer part of the
value of Item, overriding Fore if necessary, or consists of the digit zero if the value of Item has no
integer part.

procedure Get_Float_From_String
 (Source : in String;
 Item : out Float;
 Start_Pos : in Positive;
 Stop : out Natural);
--# derives Item,
--# Stop from Source, Start_Pos;

Reads a Float value starting at Source(Start_Pos) from the given string, following the same rules
as the Get_Float procedure, but treating the end of the string as a file terminator. Returns, in the
parameter Item the value that corresponds to the sequence input. Returns in Stop the index value
such that Source(Stop) is the last character read.

If the sequence input does not have the required syntax then Stop is one less than Start_Pos and
the value of Item is undefined.

procedure Put_Float_To_String(Dest : in out String;
 Item : in Float;
 Start_Pos : in Positive;
 Aft : in Natural;
 Exp : in Natural);
--# derives Dest from Dest, Item, Start_Pos, Aft, Exp;

Outputs the value of the parameter Item to the given string starting at Dest(Start_Pos), following
the same rule as for Put_Float to a file, using the Dest'Last - Start_Pos + 1 as the value for
Fore.

3.10 Input-Output for Enumeration Types

Spark_IO contains no predefined routines for the support of input-output for enumeration types.

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 22 of 35

3.11 Specification of the Package Spark_IO
with Ada.Text_IO;
package Spark_IO
 --# own State : State_Type;
 --# Inputs : Inputs_Type;
 --# Outputs : Outputs_Type;
 --# initializes State,
 --# Inputs,
 --# Outputs;
is
 --# type State_Type is abstract;
 --# type Inputs_Type is abstract;
 --# type Outputs_Type is abstract;

 type File_Type is private;
 type File_Mode is (In_File, Out_File, Append_File);
 type File_Status is (Ok, Status_Error, Mode_Error,
 Name_Error, Use_Error,
 Device_Error, End_Error,
 Data_Error, Layout_Error,
 Storage_Error, Program_Error);

 subtype Number_Base is Integer range 2 .. 16;

 Standard_Input : constant File_Type;
 Standard_Output : constant File_Type;
 Null_File : constant File_Type;

-- File Management

 procedure Create(File : out File_Type;
 Name_Of_File : in String;
 Form_Of_File : in String;
 Status : out File_Status);
 --# global in out State;
 --# derives State,
 --# File,
 --# Status from State, Name_Of_File, Form_Of_File;

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 23 of 35

 procedure Open(File : out File_Type;
 Mode_Of_File : in File_Mode;
 Name_Of_File : in String;
 Form_Of_File : in String;
 Status : out File_Status);
 --# global in out State;
 --# derives State,
 --# File,
 --# Status from State, Mode_Of_File, Name_Of_File,
 --# Form_Of_File;

 procedure Close(File : in File_Type;
 Status : out File_Status);
 --# global in out State;
 --# derives State,
 --# Status from State, File;

 procedure Delete(File : in File_Type;
 Status : out File_Status);
 --# global in out State;
 --# derives State,
 --# Status from State, File;

 procedure Reset(File : in out File_Type;
 Mode_Of_File : in File_Mode;
 Status : out File_Status);
 --# derives File,
 --# Status from File, Mode_Of_File;

 function Valid_File(File : File_Type) return Boolean;

 function Mode(File : File_Type) return File_Mode;

 procedure Name(File : in File_Type;
 Name_Of_File : out String;
 Stop : out Natural);
 --# derives Name_Of_File,
 --# Stop from File;

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 24 of 35

 procedure Form(File : in File_Type;
 Form_Of_File : out String;
 Stop : out Natural);
 --# derives Form_Of_File,
 --# Stop from File;

 function Is_Open(File : File_Type) return Boolean;
 --# global State;

-- Control of default input and output Files

 --
 -- Not supported in Spark_IO
 --

-- Specification of line and page lengths

 --
 -- Not supported in Spark_IO
 --

-- Column, Line and Page Control

 procedure New_Line(File : in File_Type;
 Spacing : in Positive);
 --# global in out Outputs;
 --# derives Outputs from Outputs, File, Spacing;

 procedure Skip_Line(File : in File_Type;
 Spacing : in Positive);
 --# global in out Inputs;
 --# derives Inputs from Inputs, File, Spacing;

 procedure New_Page(File : in File_Type);
 --# global in out Outputs;
 --# derives Outputs from Outputs, File;

 function End_Of_Line(File : File_Type) return Boolean;
 --# global Inputs;

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 25 of 35

 function End_Of_File(File : File_Type) return Boolean;
 --# global Inputs;

 procedure Set_In_File_Col(File : in File_Type;
 Posn : in Positive);
 --# global in out Inputs;
 --# derives Inputs from Inputs, File, Posn;
 --# pre Mode (File) = In_File;

 procedure Set_Out_File_Col(File : in File_Type;
 Posn : in Positive);
 --# global in out Outputs;
 --# derives Outputs from Outputs, File, Posn;
 --# pre Mode(File) = Out_File or
 --# Mode (File) = Append_File;

 function In_File_Col(File : File_Type) return Positive;
 --# global Inputs;
 --# pre Mode (File) = In_File;

 function Out_File_Col(File : File_Type) return Positive;
 --# global Outputs;
 --# pre Mode (File) = Out_File or
 --# Mode (File) = Append_File;

 function In_File_Line(File : File_Type) return Positive;
 --# global Inputs;
 --# pre Mode (File) = In_File;

 function Out_File_Line(File : File_Type) return Positive;
 --# global Outputs;
 --# pre Mode (File) = Out_File or
 --# Mode (File) = Append_File;

-- Character Input-Output

 procedure Get_Char(File : in File_Type;
 Item : out Character);
 --# global in out Inputs;
 --# derives Inputs,
 --# Item from Inputs, File;

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 26 of 35

 procedure Put_Char(File : in File_Type;
 Item : in Character);
 --# global in out Outputs;
 --# derives Outputs from Outputs, File, Item;

-- String Input-Output

 procedure Get_String(File : in File_Type;
 Item : out String;
 Stop : out Natural);
 --# global in out Inputs;
 --# derives Inputs,
 --# Item,
 --# Stop from Inputs, File;

 procedure Put_String(File : in File_Type;
 Item : in String;
 Stop : in Natural);
 --# global in out Outputs;
 --# derives Outputs from Outputs, File, Item, Stop;

 procedure Get_Line(File : in File_Type;
 Item : out String;
 Stop : out Natural);
 --# global in out Inputs;
 --# derives Inputs,
 --# Item,
 --# Stop from Inputs, File;

 procedure Put_Line(File : in File_Type;
 Item : in String;
 Stop : in Natural);
 --# global in out Outputs;
 --# derives Outputs from Outputs, File, Item, Stop;

-- Integer Input-Output

 -- Spark_IO only supports input-output of
 -- the built-in Integer type Integer

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 27 of 35

 procedure Get_Integer(File : in File_Type;
 Item : out Integer;
 Width : in Natural;
 Read : out Boolean);
 --# global in out Inputs;
 --# derives Inputs,
 --# Item,
 --# Read from Inputs, File, Width;

 procedure Put_Integer(File : in File_Type;
 Item : in Integer;
 Width : in Natural;
 Base : in Number_Base);
 --# global in out Outputs;
 --# derives Outputs from Outputs, File, Item, Width, Base;

 procedure Get_Int_From_String(Source : in String;
 Item : out Integer;
 Start_Pos : in Positive;
 Stop : out Natural);
 --# derives Item,
 --# Stop from Source, Start_Pos;

 procedure Put_Int_To_String(Dest : in out String;
 Item : in Integer;
 Start_Pos : in Positive;
 Base : in Number_Base);
 --# derives Dest from Dest, Item, Start_Pos, Base;

-- Float Input-Output

 -- Spark_IO only supports input-output of
 -- the built-in real type Float

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 28 of 35

 procedure Get_Float(File : in File_Type;
 Item : out Float;
 Width : in Natural;
 Read : out Boolean);
 --# global in out Inputs;
 --# derives Inputs,
 --# Item,
 --# Read from Inputs, File, Width;

 procedure Put_Float(File : in File_Type;
 Item : in Float;
 Fore : in Natural;
 Aft : in Natural;
 Exp : in Natural);
 --# global in out Outputs;
 --# derives Outputs from Outputs, File, Item, Fore, Aft, Exp;

 procedure Get_Float_From_String(Source : in String;
 Item : out Float;
 Start_Pos : in Positive;
 Stop : out Natural);
 --# derives Item,
 --# Stop from Source, Start_Pos;

 procedure Put_Float_To_String(Dest : in out String;
 Item : in Float;
 Start_Pos : in Positive;
 Aft : in Natural;
 Exp : in Natural);
 --# derives Dest from Dest, Item, Start_Pos, Aft, Exp;

private
--# hide Spark_IO;

 type IO_TYPE is (Stdin, Stdout, NamedFile);
 type File_PTR is access Ada.Text_IO.File_Type;

 -- In addition to the fields listed here, we consider the
 -- FILE_PTR.all record to contain the name and mode of the
 -- file from the point of view of the annotations above.
 type File_Type is record
 File : File_Ptr := null;

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 29 of 35

 IO_Sort : IO_Type := NamedFile;
 end record;

 Standard_Input : constant File_Type := File_Type'(null, StdIn);
 Standard_Output : constant File_Type := File_Type'(null, StdOut);
 Null_File : constant File_Type := File_Type'(null,
 NamedFile);
end Spark_IO;

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 30 of 35

4 Exceptions in Input-Output

The standard Ada input-output routines generate exceptions if error conditions are encountered, but
exceptions are not allowed in SPARK. Instead, where appropriate a routine has a status parameter,
whose returned value indicates whether an error condition has arisen. The status parameter is of the
following type.

type File_Status is (Ok, Status_Error, Mode_Error,
 Name_Error, Use_Error,
 Device_Error, End_Error,
 Data_Error, Layout_Error,
 Storage_Error, Program_Error);

If a status variable indicates that an error has occurred, any other returned values are undefined, and
the onus is on the programmer to organise appropriate recovery actions. For routines which do not
return status information, the programmer should establish that their pre-conditions are always
satisfied.

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 31 of 35

5 Example of Input-Output
package Inventory
--# own Content;
--# initializes Content;
is

 Max_Size : constant Integer := 100;

 type Inventories is limited private;
 type Part_Numbers is range 1000 .. 9999;

 procedure Add(Part : in Part_Numbers;
 Number : in Positive;
 Full : out Boolean);
 --# global in out Content;
 --# derives Content from Part, Number, Content &
 --# Full from Part, Content;

 procedure Look_Up(Part : in Part_Numbers;
 Number : out Natural);
 --# global in Content;
 --# derives Number from Part, Content;

private

 type Sizes is range 0 .. Max_Size;
 subtype Indices is Sizes range 1 .. Sizes'Last;
 type Items is
 record
 Part_Number : Part_Numbers;
 Amount : Positive;
 Empty : Boolean;
 end record;
 type Inventories is array (Indices) of Items;
end Inventory;

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 32 of 35

with Spark_IO, Inventory;
--# inherit Spark_IO, Inventory;
--# main_program
procedure Dialogue
--# global in out Spark_IO.Inputs
--# Spark_IO.Outputs, Inventory.Content;
--# derives Spark_IO.Inputs,
--# Inventory.Content from * &
--# Spark_IO.Outputs from *, Spark_IO.Inputs;
is
 Number : Inventory.Part_Numbers;
 Amount : Natural;

 procedure Set_Up_Inventory
 --# global in out Inventory.Content;
 --# derives Inventory.Content from Inventory.Content;
 is
 Unused : Boolean;
 begin
 Inventory.Add(6520, 20, Unused);
 Inventory.Add(2718, 17, Unused);
 Inventory.Add(6046, 43, Unused);
 Inventory.Add(9214, 10, Unused);
 Inventory.Add(4933, 28, Unused);
 Inventory.Add(4179, 173, Unused);
 Inventory.Add(7294, 87, Unused);
 end Set_Up_Inventory;

 procedure Enter_Part(Number : out Inventory.Part_Numbers)
 --# global in out Spark_IO.Inputs,
 --# Spark_IO.Outputs;
 --# derives Spark_IO.Inputs from * &
 --# Spark_IO.Outputs from *, Spark_IO.Inputs &
 --# Number from Spark_IO.Inputs;
 is
 Number_Read : Integer;
 Ok : Boolean;
 begin
 loop
 Spark_IO.Put_String(Spark_IO.Standard_Output,
 "Part number? ", 0);
 Spark_IO.Get_Integer(Spark_IO.Standard_Input,

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 33 of 35

 Number_Read, 0,Ok);
 exit when Ok and then
 (Number_Read >=
 Integer(Inventory.Part_Numbers'FIRST) and
 Number_Read <=
 Integer(Inventory.Part_Numbers'Last));
 Spark_IO.Put_Line(Spark_IO.Standard_Output,
 "Invalid part number, try again", 0);
 Spark_IO.New_Line(Spark_IO.Standard_Output, 1);
 end loop;
 Number := Inventory.Part_Numbers(Number_Read);
 end Enter_Part;

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 34 of 35

begin -- Dialogue
 Set_Up_Inventory;
 loop
 Enter_Part(Number);
 Inventory.Look_Up(Number, Amount);
 Spark_IO.Set_Col(Spark_IO.Standard_Output, 5);
 Spark_IO.Put_String(Spark_IO.Standard_Output,
 "Part Number: ", 0);
 Spark_IO.Put_Integer(Spark_IO.Standard_Output,
 Integer(Number),
 0, 10);
 Spark_IO.Put_String(Spark_IO.Standard_Output,
 " - Items available:", 0);
 Spark_IO.Set_Out_File_Col(Spark_IO.Standard_Output, 50);
 if Amount = 0 then
 Spark_IO.Put_Line(Spark_IO.Standard_Output,
 " NONE", 0);
 Spark_IO.New_Line(Spark_IO.Standard_Output, 1);
 else
 Spark_IO.Put_Integer(Spark_IO.Standard_Output,
 Amount, 5, 10);
 Spark_IO.New_Line(Spark_IO.Standard_Output, 2);
 end if;

 exit when False; -- syntactic exit point for analysis
 -- purposes
 end loop;
end Dialogue;

Example of an interaction (characters typed by the user are italicized) :

Part number? 450
Invalid part number, try again
Part number? 3456
 Part Number: 3456 - Items available: NONE
Part number? 9214
 Part Number: 9214 - Items available: 10

1

SPARK
SPARK95_IO - Input/Output for SPARK95 Programs

SPARK95_IO
Issue: 3.5

 Page 35 of 35

Document Control and References

Praxis High Integrity Systems Limited, 20 Manvers Street, Bath BA1 1PX, UK.
Copyright  Praxis High Integrity Systems Limited 2006. All rights reserved.

File under

$CVSROOT/userdocs/SPARK95_IO.doc

Changes history

Issue 0.1 (15th January 1998) Initial draft based on S.P0468.73.25

Issue 1.0 (21st January 1998) After formal review

Issue 1.1 (13th July 2000) Updated for Release 5.0

Issue 2.0 (19th July 2000) Definitive issue following review

Issue 2.1 (18th Nov 2002) New issue updated and corrected to accompany new edition of the SPARK
Book and Examiner release 6.3.

Issue 3.0 (18th Nov 2002) Definitive issue following review S.P0468.79.78.

Issue 3.1 (9 June 2003) Conversion to new document format

Issue 3.2 (22 July 2004) Added Get_Char_Immediate

Issue 3.3 (1st December 2004) Company name changed, no other changes made.

Issue 3.4 (5th January 2005) Definitive issue following review S.P0468.79.88.

Issue 3.5 (22nd November 2005) Line Manager change.

Changes forecast

None

