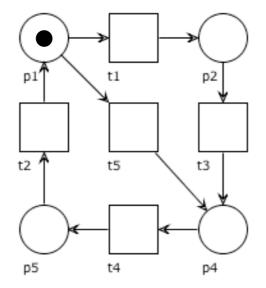
Business Processes Modelling MPB (6 cfu, 295AA)

Object



We study some "good" properties of S-systems

Free Choice Nets (book, optional reading)

https://www7.in.tum.de/~esparza/bookfc.html

Petri nets: structural properties

Structural properties

Structural (or static) properties do not depend on the initial marking (e.g., S-invariants, T-invariants, connectedness)

It is sometimes interesting to relate them to behavioural properties
(i.e. that depend on the token game, like boundedness and liveness)

This way we can give **structural characterization** of behavioural properties for a whole class of nets (computationally less expensive to check)

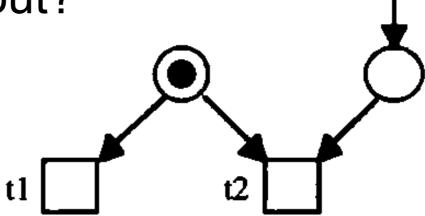
Interference of conflicts and synch

Typical situation:

initially t1 and t2 are not in conflict

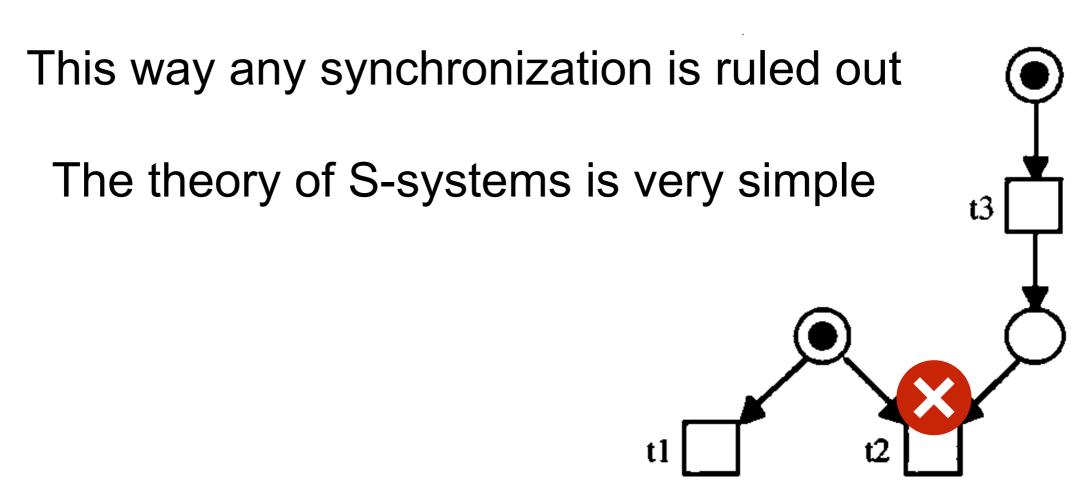
but when t3 fires they are in conflict (the firing of t3 is not controllable)

How to rule this situation out?

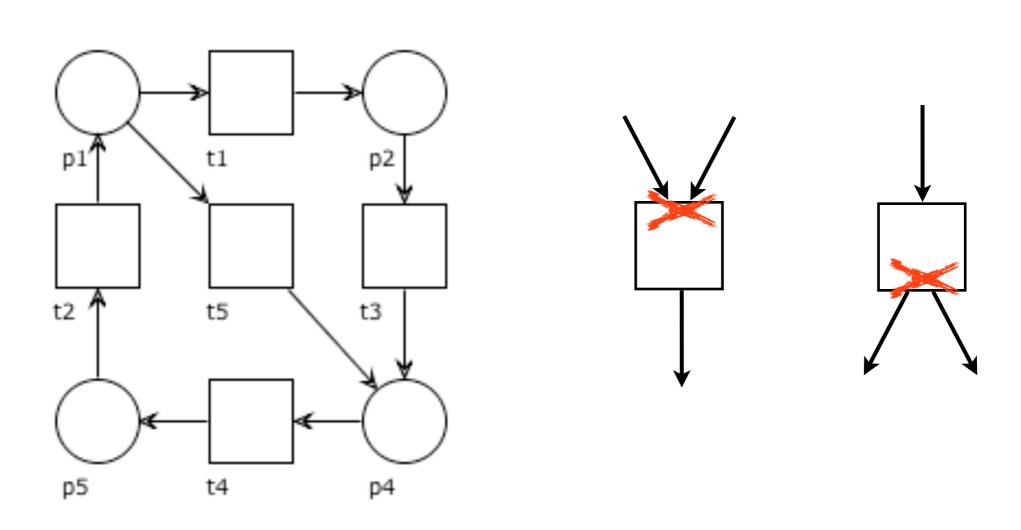


S-systems / S-nets

A Petri net is called **S-system** if every transition has one input place and one output place (S comes from *Stellen*, the German word for place)



S-net: example

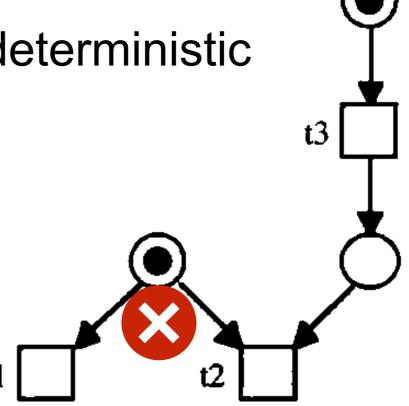


T-systems / T-nets

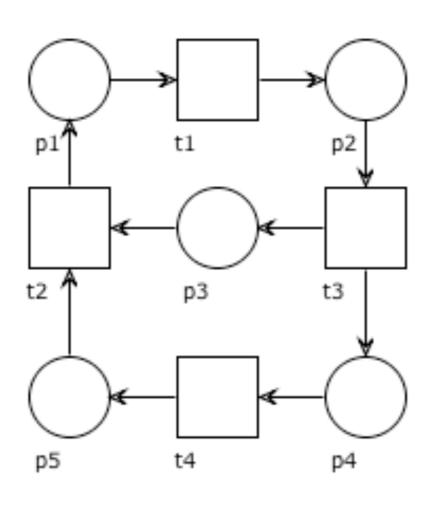
A Petri net is called **T-system** if every place has one input transition and one output transition

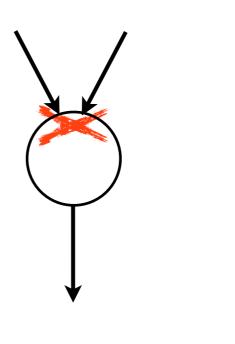
This way all choices/conflicts are ruled out

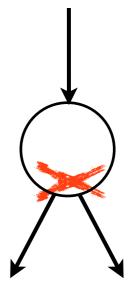
T-systems are concurrent but deterministic



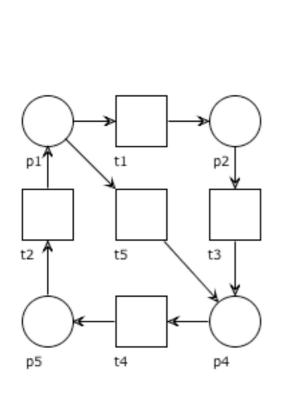
T-net: example

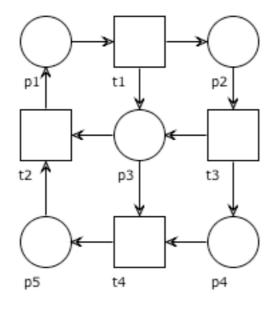


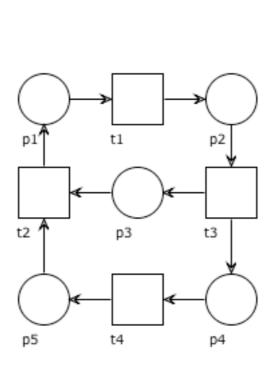


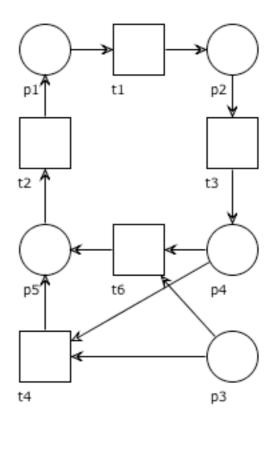


Is the net an S-net, a T-net?



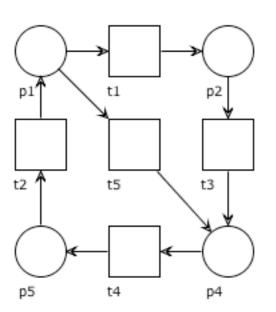


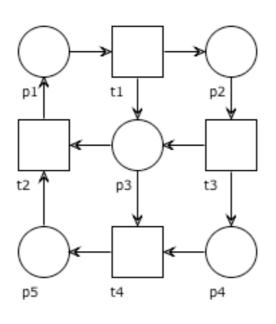




Is the net an S-net, a T-net?

S-net T-net

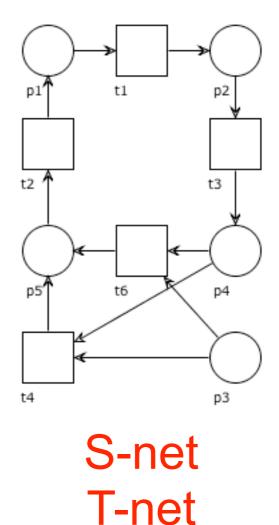




S-net T-net

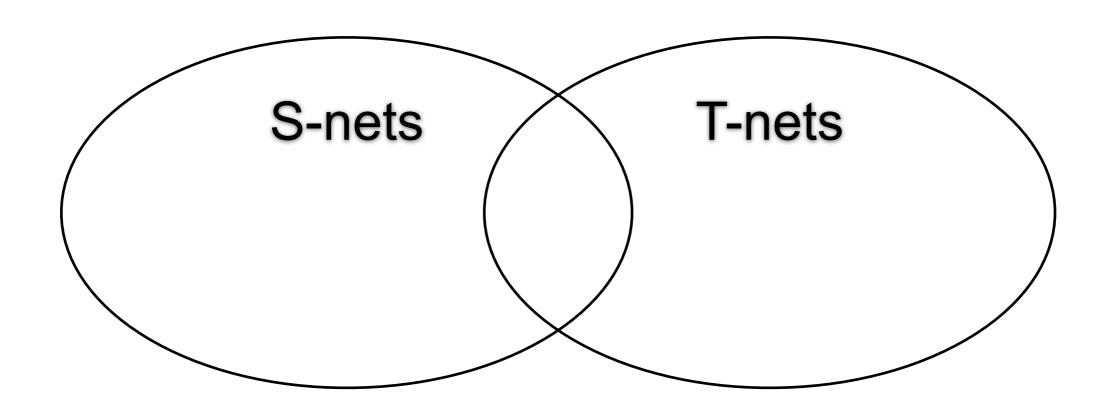
S-net T-net

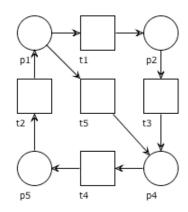




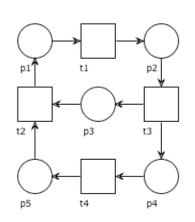
Exercises

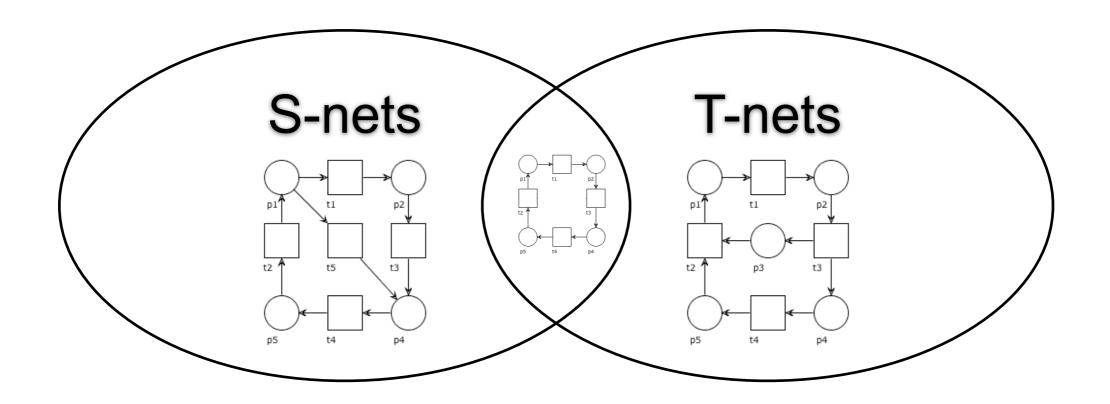
Show a net for each area of the Eulero-Venn diagram below

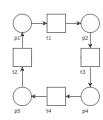




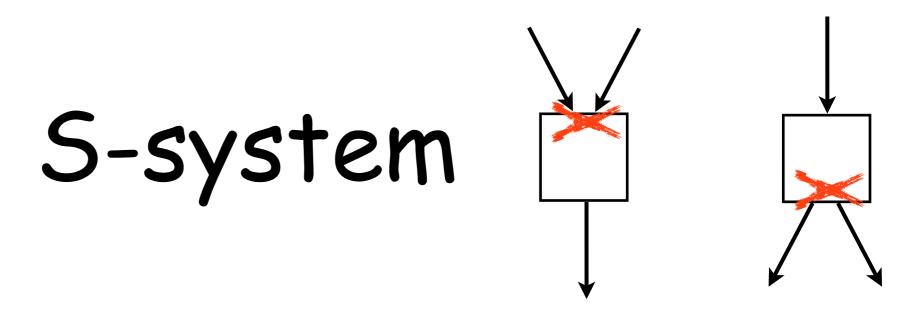
Exercises







S-systems



Definition: We recall that a net N is an S-net if each transition has exactly one input place and exactly one output place

$$\forall t \in T, \qquad |\bullet t| = 1 = |t \bullet|$$

A system (N,M₀) is an S-system if N is an S-net

Take-home message

Any workflow net N that is an S-net is **safe and sound**

Fundamental property of S-systems

Observation: each transition t that fires removes exactly one token from some place p and inserts exactly one token in some place q (p and q can also coincide)

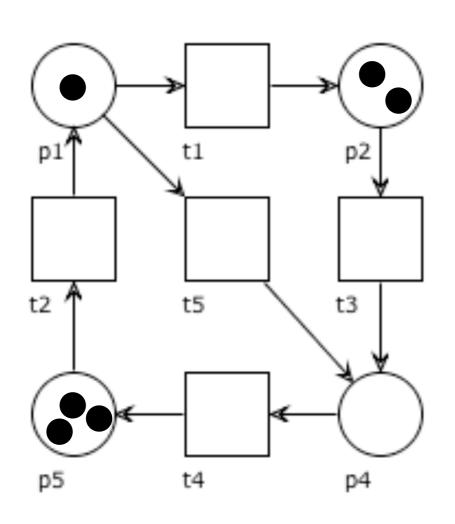
The overall number of tokens in the S-net is an invariant under any firing.

Notation: token count

$$M(P) = \sum_{p \in P} M(p)$$

Example

$$P = \{p_1, p_2, p_3\}$$
 $M = 2p_1 + 3p_2$ $M(P) = 2 + 3 + 0 = 5$



$$M_0(P) = ?$$

$$M_0 = p_1 + 2p_2 + 3p_5$$

$$M_0(P) = M_0(p_1) + M_0(p_2) + M_0(p_4) + M_0(p_5)$$

$$M_0(P) = 6$$

Fundamental property of S-systems

Proposition: Let (P,T,F,M_0) be an S-system. If M is a reachable marking, then $M(P) = M_0(P)$

We show that for any $M \stackrel{\sigma}{\longrightarrow} M'$ we have M'(P) = M(P)

base $(\sigma = \epsilon)$: trivial (M' = M)

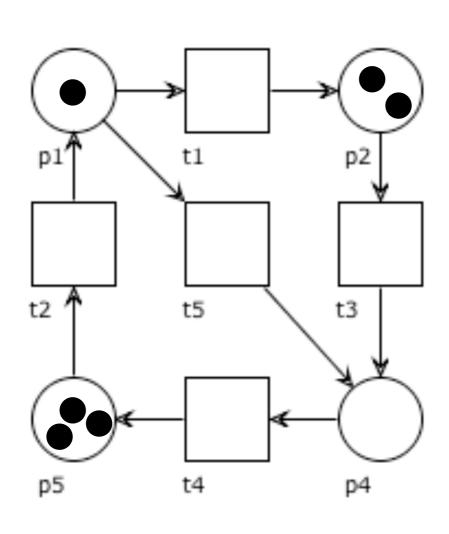
induction ($\sigma = \sigma' t$ for some $\sigma' \in T^*$ and $t \in T$):

Let
$$M \xrightarrow{\sigma'} M'' \xrightarrow{t} M'$$
.

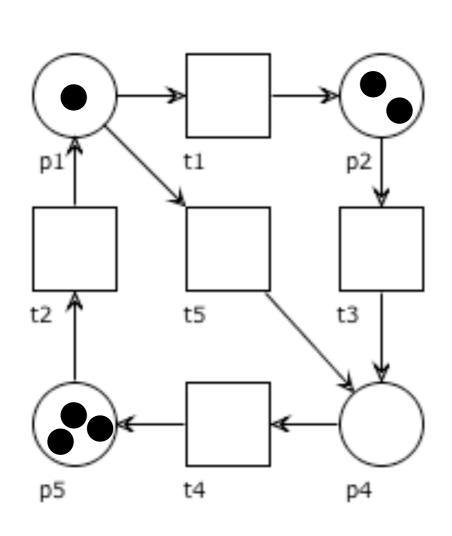
By inductive hypothesis: M''(P) = M(P)

By definition of S-system: $|\bullet t| = |t \bullet| = 1$

Thus,
$$M'(P) = M''(P) - | \bullet t | + | t \bullet | = M(P) - 1 + 1 = M(P)$$



Is the marking $M = p_2 + 4p_4 + 2p_5$ reachable?



Is the marking $M = p_2 + 4p_4 + 2p_5$ reachable?

No: S-system $M_0(P) = 6 \neq 7 = M(P)$

A consequence of the fundamental property

Corollary: Any S-system is bounded

Let $M \in [M_0]$.

By the fundamental property of S-systems: $M(P) = M_0(P)$.

Then, for any $p \in P$ we have $M(p) \leq M(P) = M_0(P)$.

Thus the S-system is k-bounded for any $k \geq M_0(P)$.

$$M(P) = \sum_{p \in P} M(p)$$

S-invariants of S-nets

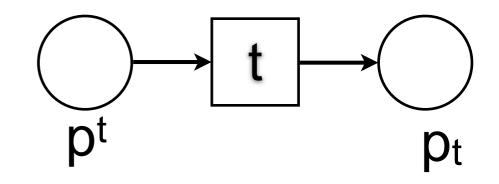
Proposition: Let N=(P,T,F) be a (connected) S-net. I is an S-invariant of N iff I=[k ... k] for some value k

S-invariance
$$\forall t \in T, \sum_{p \in \bullet t} \mathbf{I}(p) = \sum_{p \in t \bullet} \mathbf{I}(p)$$

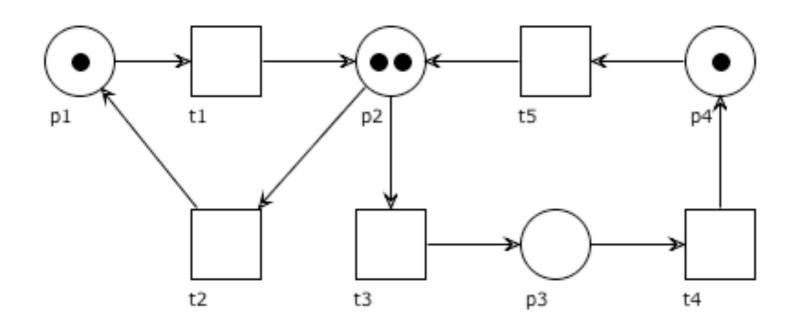
S-nets
$$\forall t \in T, \mid \bullet t \mid = \mid t \bullet \mid = 1$$

Let
$$\bullet t = \{p^t\}$$
 and $t \bullet = \{p_t\}$

$$\forall t \in T, \mathbf{I}(p^t) = \mathbf{I}(p_t)$$

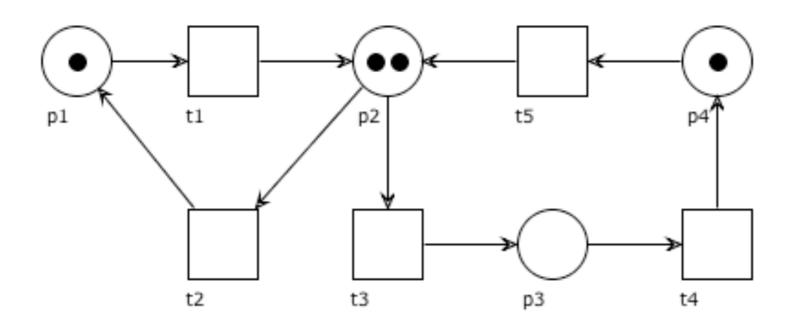


Which of the following are S-invariants? (why?)

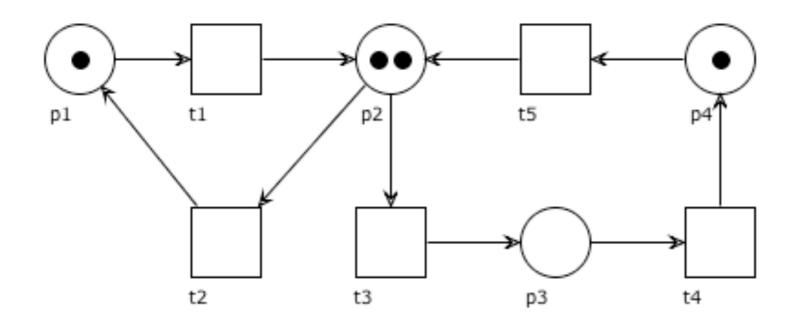


[0022] [1111] [2211] [2222]

Which of the following are S-invariants? (why?)

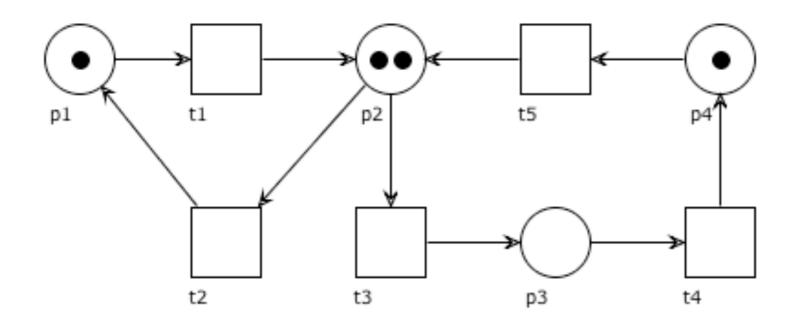


Which of the following are S-invariants? (why?)



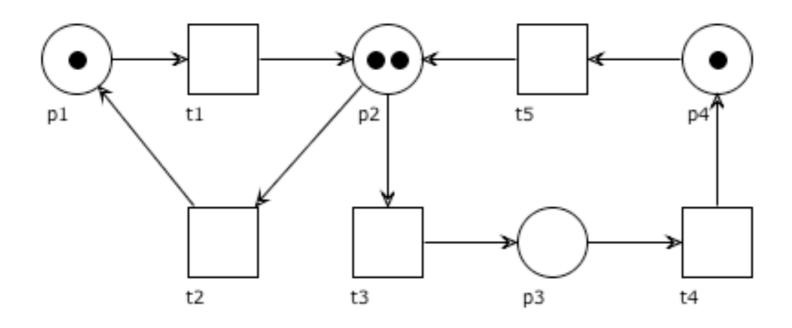
```
[0022]
[1111]
[2211]
[2222]
```

Which of the following are S-invariants? (why?)



```
[ 0 0 2 2 ]
[ 1 1 1 1 ]
[ 2 2 1 1 ]
[ 2 2 2 2 ]
```

Which of the following are S-invariants? (why?)



```
[ 0 0 2 2 ]
[ 1 1 1 1 ]
[ 2 2 1 1 ]
[ 2 2 2 2 ]
```

Liveness theorem for S-systems

Theorem: An S-system (N,M₀) is live **iff**N is strongly connected and M₀ marks at least one place

 \Rightarrow) (quite obvious)

 (N,M_0) is live by hypothesis and bounded (because S-system). By the strong connectedness theorem, N is strongly connected.

Since (N, M_0) is live, then $M_0 \stackrel{t}{\longrightarrow}$ for some t.

Assume $\bullet t = \{p\}$. Thus, $M_0(p) \ge 1$.

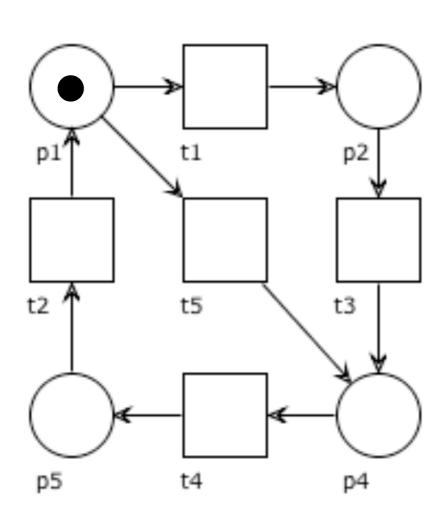
Liveness theorem for S-systems

Theorem: An S-system (N,M₀) is live **iff** N is strongly connected and M₀ marks at least one place

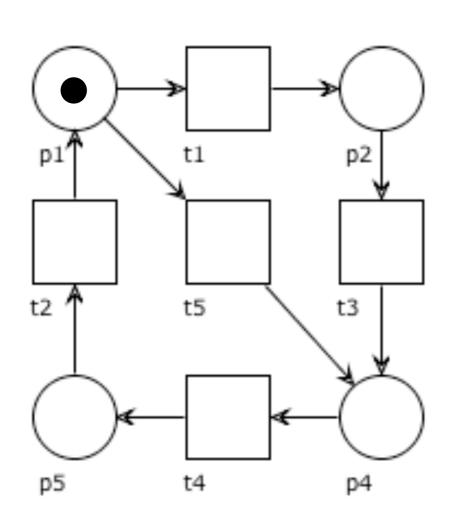
```
\Leftarrow) (more interesting) Take any M \in [M_0] and t \in T. We want to find M' \in [M] such that M' \stackrel{t}{\longrightarrow}.
```

Take $p_1 \in P$ such that $M(p_1) \geq 1$ (it exists, because $M(P) = M_0(P) \geq 1$). By strong connectedness: there is a path from p_1 to $t_n = t$ $(p_1, t_1)(t_1, p_2)(p_2, t_2)...(p_n, t_n)$

By definition of S-system: $\bullet t_i = \{p_i\}$ and $t_i \bullet = \{p_{i+1}\}$. Thus, $M \xrightarrow{\sigma} M' \xrightarrow{t}$ for $\sigma = t_1 t_2 ... t_{n-1}$.

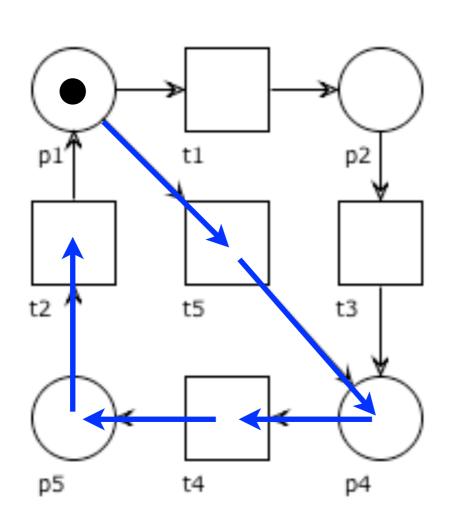


Is this S-system live?



Is this S-system live?

Yes: S-system strongly connected $M_0(P) > 0$

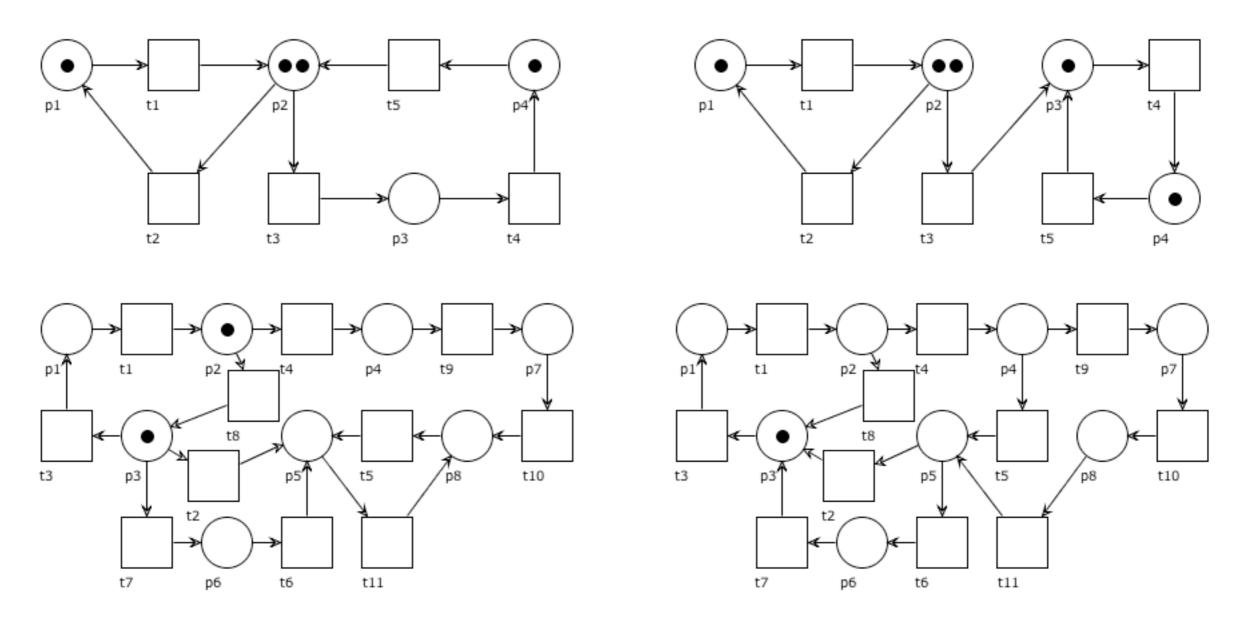


Is this S-system live?

How to enable t2? just find a path from p1 to t2

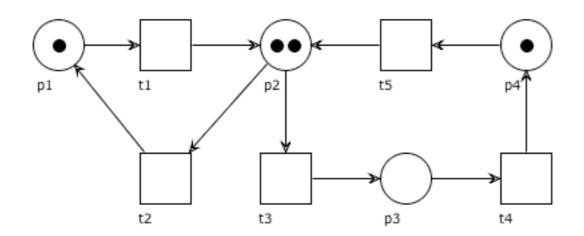
Exercises

Which of the following S-systems are live? (why?)



Exercises

Which of the following S-systems are live? (why?)



str. conn. + $M_0(P)>0$

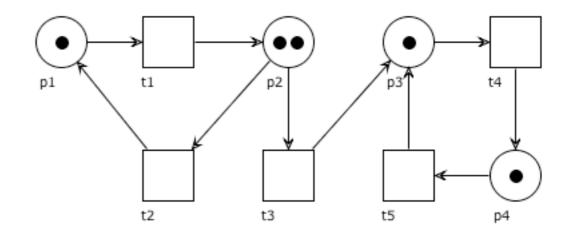
LIVE

Exercises

Which of the following S-systems are live? (why?)

not str. conn.

NON LIVE

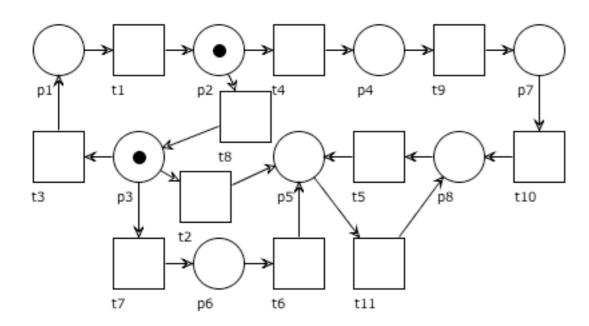


Exercises

Which of the following S-systems are live? (why?)

not str. conn.

NON LIVE

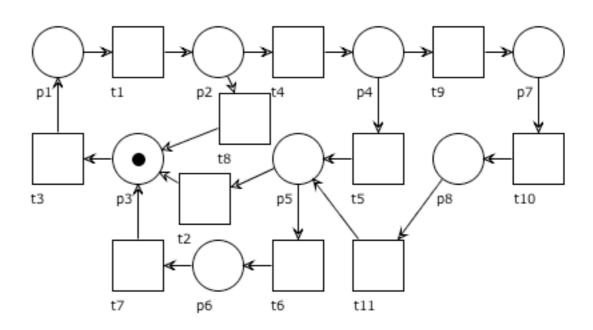


Exercises

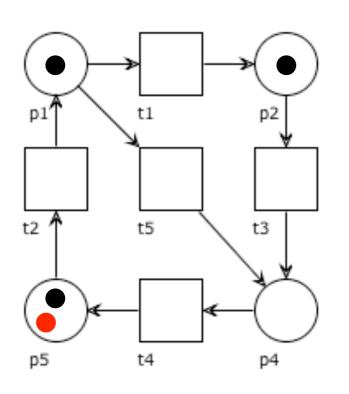
Which of the following S-systems are live? (why?)

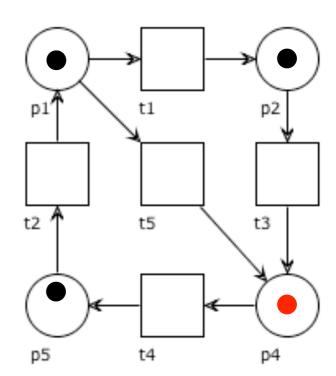
str. conn. + $M_0(P)>0$

LIVE



Lemma: Let (P,T,F) be a strongly connected S-net. If M(P) = M'(P), then M' is reachable from M

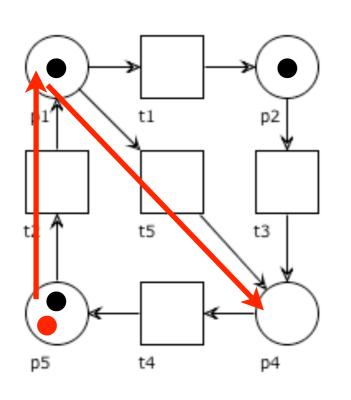




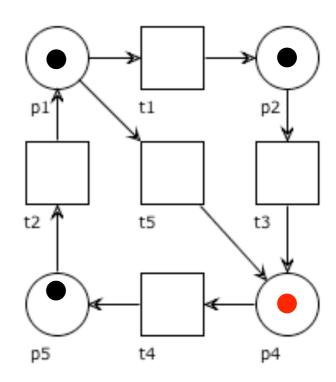
Intuitively:

M and M' has the same number of tokens but maybe they are in different places

Lemma: Let (P,T,F) be a strongly connected S-net. If M(P) = M'(P), then M' is reachable from M



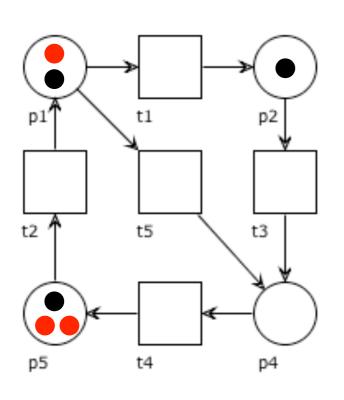
if there is only one token in the wrong place



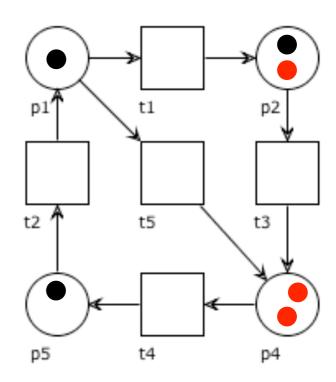
Intuitively:

we need to move the token from p to q by strong connectedness we have a path from p to q by firing the transitions along the path we succeed

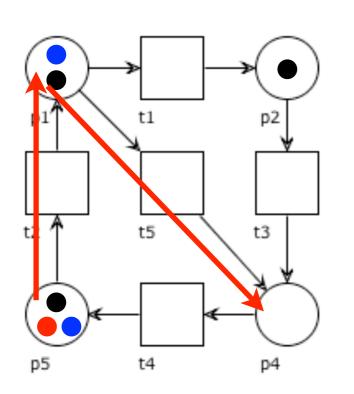
Lemma: Let (P,T,F) be a strongly connected S-net. If M(P) = M'(P), then M' is reachable from M



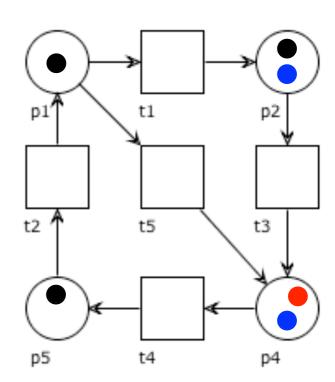
if there are many (n) tokens in the wrong places



Lemma: Let (P,T,F) be a strongly connected S-net. If M(P) = M'(P), then M' is reachable from M



if there are many (n) tokens in the wrong places



Intuitively:

we move one of them...
and inductively the remaining n-1

Lemma: Let (P,T,F) be a strongly connected S-net. If M(P) = M'(P), then M' is reachable from M

We proceed by induction on ${\cal M}(P)$

base
$$(M(P) = M'(P) = 0)$$
: trivial $(M' = M)$

induction
$$(M(P) = M'(P) > 0)$$
:

Let $p, p' \in P$ be such that M(p) > 0 and M'(p') > 0.

Let K = M - p and K' = M' - p'.

Clearly K'(P) = K(P) < M(P) = M'(P).

By inductive hypothesis: $\exists \sigma, K \xrightarrow{\sigma} K'$

By strong connectedness: there is a path from $p_0 = p$ to $p_n = p'$

$$(p_0, t_1)(t_1, p_1)(p_1, t_2)...(t_n, p_n)$$

By definition of S-system: $\bullet t_i = \{p_{i-1}\}$ and $t_i \bullet = \{p_i\}$.

Thus,
$$p = p_0 \xrightarrow{\sigma'} p_n = p'$$
 for $\sigma' = t_1 t_2 ... t_n$.

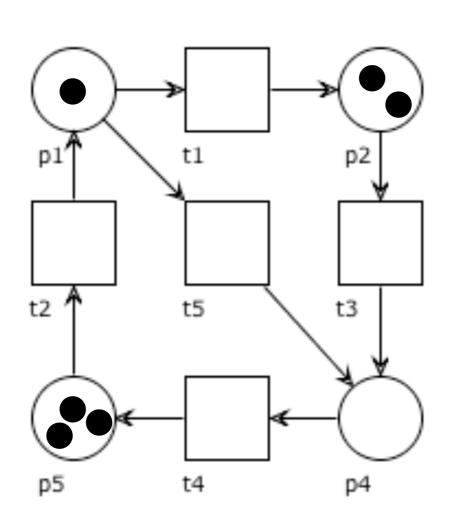
By the monotonicity lemma: $M = K + p \xrightarrow{\sigma} K' + p \xrightarrow{\sigma'} K' + p' = M'$

Only for the interested reader!

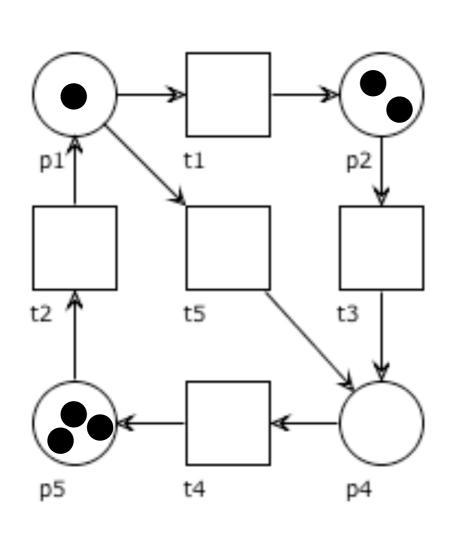
Reachability Theorem for S-systems

Theorem: Let (P,T,F,M₀) be a live S-system. A marking M is reachable **iff** M(P)=M₀(P)

- =>) Follows from the fundamental property of S-systems
- <=) By the liveness theorem for S-systems, the S-net is strongly connected.
 - We conclude by applying the previous reachability lemma for S-systems.



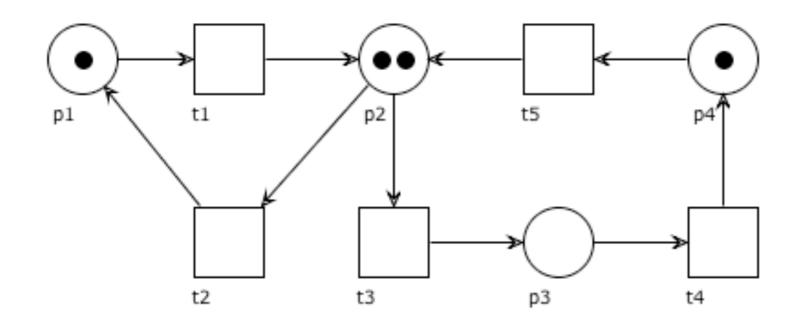
Is the marking $M = p_2 + 4p_4 + p_5$ reachable?



Is the marking $M = p_2 + 4p_4 + p_5$ reachable?

Yes: S-system strongly connected $M_0(P) = 6 = M(P)$

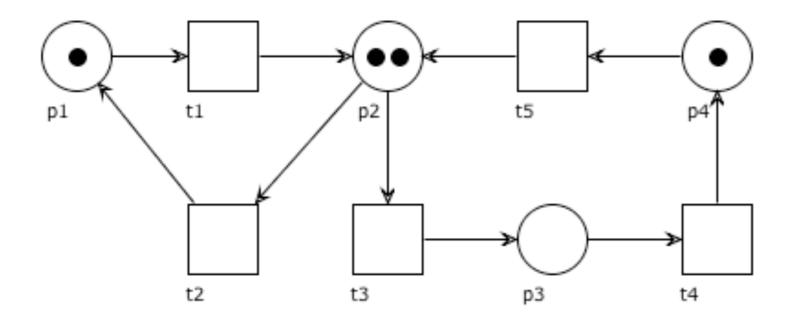
Which of the following markings are reachable? (why?)



[1111] [2020] [1212] [4000]

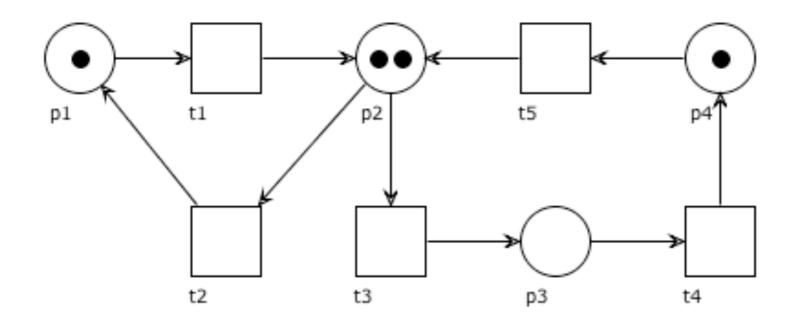
Which of the following markings are reachable? (why?)

strong connected



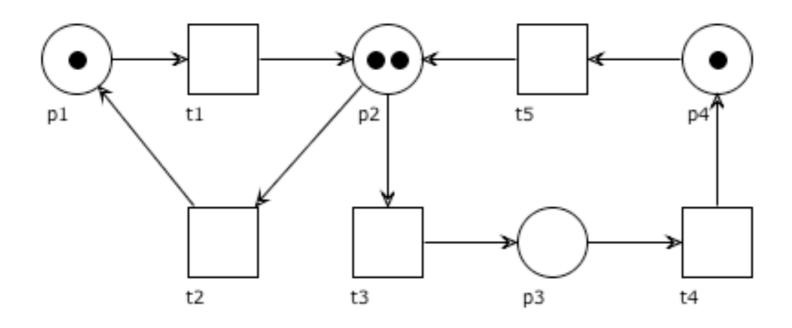
```
[1111]
[2020]
[1212]
[4000]
```

Which of the following markings are reachable? (why?)



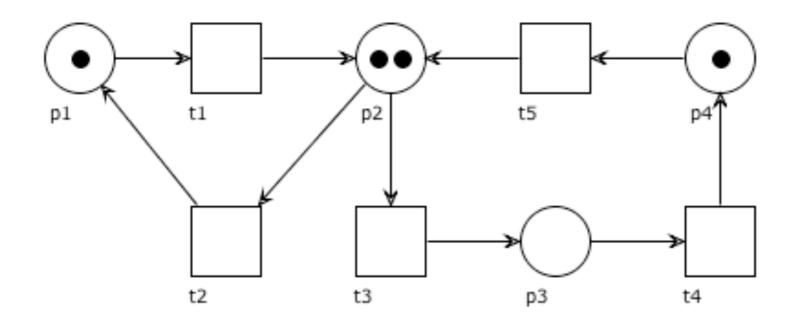
```
[1111]
[2020]
[1212]
[4000]
```

Which of the following markings are reachable? (why?)



```
[1111]
[2020]
[1212]
[4000]
```

Which of the following markings are reachable? (why?)



```
[1111]
[2020]
[1212]
[4000]
```

S-systems: recap

```
S-system => bounded S-system: strong conn. + M_0(P)>0 <=> live
```

```
S-system + M reachable => M(P) = M_0(P)
S-system + str. conn.: M(P)=M_0(P) <=> M reachable
S-system + live: M(P)=M_0(P) <=> M reachable
```

S-system: S-invariant $I \le I = [k k ... k]$

S-net N*

Proposition: A workflow net N is an S-net iff

N* is an S-net

N and N* differ only for the reset transition, that has exactly one incoming arc and exactly one outgoing arc

Workflow S-nets

Theorem: If a workflow net N is an S-system then it is sound

N is S-system <=> N* is S-system

N and N* S-systems => N and N* bounded

N workflow net => N* strong connected $M_0(P)=1$ (initially one token in place i) N* strong connected + $M_0(P) > 0 <=> N*$ live

N* bounded and live <=> N sound

Workflow S-nets

Theorem: If a workflow net N is an S-system then it is **safe** and sound

N is S-system <=> N* is S-system

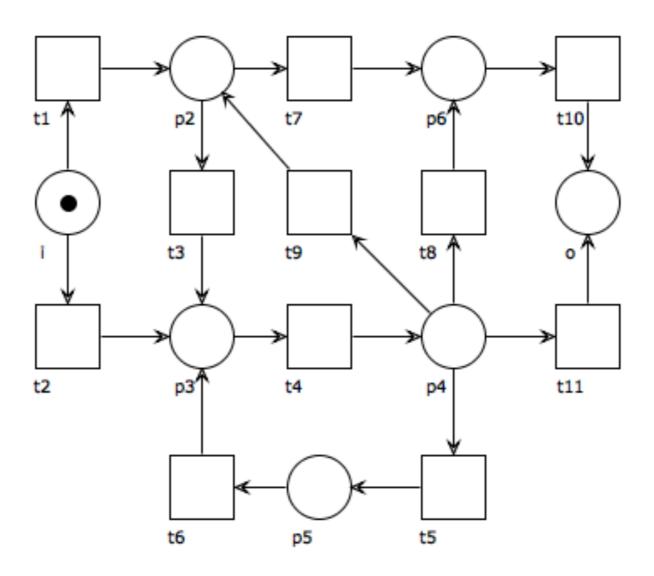
M₀(P)=1 (initially one token in place i)
N and N* S-systems + M₀(P)=1 => N and N* safe

N workflow net => N* strong connected N* strong connected + $M_0(P) = 1 <=> N*$ live

N* bounded and live <=> N sound

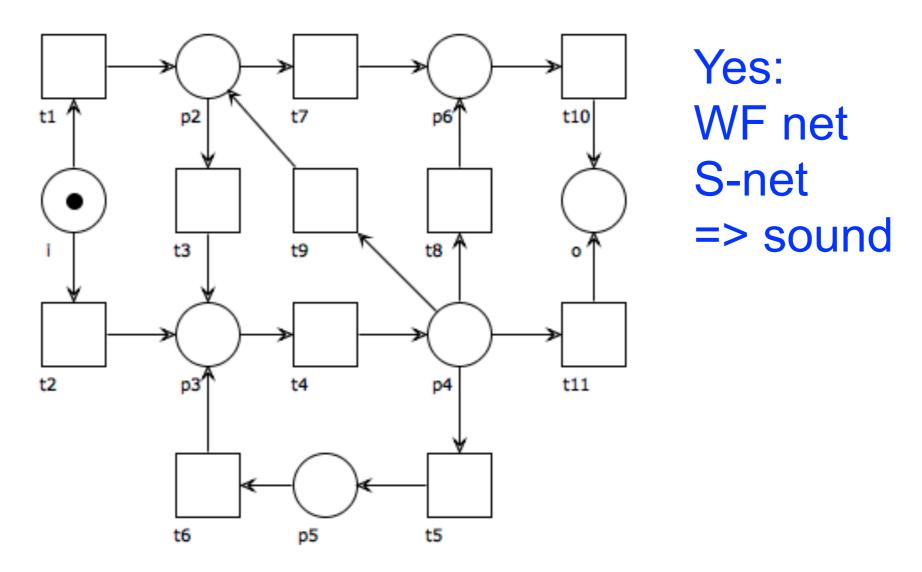
Exercise

Is the net below a workflow net? Is it an S-net? Is it sound?

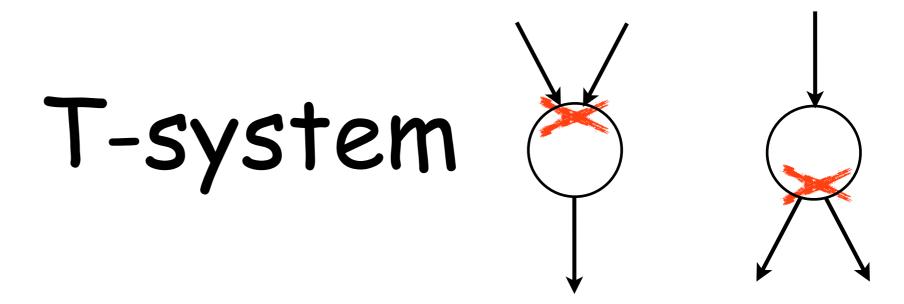


Exercise

Is the net below a workflow net? Is it an S-net? Is it sound?



T-systems



Definition: We recall that a net N is a T-net if each place has exactly one input transition and exactly one output transition

$$\forall p \in P, \qquad |\bullet p| = 1 = |p \bullet|$$

A system (N,M₀) is a T-system if N is a T-net

T-net N*

Is the following conjecture true?

A workflow net N is a T-net iff N* is a T-net

T-net N*

Is the following conjecture true?

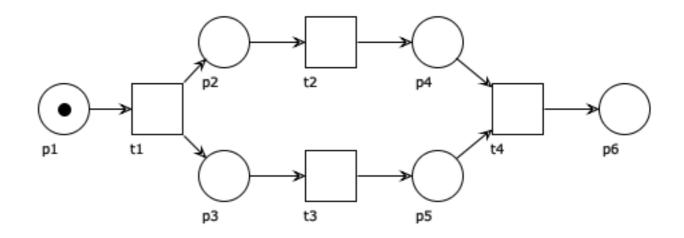
A workflow net N is a T-net iff N* is a T-net

No, a workflow net cannot be a T-net because the place i has no incoming arc and the place o has no outgoing arc

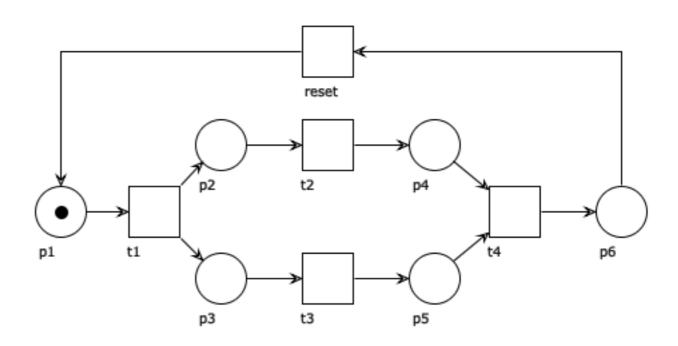
(but N* can be a T-net)

T-net N*: example

N is a workflow net but not a T-net



N* is a T-net (not a workflow net)



Take-home message

Any workflow net N such that N* is a T-net is safe and sound iff every circuit of N* is marked

Fundamental property of T-systems

The token count of a circuit is invariant under any firing.

Notation: token count of a circuit

Let
$$\gamma = (x_1, y_1)(y_1, x_2)(x_2, y_2)...(x_n, y_n)$$
 be a circuit.

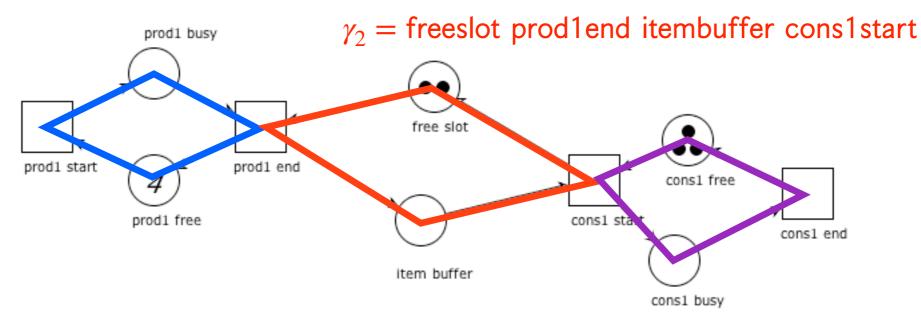
Let $P_{|\gamma} \subseteq P$ be the set of places in γ .

$$M(\gamma) = M(P_{|\gamma}) = \sum_{p \in P_{|\gamma}} M(p)$$

We say that γ is marked at M if $M(\gamma) > 0$

Example

 γ_1 = prod1busy prod1end prod1free prod1start



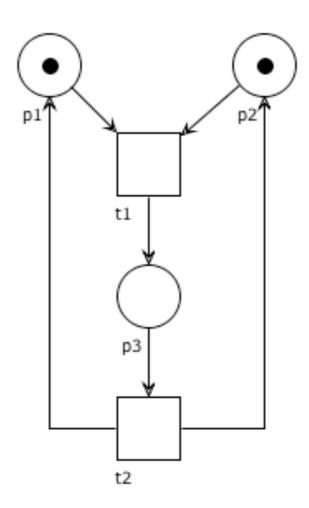
 $\gamma_3 = \text{cons1busy cons1end cons1free cons1start}$

$$M(\gamma_1) = 4$$

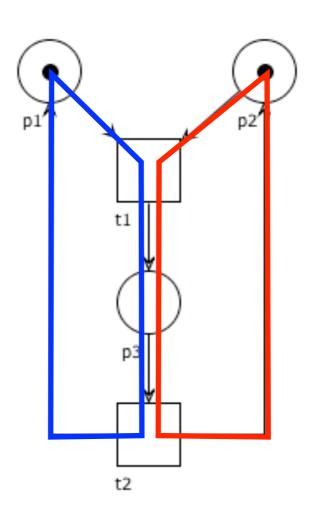
$$M(\gamma_2)=2$$

$$M(\gamma_3)=3$$

Trace two circuits over the T-system below



Trace two circuits over the T-system below



Fundamental property of T-systems

Proposition: Let γ be a circuit of a T-system (P, T, F, M_0) . If M is a reachable marking, then $M(\gamma) = M_0(\gamma)$

Take any $t \in T$: either $t \notin \gamma$ or $t \in \gamma$.

If $t \notin \gamma$, then no place in $\bullet t \cup t \bullet$ is in γ (otherwise, by definition of T-nets, t would be in γ). Then, an occurrence of t does not change the token count of γ .

If $t \in \gamma$, then exactly one place in $\bullet t$ and one place in $t \bullet$ are in γ . Then, an occurrence of t does not change the token count of γ .

Example

prod1 busy free slot free slot
$$M(\gamma_1)=4$$
 item buffer $M(\gamma_2)=2$ $M(\gamma_3)=3$

$$M_0 = [0 \ 4 \ 2 \ 0 \ 3 \ 0]$$

 $M = [2 \ 2 \ 1 \ 2 \ 2 \ 1]$ Not reachable!

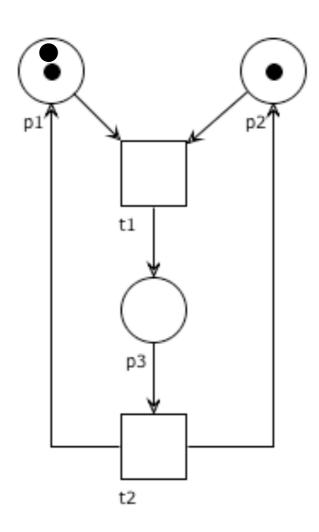
Example

$$M(\gamma_1)=4$$
 item buffer $M(\gamma_3)=3$ $M(\gamma_3)=3$

$$M_0 = [0 \ 4 \ 2 \ 0 \ 3 \ 0]$$

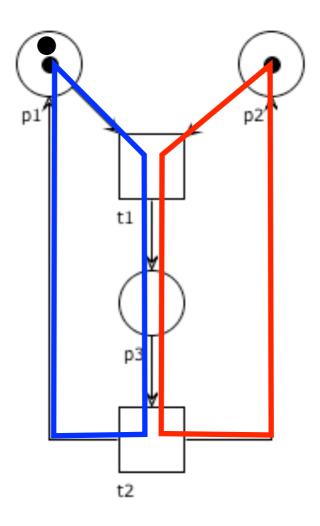
 $M' = [2 \ 1 \ 1 \ 1 \ 2 \ 2]$ Not reachable!

Is the marking p₁ + 2p₂ reachable? (why?)



Is the marking p₁ + 2p₂ reachable? (why?)

No
the token count in
the left (blue) circuit
must remain 2
and
the token count in
the right (red) circuit
must remain 1



T-invariants of T-nets

Proposition: Let N=(P,T,F) be a (connected) T-net. **J** is a T-invariant of N **iff J**=[k ... k] for some value k

(the proof is dual to the analogous proposition for S-invariants of S-nets)

T-systems: an observation

Notably, computation in T-systems is concurrent, but essentially deterministic: the firing of a transition t in M cannot disable another transition t' enabled at M

Determination of control: the transitions responsible for enabling t are exactly one for each input place of t

Boundedness in strongly connected T-systems

Lemma: If a T-system (N,M₀) is strongly connected, then it is bounded

Let Γ be the set of the circuits of N and let $k = \max_{\gamma \in \Gamma} M_0(\gamma)$.

Since N is strongly connected, every place p belongs to some circuit γ_p .

By the fundamental property of T-systems: token count of γ_p is invariant.

Thus, for any reachable marking M, we have $M(p) \leq M(\gamma_p) = M_0(\gamma_p) \leq k$. Hence the net is k-bounded.

Safeness in strongly connected T-systems

Corollary: If a T-system (N,M_0) is strongly connected and $M_0(P)=1$, then it is safe

Let Γ be the set of the circuits of N and let $k = \max_{\gamma \in \Gamma} M_0(\gamma) = 1$

Since N is strongly connected, every place p belongs to some circuit γ_p .

By the fundamental property of T-systems: token count of γ_p is invariant.

Thus, for any reachable marking M, we have $M(p) \leq M(\gamma_p) = M_0(\gamma_p) \leq k$. Hence the net is k-bounded.

Safeness in strongly connected T-systems

Corollary: If a T-system (N,M_0) is strongly connected and for any circuit γ $M_0(\gamma) \le 1$, then it is safe

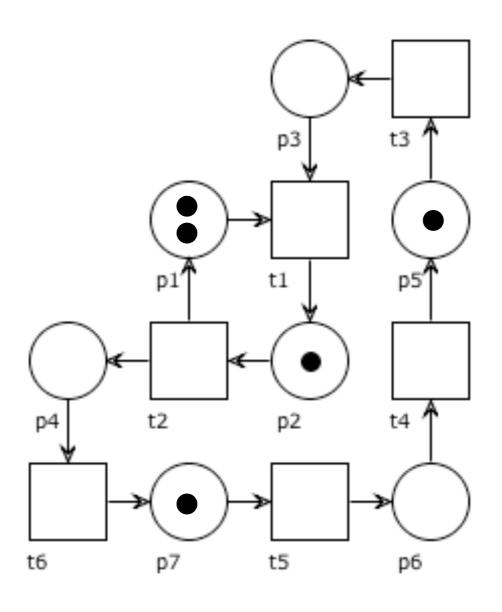
Let Γ be the set of the circuits of N and let $k = \max_{\gamma \in \Gamma} M_0(\gamma) \leq 1$

Since N is strongly connected, every place p belongs to some circuit γ_p .

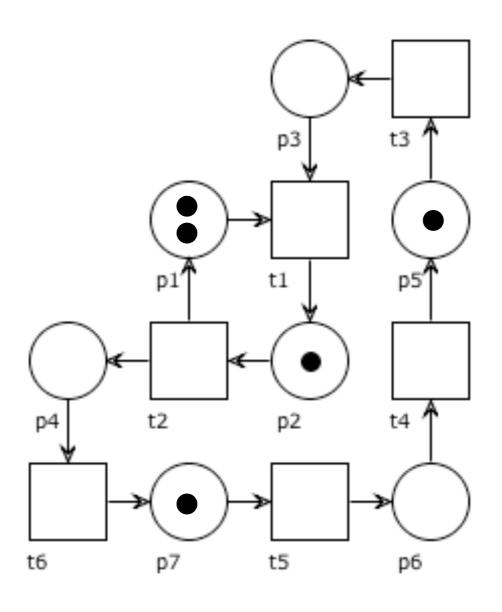
By the fundamental property of T-systems: token count of γ_p is invariant.

Thus, for any reachable marking M, we have $M(p) \leq M(\gamma_p) = M_0(\gamma_p) \leq k$. Hence the net is k-bounded.

Is the T-systems below bounded? (why?)

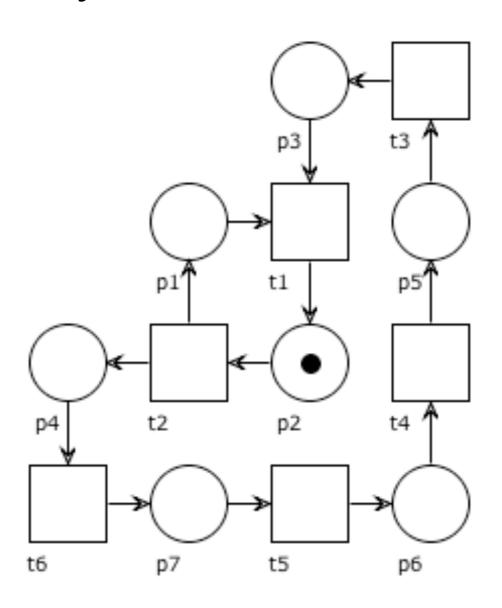


Is the T-systems below bounded? (why?)

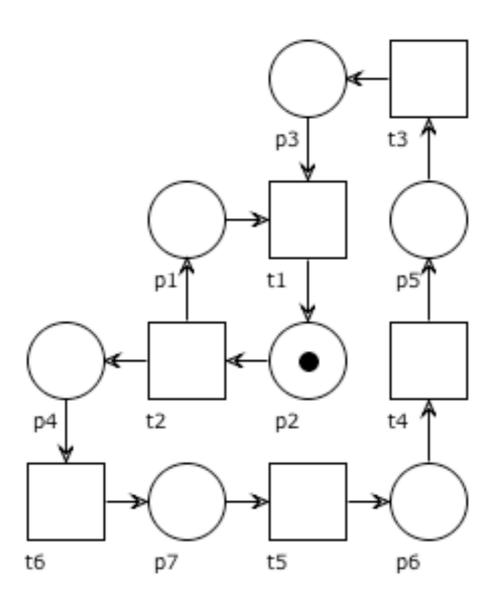


Strongly connected => bounded

Is the T-systems below safe? (why?)

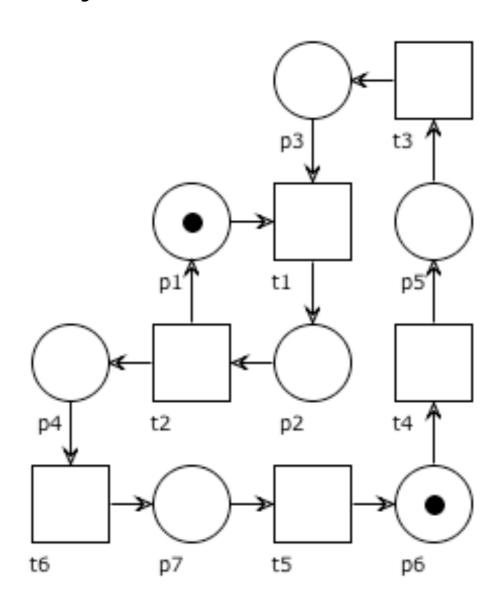


Is the T-systems below safe? (why?)

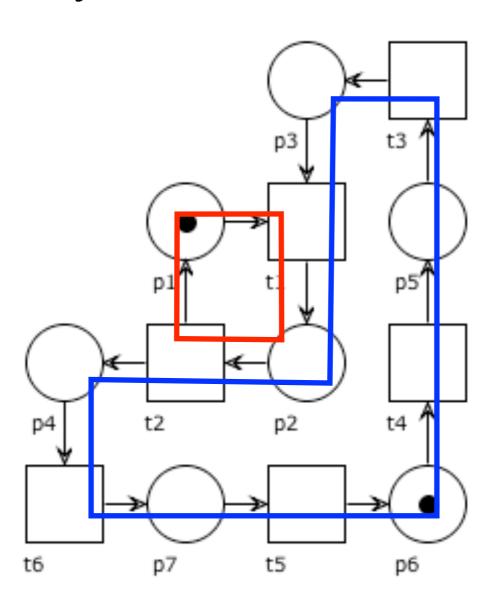


Strongly connected + M₀(P)=1 => safe

Is the T-systems below safe? (why?)



Is the T-systems below safe? (why?)



Strongly connected + $\forall \gamma$. $M_0(\gamma) \leq 1$ => safe

Liveness theorem for T-systems

Theorem: A T-system (N,M₀) is live **iff** every circuit of N is marked at M₀

 \Rightarrow) (quite obvious) By contradiction, let γ be a circuit with $M_0(\gamma) = 0$. By the fundamental property of T-systems: $\forall M \in [M_0)$, $M(\gamma) = 0$.

Take any $t \in T_{|\gamma}$ and $p \in P_{|\gamma} \cap \bullet t$.

For any $M \in [M_0]$, we have M(p) = 0. Hence t is never enabled and the T-system is not live.

Liveness theorem for T-systems

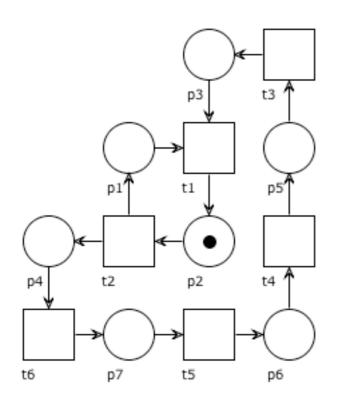
Theorem: A T-system (N,M₀) is live **iff** every circuit of N is marked at M₀

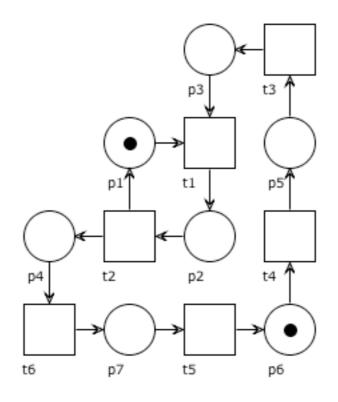
```
\Leftarrow) \ (\text{more involved}) Take any t \in T and M \in [M_0]. We need to show that some marking M' reachable from M enables t.
```

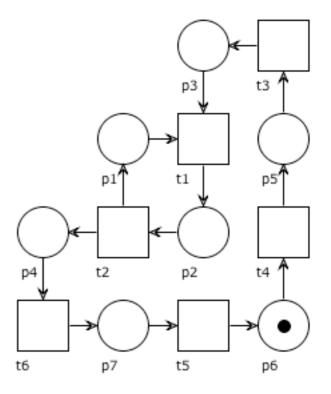
The key idea is to collect the places that control the firing of t: $p \in P_{M,t}$ if there is a path from p to t through places unmarked at M. We then proceed by induction on the size of $P_{M,t}$.

Rest of the proof left to your ingenuity

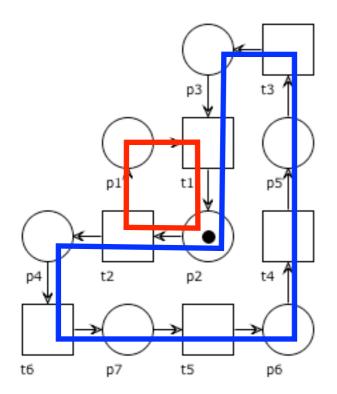
Which of the T-systems below is live? (why?)



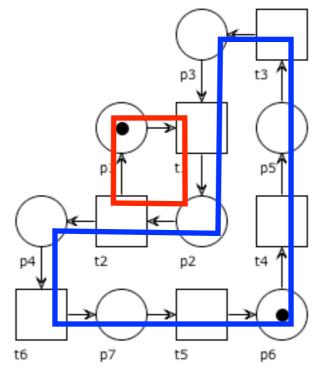




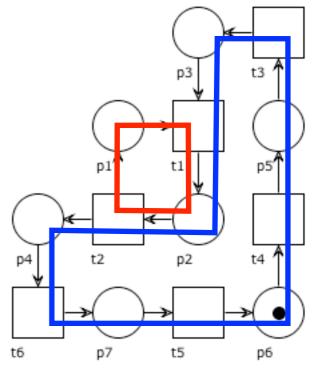
Which of the T-systems below is live? (why?)



Both circuits are marked => live



Both circuits are marked => live



red circuit is not marked => not live

T-systems: recap

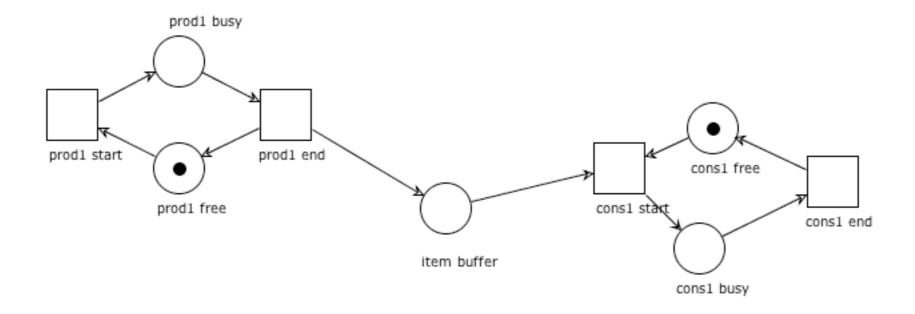
```
T-system + \gamma circuit + M reachable => M(\gamma) = M<sub>0</sub>(\gamma)
T-system + \gamma circuit + M(\gamma)\neqM<sub>0</sub>(\gamma) => M not reachable
```

```
T-system + \gamma_1... \gamma_n circuits: \exists i. p \in \gamma_i <=> p bounded T-system: M_0(\gamma)>0 for all circuits \gamma <=> live
```

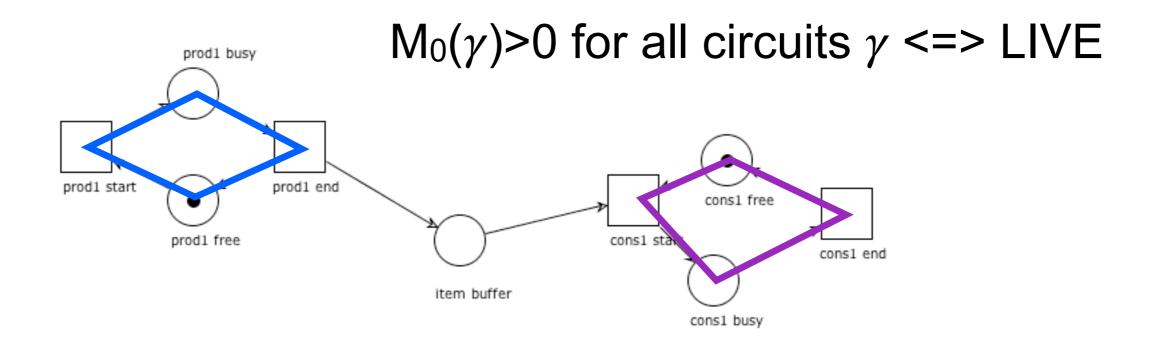
T-system: strongly connected => bounded T-system + live: strongly connected <=> bounded

T-system: T-invariant $J \le J = [k k ... k]$

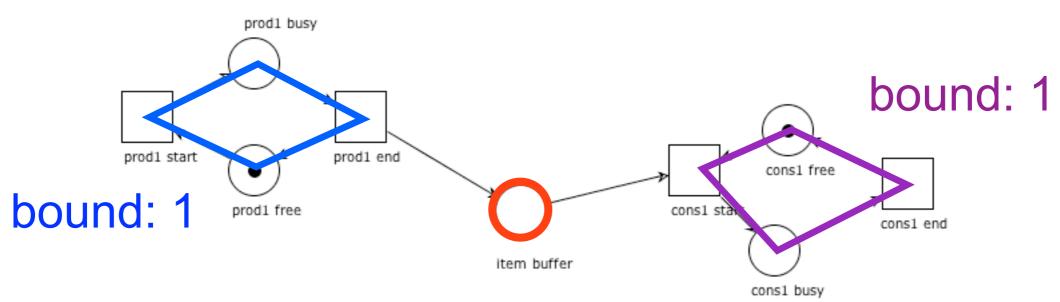
Which are the circuits of the T-system below? Is the T-system below live? (why?)
Which places are bounded? (why?)
Assign a bound to each bounded place.



Which are the circuits of the T-system below? Is the T-system below live? (why?)
Which places are bounded? (why?)
Assign a bound to each bounded place.



Which are the circuits of the T-system below? Is the T-system below live? (why?)
Which places are bounded? (why?)
Assign a bound to each bounded place.



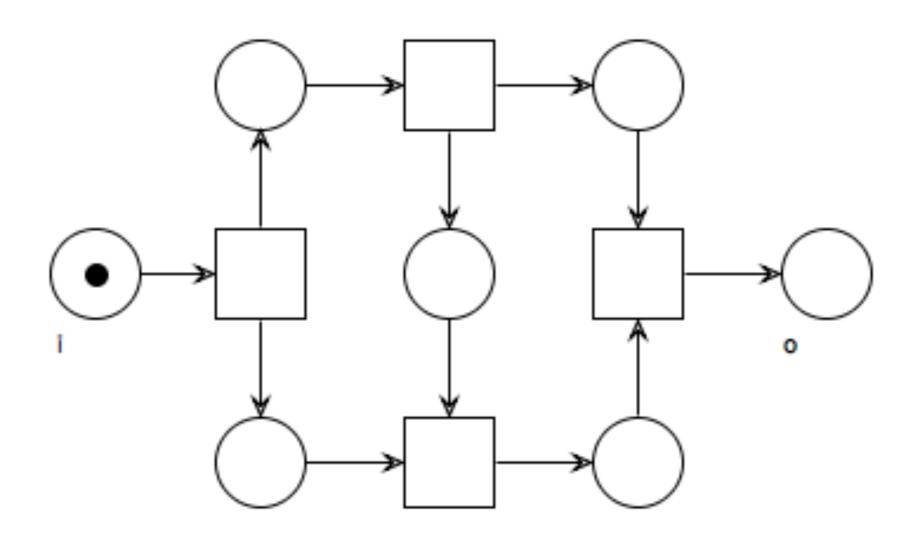
Consequences on workflow nets

Theorem: If N is a workflow net s.t. N* is a T-system then N is safe and sound **iff** every circuit of N* is marked

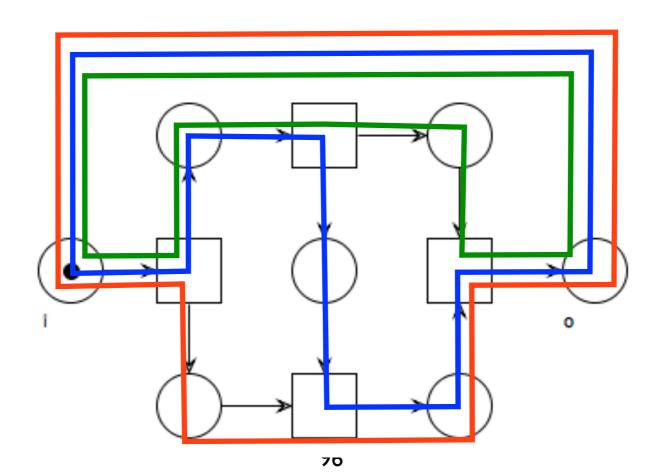
N workflow net => N* strongly connected N* strongly connected + T-system => N* bounded N* strongly connected + T-system + $M_0(P)=1 => N*$ safe

every circuits of N* is marked <=> N* live

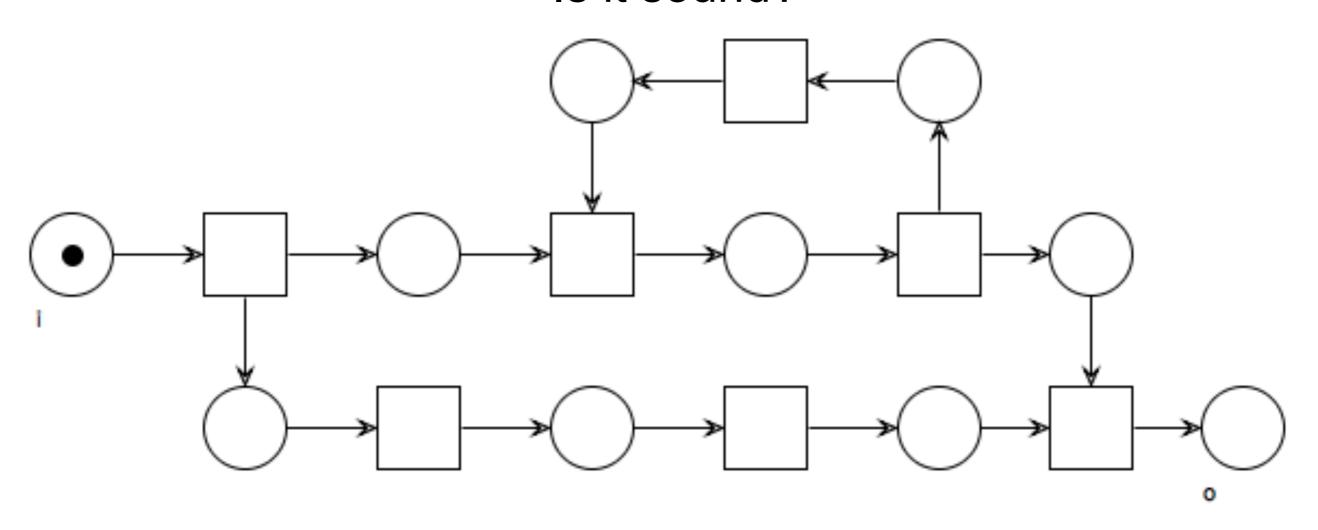
Is the net below a workflow net? Is it sound?



Is the net below a workflow net? Yes
Is it sound? N* is a T-net
Every circuit is marked
=> Yes



Is the net below a workflow net? Is it sound?



Is the net below a workflow net? Yes Is it sound? N* T-net Unmarked circuit