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We introduce two relevant kinds of invariants for
Petri nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html
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Invariant

An invariant of a dynamic system is an assertion
that holds at every reachable state



Example

You have a polygon

You can rotate it

You can move it
" You can scale it
5 You can mirror it

Which invariants?
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You have a polygon

You can rotate it
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Which invariants?  vertex degrees
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You have a polygon

You can rotate it
You can move it
You can scale it

You can mirror it

Which invariants?  color
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You can mirror it number of sides?
You can stretch it number of vertices?

area
perimeter
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Example

You have a Petri net /@\ /@\ ,

(PaTaFaMO)

e
You can fire any @

currently enabled
transition

Which invariants?
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Example

You have a Petri net /@\ /@\ ,

(PaTaFaMO)

e
You can fire any @

currently enabled
transition

Which invariants?  color
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Example

You have a Petri net /@\ /@\ ,

(PaTaFaMO)

e
You can fire any @

currently enabled
transition

Which invariants? P, T, F
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Example

pl p3

You have a Petri net /@\ /@\ )

(P7T7F7MO)

“ "N
You can fire any O/ (O

currently enabled "
transition

Which invariants?  number of tokens in p3
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Example

You have a Petri net

(PaTaFaMO)

pl

ﬁ\

You can fire any
currently enabled
transition

Which invariants? number of tokens in a

1\&u

p2

dead place

24
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Example

You have a Petri net

(PaTaFaMO)

pl

/@\

You can fire any
currently enabled
transition

Which invariants?  Any property that holds
for any reachable marking

25
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Recall:
Liveness, formally

(PaTaFvMO)

t

VieT, VM e[My), IM e[M) M —




Liveness as invariant

Lemma
It (P, T, F, M) is live and M € | My ), then (P, T, F, M) is live.

Let t € T and M' € [ M ).
Since M € [M()>, then M’ € [M()>
Since (P, T, F, My) is live, IM" € [ M’ ) with M"" —.

Therefore (P, T, F, M) is live.
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Recall: Deadlock
freedom, formally

(PvTvFvMO)

VM e [My), JteT, M-



Deadlock freedom as

iInvariant

Lemma: If (P, T, F, M) is deadlock-free and M € | My ),
then (P, T, F, M) is deadlock-free.

Let M' € [M).
Since M € [M()>, then M’ & [M()>
Since (P, T, F, My) is deadlock-free, 9t € T" with M’ N

Therefore (P, T, F, M) is deadlock-free.
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Boundedness, formally

(PaTaFaMO)

keN, VM e|Mp),

Vvpe P, M(p) <k



Boundedness as
iInvariant

Lemma
It (P, T, F, M) is bounded and M € [ My ), then (P, T, F, M) is bounded.

Since (P, T, F, My) is bounded, it must be k-bounded for some k € N
Let M' € | M ).

Since M € | My ), then M’ € | My).

Since (P, T, F, My) is k-bounded, M'(p) < k for all p € P.

Therefore (P, T, F, M) is (k-)bounded.
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Cyclicity, formally

Definition:
A net system (P, T, F, M) is cyclic if VM € [ My ). My € | M).
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Cyclicity as invariant

Lemma
It (P,T, F, M) is cyclicand M € | My ), then (P, T, F, M) is cyclic.

Let M" € [ M), then M" € | My ).
Since (P, T, F, My) is cyclic, there exists ¢’ such that M’ LN M.
Since M € [ My ), there exists o such that My = M.
Then M’ 22, M, hence (P, T, F, M) is cyclic.
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Structural invariants

In the case of Petri nets, it is possible to compute
certain vectors of rational numbers()
(directly from the structure of the net)

(independently from the initial marking)
which induce nice invariants, called

S-invariants

T-Invariants

(*) it is not necessary to consider real-valued solutions, because incidence matrices only have integer entries

34



Why invariants?

Can be calculated efficiently
(polynomial time for a basis)

Independent of initial marking
Structural property with behavioural consequences
However, the main reason is didactical!

You only truly understand a model if you think
about it in terms of invariants!

35
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S-invariant
(aka place-invariant)

Definition: An S-invariant of a net N=(P,T,F) is a
rational-valued solution x of the equation

x-N=0

222 |2]2]- N =|ofo|ofo]|oO

(length = number of places)
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Example

oo

ps pS t4

Find some/all S-invariants for the net above
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A
Example ! N >

Q(im

Find some/all S-invariants for the net above

N
1 = 0 0 0 |
X -1 1 0 0 O
Ty X2 T3 x4 5] 0O 1 -1 0 1| =0
0 0 1 -1 -1
0 -1 0 1 o0
X1 —T9 = 0 L1 = L2
—T1 T2 +I3 —Xy5 = 0 Q
—x3 +a4 = 0 rq = X4
—x4 x5 = 0 L4 — X5
T3 24 = 0@ n n m m m)|
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Homogeneous systems
of linear equations

a11r1 + ai12rx2 + a1 pxp, = 0
a21r1 + Q222 + aspx, = 0
Am, 101 =+ Am, 202 =+ Um ndn — 0

where x;, x,, . .., X, are the "unknowns”

trivial solution: x;, =x, =... =x, =0
if X and X’ are solutions, then X + X’ is a solution
if X is a solution, then kX is a solution
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Linear combination

Proposition:
Any linear combination of S-invariants is an S-invariant

Take any two S-Invariants I; and Iy and any two values k1, k.
We want to prove that k1 I + ko I is an S-invariant.

(kiTi + koI) N = kI -N+4kIy N
= k1 0+ky0
= 0

4]



Fundamental property
of S-invariants

Proposition: Let I be an invariant of V.

For any M € | My ) we have I- M =1- M,
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Fundamental property
of S-invariants

Proposition: Let I be an invariant of V.

For any M € | My ) we have I- M =1- M,

Since M € | My ), there is o s.t. M, s M
By the marking equation: M = My + N -¢o

Therefore: I-M = 1-(My+N-07)
= I-My+1-N-G&
= I-My+0-07
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A necessary condition
for reachability

?
reachability problem: is M reachable from My? M € [M,)

decidable, but computationally expensive
(EXPSPACE-hard)

S-invariants provide a preliminary check that can be
computed more efficiently

Let (P, T, F, My) be a system.

If there is an S-invariant I s.t. I- M #1- My then M & [ M)
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Example

Prove that the marking
M = prod1free + cons1busy

prodl busy

IS not reachable

AN

prodl f

1=[00011]
I-Mo=0#1=1-M

45

prodl s?a:t\®/pmal end |
rodl free consl stast
consl end




Place-invariant,
infuitively

weights tokens

I - (M = weighted sum

46



Place-invariant,
infuitively

A place-invariant assigns a weight to each place such that
the weighted token sum remains constant during any
computation

For example, you can imagine that tokens are coins,
places are the different kinds of available coins,
the S-invariant assigns a value to each coin:
the value of a marking is the sum of the values of the
tokens/coins in it and it is not changed by firings

47



Place-invariant,
infuitively

A place-invariant assigns a weight to each place such that
the weighted token sum remains constant during any
computation

For example, you can imagine that tokens are molecules,
places are different kinds of molecules,
the S-invariant assigns the number of atoms needed to
form each molecule:
the overall number of atoms is not changed by firings

48



Intuition: bubbles

p1 within tokens

P3

.
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Intuition: bubbles
;=2 within tokens

I(p3)=0
I(p2)=3
@/ l(p5)=4
1=[23014...]

%

.




Intuition: bubbles

Ip)=2  within Tokens Q
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Intuition: bubbles

=2 within tokens
I(p3)=0

I(p5)=4
1=[23014...]

.

.
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Intuition: bubbles

;=2 within tokens

I(p3)=0

%

DN

@Q

.

©/|[23014...

I(p5)=4

]



Intuition: tokens

I(p1)=10¢ as coins
I(p3)=20¢

I(p4)=20

I(p5)=20¢
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Intuition: tokens

I(p1)=10¢ as coins
I(p3)=20¢

T~ (p4)=20

(

I(p5)=20¢
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Alternative definition
of S-invariant

Proposition:
A mapping I : P — Q is an S-invariant of N iff for any t € T

> I(p)=> 1(p)

pEcet pEte

Flow-iIn Flow-out
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Consequence of
alternative definition

Very useful in proving S-invariance!

The check is possible without constructing
the incidence matrix

It can also help to build S-invariants
directly over the picture
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Exercise

Prove the proposition about the alternative
characterization of S-invariants

A mapping I: P — Q is an S-invariant of IV iff for any t € T":

> I(p) =) 1(p)

pcet pEte
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Exercise

Prove the proposition about the alternative
characterization of S-invariants

Vi 1-t=0

62



Exercise

Prove the proposition about the alternative
characterization of S-invariants

vi I-t=) I(p)-t(p)=0

peP
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Exercise

Prove the proposition about the alternative
characterization of S-invariants

vi I-t=> I(p)-t(p)=>» I(p) =

peP peP
t
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Exercise

Prove the proposition about the alternative
characterization of S-invariants

vi T-t=> I(p)-t(p)=) Lp)-N(pt)=>» Ip)—» Ip)=0

peP peP pcte pcet
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Exercise

Prove the proposition about the alternative
characterization of S-invariants

vi T-t=> I(p)-t(p)=) Lp)-N(pt)=>» Ip)—» Ip)=0

peP peP pcte pcet
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Question time

Which of the following are S-invariants?

e p b r

(p1 3p2 2p3) ° A [ 1 1 '1 ]

/ \ [1 0 1]

ok [0 1 1]

[<2p14pzp3)] [(2p23p3)] [ 1 1 1]
e [ 1 -1 0]

" [ 1 1 2]

[(3p1 5p2)) [ 1 2 2]

p1 - persons

P o Vte T, Z I(p i Z I(p)

pEet pEte
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Question time
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Question time

Which of the following are S-invariants?

- p b r

(p13p22p3) ° .’. [ ﬂ ﬂ :ﬂ ]

/ \ [1 0 1]

+[ 0 1 1]

[(2p14p2p3)] [(2p23p3)] (1 1 1]

e [ 1 -1 0]
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(e s92)] [ 1 2 2]
i vteT, Y I(p) = > I(p)

pEet pEcte



Question time

Which of the following are S-invariants?

- p b r

(p13p22p3) ° .’. [ 1 ﬂ :ﬂ]
/\ [1 0 1]
-[0 1 1]

[<2p14p2p3)] [(2p23p3)] 1 1 1]
e =[1-1 0]

e (1 1 2]

(301 5p2)) [ 1 2 2]

p1 - persons

3 vie T, Y 1(p) =) 1(p)

pEet pEcte



Traffic-lights example

=)
F— o
3 2 = g
Q o =] 2
© © o
3 JE
]
©

[1110000]




Traffic-lights example

=)
= o
- ) b
w - |
2 o =]
© © ©
=
T
©
©

[1110000]
[0000111]

78



Traffic-lights example

=}
= o
- ) [}
w - |
9 o =]
© © ©
=
[T}
©
©

'1110000°
0000111
1101110

79



Traffic-lights example
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Exercises

Define two (linearly independent) S-invariants

P2

prodl busy

A

P4
prod1 s:m\ prodl end |
consl free
prodl free consl stast
consl end
P1 P3
item buffer jﬁ’ES

consl busy

Ol



Exercises

Define two (linearly independent) S-invariants

solve a system of linear equations

p1 = D2 (prod1 start)

p2 p2 = p1+ps(prodl end)
e D3 +ps = Ps (consl start)
/’O\ D5 = P4 (consl end)

P3

item buffer jg)

P4
prodl s:an\ prodl end _
consl free
prodl free consl stagt
consl end
P1
5

consl busy

oL



Exercises

Define two (linearly independent) S-invariants

reason on the net

1 prodl bt

AN

prodl SZM\CDA/

1 prodl free
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Exercises

Define two (linearly independent) S-invariants

reason on the net

1 prodl busy

L

\(ga/procn end O
1 prodl free

item buffer

o“r



Exercises

Define two (linearly independent) S-invariants

places with weight O can be disregarded

1 prodl busy

AN

prodl s:alt\ prodl end 4/®\
consl free
prodl free consl stagt
1 consl end

consl busy




Exercises

Define two (linearly independent) S-invariants




Exercises

The sum of S-invariants is still an S-invariant
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Exercises

Define two (linearly independent) S-invariants

pl p3 t3
ts S p4
t1
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Exercises

Define two (linearly independent) S-invariants

p\&\1
Q-
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Exercises

Define two (linearly independent) S-invariants
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Exercises

Define two (linearly independent) S-invariants

start g

left fork _
9] right fork



Exercises

Define two (linearly independent) S-invariants




Exercises

Define two (linearly independent) S-invariants
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Exercises

Symmetrically
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Symmetrically




Exercises

Symmetrically
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Exercises

Symmetrically




Exercises

Define two (linearly independent) S-invariants
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Exercises

The sum of S-invariants is still an S-invariant
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Exercises

The sum of S-invariants is still an S-invariant

1 0 2
1 0
: (I
| -
0 0 1 2 1 1
- q _—#1  0G 1
/
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Exercises

The sum of S-invariants is still an S-invariant

one philosopher —
two forks 1+2=3

= three entities




S-invariants and system
properties



(Semi-)Positive
S-invariants

The S-invariant I is semi-positive if I > 0

(i_e_ I>0and 1 7& ()) all entries are non-negative
— and at least one is positive

The support of I'is: (I) ={p | I(p) >0}

set of places with positive weights

The S-invariant I is positive if I > 0 all entries are positive

(i.,e. I(p) > O for any place p € P)
(i.,e. (I) = P)

A (semi-positive) S-invariant whose coefficients
are all 0 and 1 is called uniform
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Note

Notation: &S = J, . ®s

Every semi-positive invariant
satisfies the equation

transitions that produce tokens ° <I> _ <I> ° transitions that consume tokens
in some places of the support o from some places of the support

pre-sets of support equal post-sets of support

(the result holds for both S-invariants and T-invariants)

|04



A sufficient condition
for boundedness

Theorem:
It (P, T, F, M) has a positive S-invariant then it is bounded

Let M € [ My ) and let T be a positive S-invariant.
Let p € P. Then I(p)M(p) <I-M =1- M,

Since I is positive, we can divide by I(p):
M(p) < (I- Mo)/I(p)

105 qeP



Consequences of
previous theorem

By exhibiting a positive S-invariant we can prove
that the system is bounded for any initial marking

Note that all places in the support of a semi-positive
S-invariant are bounded for any initial marking

M(p) < L MO this value is independent
— I(p) from the reachable marking M
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Example

To prove that the system is bounded we can
just exhibit a positive S-invariant

persons blkes

- =[11 2]

p1 - persons
p2 - bikes
p3 - riders riders

|07



Example

How many tokens are at most in p3?

e e I=[1 1 2]
I- M, —2—1
I(ps) 2
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Example

How many tokens are at most in p3?

(?—»—Q 1=[1 01 1]
‘_¢_ I-M, 1
:,_:]-
,. ‘_é 1(p3) .

109



Question time

live, deadlock-free, bounded, safe, cyclic
Prove boundedness by exhibiting an S-invariant

p2 t1 \ 1 t2 ps
| ~.
t4 4 t

g©<_
5 p3 t3

|10



Question time

live, deadlock-free, bounded, safe, cyclic
Prove boundedness by exhibiting an S-invariant

p2 t1 \ 1 t2 ps
t4 t

)
5 p3 t3

1=[2 111 1]



Exercises

Find a positive S-invariant for the net below

pl p3 t3
ts5 e p4
t1

112



Exercises

Find a positive S-invariant for the net below

113



A necessary condition
for liveness

Theorem:
It (P, T, F, M) is live then for every semi-positive invariant I

I1-My>0
Let p € (I) and take any ¢t € ep U pe.

By liveness, there are M, M’ € [ M) with M — M’
Then, M(p) > 0 (if t € pe) or M'(p) > 0 (if t € ep)

It M(p) >0, thenI-M >1(p)M(p) >0
If M'(p) >0, thenI-M' >1(p)M'(p) >0

Inanycase, I My=1-M=1-M">0 I-M=> T(q)M(q)

| 14 qe P



Consequence of
previous theorem

If we find a semi-positive invariant such that
I-My=0

Then we can conclude that the system is not live

|15



Example

the system is not live

It is Immediate to check the counter-example

- 1=[10 1]
o

[101][1|=0
- parmons , 0
| Mo

16



Exercises

Find an S-invariant that proves the net non-live




Exercises

Find an S-invariant that proves the net non-live

?E ? 1=[?2 22727272 7]
p4 t3 p3

CP_ (— 4%9 I My=0
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Exercises

Find an S-invariant that proves the net non-live

(- *?1 1=[0111000]

(P_I VS '%9 I My =0
pl tl p21 t2 p
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Markings that agree on
all S-invariant

Definition: M and M’ agree on all S-invariants if
for every S-invariant | we have |- M =1-M’

Note: by properties of linear algebra,
this corresponds to require that the equation ony

N-y = M'-M has some rational-valued solution

Remark: In general, there can exist M and M’ that

agree on all S-invariants but such that
none of them is reachable from the other
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S-invariants: recap

Positive S-invariant => pboundedness
Unboundedness => no positive S-invariant

Semi-positive S-invariant | and liveness =>1-Mo> 0
Semi-positive S-invariantland |-Mo =0 => non-live

S-invariant I and M reachable =>1-M=1-Mg
S-invariantland I-M # |- Mg => M not reachable
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S-invariants: pay
attention to implication

No positive S-invariant => maybe unbounded
Semi-positive S-invariant 1 and 1- Mo > 0 => maybe live

S-invariantland I-M =1-Mg => maybe M reachable
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Exercises

Can you find a positive S-invariant?

prodl busy

A

prodl free

prodl 5?5“1\@/;::-001 end
consl s

item buffer
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Exercises

Can you find a positive S-invariant?

No, the existence of a positive S-invariant
implies that the net is bounded
and this net has one unbounded place

prodl busy

prodl start prodl end X 4/@\
consl free
prodl free consl st
consl end

y

item buffer
Xty =y =>x=0
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Exercises

Prove that the system is not live by exhibiting a
suitable S-invariant

prodl busy

prodl sjalt\ prodl end ﬂ\
consl free
prodl free | @€ ) cons 1 staxt
consl end
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Exercises

Prove that the system is not live by exhibiting a
suitable S-invariant

1=[222222] M=
O prodl busy

/Oi I-Myg=0 1

126
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Exercises

Prove that the system is not live by exhibiting a -
suitable S-invariant

I=[0 0 0 1 1] My =
0 post s

Poy He =0 1 _
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Terminology

The S-invariant I is semi-positive if I > 0

(i_e_ I>0and 1 7& ()) all entries are non-negative
— and at least one is positive

The support of I'is: (I) ={p | I(p) >0}

set of places with positive weights

The S-invariant I is positive if I > 0 all entries are positive

(i.,e. I(p) > O for any place p € P)
(i.,e. (I) = P)

A (semi-positive) S-invariant whose coefficients
are all 0 and 1 is called uniform
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Recap:
S-invariants can be used to

Prove boundedness
(by finding a positive S-invariant)

Disprove liveness
(by finding a semi-positive S-invariant I such that I - M, = 0)

Disprove M is reachable
(by finding an S-invariant I such thatl - M # 1 - M)
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T-invariants



Dual reasoning

The S-invariants of a net N are vectors satisfying
the equation

Xx-N=0

It seems natural to ask if we can find some
interesting properties also for the vectors
satisfying the equation

N-y=0
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T-invariant
(aka transition-invariant)

Definition: A T-invariant of a net N=(P,T,F) is a
rational-valued solution y of the equation

N-y=0

]
O | o] OO O
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Fundamental property
of T-invariants

Proposition: Let M — M’.

The Parikh vector & is a T-invariant iff M’ = M
=-) By the marking equation lemma M’ =M + N - &
Since ¢ is a T-invariant N - & = 0, thus M’ = M.

<) If M =+ M, by the marking equation lemma M = M + N - &
Thus N-6 =M — M =0 and & is a T-invariant
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Transition-invariant,
infuitively

A transition-invariant assigns a number of
occurrences to each transition such that any
occurrence sequence comprising exactly those

transitions leads to the same marking where it started

(independently from the order of execution)
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Example

An easy-to-be-found T-invariant

p1 - persons
p2 - bikes
p3 - riders

t1 - take
t2 - leave

take
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Alternative definition
of T-invariant

Proposition:

A mapping J : T'— Q is a T-invariant of N iff for any p € P:

PRICED PRI

tcep tEpe
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Question time

Which of the following are T-invariants?

2 pS

t_
;iiqiijk___
ts p3 t3
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Question time

Which of the following are T-invariants?

0

H |
\ 1 t2 PS5

;iiq::>+___
p3 t3

0
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Question time

Which of the following are T-invariants?

p2 t1 1 t2 pS
t4 ts p3 t3

p4

2
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Question time

Which of the following are T-invariants?
t1 to t3 t4 t5
1 (10 0 1 1)

g 4? (1 1 2 12
f >[1 1

~, 1 1 0 2
= (111 12
1 0 1

e— el el
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p4

Question time

Which of the following are T-invariants?

p2 t1 1 t2 pS
O | ﬁ
t4 p3 t3

2
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Question time

Which of the following are T-invariants?

142

t1 o t3 t4 t5
[1 O O 1 1]
[ 1



Question time

Which of the following are T-invariants?

143

th o t3 tg ts
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Question time

Which of the following are T-invariants?

th to 13 s t5

0 1 [1 0 0 1 1]
(% j OZ —%D [1 1 2 12]
f (1 1 1 0 2]
OL (= = 1 (111 12]
1 —>[0 1 1 0 1]

Vpe P, Y J(t) =Y J(t)

|44



Question time

Which of the following are T-invariants?

145

th o t3 tg ts
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T-invariants and system
properties



Pigeonhole principle

If n items are put into m slots, with n > m,
then at least one slot must contain more than one item




Pigeonhole principle

If a path traverses n states,

but there exist only m different states, with n > m,
then at least one state Is traversed twice

n=k+1>k=m

MO—>M1—>---—>Mi—>---—>1\4j—>---—>Mk
Mi=1\4j

148



Reproduction lemm

Lemma: Let \"\\' F MO) be a bounded syst.

If My — for some"
there Is a seml—p05|t|ve

24

0|te sequence o, th
\varlanth that(J)C{t\tEa}.

\
’,
M1 My —

Q .\ ‘\
“
-
.77

Assume 0 = t{tots ... and \ 7

72 N
/‘/ @
nite.

By boundedness: [MO } K-

"
/

principle, there are 0 <

By the plgeonho 3

Let o' =t 4 7. ThenM 75 M; = M,

4 N
By th# marking equation lemma: o’ is a T-invariant. (frop. of T-inv.)
I semi-positive, because ¢’ is not empty (i < 7). A
Clearly, (J) only includes transitions in o.
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Boundedness, liveness
and positive T-invariant

Theorem: If a bounded system is live,
then it has a positive T-invariant

By boundedness: | My ) is finite and we let k = || My )|.

By liveness: My — M; with ¢1(t) >0 foranyt € T
Similarly: M; =2 M, with o5(t) > 0 forany t € T
Similarly: My — M7 =2 Ms... =5 M;,

By the pigeonhole principle, there are 0 <1 < j < k s.t. M; = M,
Let 0 = Oi+1.--04. Then Mz L Mj — Mz

By the marking equation lemma: & is a T-invariant. (fund. prop. of T-inv.)

It is positive, because &'(t) > g,(t) >0 forany t € T
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T-invariants: recap

Boundedness + liveness => positive T-invariant
No positive T-invariant => non (live + bounded)
No positive T-invariant  => non-live OR unbounded
No positive T-invariant + liveness => unbounded

No positive T-invariant + boundedness => non-live
No positive T-inv. + positive S-inv. => non-live
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Example

The system below has a positive S-invariant
but no positive T-invariant:
thus it is bounded but cannot be live

0! 1 1

@—» | e——— |
p6 t6 p2 t1 1 t2 ps

1=[211111] J=[2?]
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T-invariants: pay
attention to implication

No positive T-invariant => maybe non live



Exercises

This system has a positive T-invariant.
Is it live and bounded?

pl t1

t1 and t, are dead
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Exercises

This system has a positive T-invariant.
Is it live and bounded?

eeeeeeeeeeee

consl busy

"cons1 start" and "cons1 end" are dead
"ltem buffer" is unbounded

|55
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Exercises

This system has a positive T-invariant.
Is it live and bounded?

eeeeeeeeeeee

consl busy

"Item buffer" is unbounded
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Exercises

This system has a positive T-invariant.
Is it live and bounded?

—¢~ J=[1 1 1 1]

po IS unbounded
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Recap:
T-invariants can be used to

Disprove boundedness
(live system with no positive T-invariant)

Disprove liveness

(boundedness with no positive T-invariant)
(positive S-invariant but no positive T-invariant)
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Another theorem on
strong connectedness
(whose proof we omit)



Strong connectedness
via invariants

Theorem: If a weakly connected net has
a positive S-invariant | and a positive T-invariant J
then it is strongly connected
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Consequences

If a (weakly-connected) net is not strongly connected
then

we cannot find (two) positive S- and T-invariants
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Example

It is now immediate to check that this system
(weakly connected, not strongly connected)
has a positive T-invariant, but not a positive S-Invariant
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Example

It is now immediate to check that this system
(weakly connected, not strongly connected)
has a positive S-invariant, but not a positive T-Invariant

E:

t3

p6 t6
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