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Object
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Formalization of the basic concepts of

Petri nets


Free Choice Nets (book, optional reading)

https://www7.in.tum.de/~esparza/bookfc.html 

https://www7.in.tum.de/~esparza/bookfc.html


Petri nets:�
basic definitions
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Carl Adam Petri
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July 12, 1926 - July 2, 2010

http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html 

Introduced in 1962 (Petri’s PhD thesis)

60’s and 70’s main focus on theory

80‘s focus on tools and applications 


Now applied in several fields


Success due to simple and clean 
graphical and conceptual 

representation

http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html


Petri nets for us
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Formal and abstract business process specification


Formal: the semantics of process instances becomes 
well defined and not ambiguous


Abstract: execution environment is disregarded


(Remind about separation of concerns)



Places
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A place can stand for

a state


a medium

a buffer


a condition

a repository of resources


a type

a memory location


...



Transitions
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A transition can stand for

an operation

a calculation

an evaluation


a transformation

a transportation


a task

an activity

a decision


...



Tokens
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A token can stand for

a physical object

a piece of data


a record

a resource


an activation mark

a message

a document


a case

a value


...



Notation: from sets…
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Let S be a set.
Let }(S) denote the set of sets over S.

Elements A 2 }(S) (i.e., A ✓ S)
are in bijective correspondence with
functions f : S ! {0, 1}

x 2 A i↵ fA(x) = 1



Sets vs Multisets
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Multisets 

PAGE 62 

Set Multiset 

• order of elements  
   does not matter 
• same element may  
  appear multiple times 

• order of elements  
   does not matter 
• same element 
  appears only once 

Multisets 
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Set Multiset 

• order of elements  
   does not matter 
• same element may  
  appear multiple times 

• order of elements  
   does not matter 
• same element 
  appears only once 

Order of elements does not matter


Each element appears at most once

Order of elements does not matter


Each element can appear multiple times



Notation: … to multisets
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Let µ(S) (or S�) denote the set of multisets over S.

Elements B 2 µ(S) are in bijective correspondence with
functions M : S ! N

MB(x) is the number of instances of x in B
x 2 B i↵ MB(x) > 0



Marking
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A marking M : P ! N denotes the number of tokens in each place

M(a) = 0 denotes the absence of tokens in place a

The marking of a Petri net represents its state



Notation: sets
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Empty set:
; = { } is such that x 62 ; for all x 2 S

Set inclusion:
we write A ✓ B if x 2 A implies x 2 B

Set strict inclusion:
we write A ⇢ B if A ✓ B and A 6= B

Set union:
A [B is the set s.t. x 2 (A [B) i↵ x 2 A or x 2 B

Set di↵erence:
A�B is the set s.t. x 2 (A�B) i↵ x 2 A and x 62 B



Notation: multisets
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Empty multiset:
; is such that ;(x) = 0 for all x 2 S

Multiset containment:
we write M ✓ M 0 if M(x)  M 0(x) for all x 2 S

Multiset strict containment:
we write M ⇢ M 0 if M ✓ M 0 and M 6= M 0

Multiset union:
M +M 0 is the multiset s.t. (M +M 0)(x) = M(x) +M 0(x) for all x 2 S

Multiset di↵erence (defined only if M ◆ M 0):
M �M 0 is the multiset s.t. (M �M 0)(x) = M(x)�M 0(x) for all x 2 S



Operations on Multisets
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Calculating with multisets 
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+ = 

- undefined 



Notation: multisets
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Multiset M = { k1x1, k2x2, ..., knxn} as formal sum:

k1x1 + k2x2 + ...+ knxn

nX

i=1

kixi



Question time
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3a+ 2b
?
✓ 2a+ 3b+ c

3a+ 2b
?
◆ 2a+ 3b+ c

a+ 2b
?
⇢ 2a+ 3b

(a+ 2b) + (2a+ c) = ?

(2a+ 3b)� (2a+ b) = ?

(2a+ 2b)� (a+ c) = ?



Question time
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3a+ 2b
?
✓ 2a+ 3b+ c

3a+ 2b
?
◆ 2a+ 3b+ c

a+ 2b
?
⇢ 2a+ 3b

(a+ 2b) + (2a+ c) = ?

(2a+ 3b)� (2a+ b) = ?

(2a+ 2b)� (a+ c) = ?

No

No

Yes

3a+ 2b+ c

2b

Not defined



Petri nets
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A Petri net is a tuple (P, T, F,M0) where

• P is a finite set of places;

• T is a finite set of transitions;

• F ✓ (P ⇥ T ) [ (T ⇥ P ) is a flow relation;

• M0 : P ! N is the initial marking.
(i.e. M0 2 µ(P ))



Example
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P = {p1, p2, p3, p4, p5, p6, p7}
T = {t1, t2, t3, t4, t5}
F = {(p1, t1), (t1, p2), ... ? }
M0 = 2p3 + ... ?



Pre-set and post-set
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A place p is an input place for transition t i↵
(p, t) 2 F

We let •t denote the set of input places of t.
(pre-set of t)

A place p is an output place for transition t i↵
(t, p) 2 F

We let t• denote the set of output places of t.
(post-set of t)



Example: pre and post
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q0 q2

t
•t = { q0, q2 }
t• = { q0 }



Pre-set and post-set
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Analogously, we let
•p denote the set of transitions that share p as output place
p• denote the set of transitions that share p as input place

Formally:
•x = { y | (y, x) 2 F }
x• = { y | (x, y) 2 F }

pre-set
post-set



Question time
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•p1 = ?
•p2 = ?
•p3 = ?
•p4 = ?
•p5 = ?
•p6 = ?
•p7 = ?

p1• = ?
p2• = ?
p3• = ?
p4• = ?
p5• = ?
p6• = ?
p7• = ?

t1• = ?
t2• = ?
t3• = ?
t4• = ?
t5• = ?

•t1 = ?
•t2 = ?
•t3 = ?
•t4 = ?
•t5 = ?



Petri nets:�
enabling and firing

25



Enabling M[t⟩
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A transition t is enabled at marking M i↵ •t ✓ M

and we write M
t�! (also M [ti)

A transition t that is enabled at M can fire.
The firing of t at M changes the state to

M 0 = M � •t+ t•

and we write M
t�! M 0 (also M [tiM 0)

A transition is enabled if each of its input places

contains at least one token 

(a set can be seen

as a multiset


whose elements

have multiplicity 1)



Question time
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M0 = p1 + p2 + p3 + p5 + p6

Which of the following holds true?

• M0
t1�!

• M0
t2�!

• M0
t3�!

• M0
t7�!



Question time
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M0 = p1 + p2 + p3 + p5 + p6

Which of the following holds true?

• M0
t1�!

• M0
t2�!

• M0
t3�!

• M0
t7�!

Yes

Yes

No (no token in p4)

No (no token in p4)



Firing M[t>M’
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A transition t is enabled at marking M i↵ •t ✓ M

and we write M
t�! (also M [ti)

A transition t that is enabled at M can fire.
The firing of t at M changes the state to

M 0 = M � •t+ t•

and we write M
t�! M 0 (also M [tiM 0)

When a transition fires 

it consumes a token from each input place

it produces a token into each output place



Question time
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M0 = p1 + p2 + p3 + p5 + p6

Which of the following holds true?

• M0
t1�! p3 + p4 + p5 + p6

• M0
t2�! p1 + p4 + p6

• M0
t4�! 2p1 + 2p2 + 2p3 + p5



Question time
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M0 = p1 + p2 + p3 + p5 + p6

Which of the following holds true?

• M0
t1�! p3 + p4 + p5 + p6

• M0
t2�! p1 + p4 + p6

• M0
t4�! 2p1 + 2p2 + 2p3 + p5

No (2p6)

Yes

Yes



Some remarks
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Firing is an atomic action


Our semantics is interleaving:

multiple transitions may be enabled, 


but only one fires at a time


The network is static, but

the overall number of tokens may vary over time


(if transitions are fired for which the number of input 
places is not equal to the number of output places)




http://woped.dhbw-karlsruhe.de/woped/

WoPeD (3.7.1)

http://woped.dhbw-karlsruhe.de/woped/


Notation
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We write M ! if M
t! for some transition t

We write M ! M 0 if M
t! M 0 for some transition t

We write M 6 t! if transition t is not enabled at M

We write M 6! if no transition is enabled at M



Example
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M0 = p1 + p2 + p3 + p5 + p6

We can write that

• M0 �!

• M0 �! p1 + p4 + p6

• M0 6 t7�!

• p1 + p5 6�!

(by firing t2)



Firing sequence
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Let � = t1t2...tn�1 2 T ⇤ be a sequence of transitions.

We write M
�! M 0 (and M

�!) if:

there is a sequence of markings M1, ...,Mn

with M = M1 and M 0 = Mn

and Mi
ti�! Mi+1 for 1  i < n

(i.e. M = M1
t1�! M2

t2�! ...
tn�1�! Mn = M 0)



Reachable markings [M⟩
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We write M
⇤! M 0 if M

�! M 0 for some � 2 T ⇤

A marking M 0 is reachable from M if M
⇤! M 0

Note that M
✏! M for ✏ the empty sequence

The set of markings reachable from M is often denoted:

reach(M) or also [Mi



Question time
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M0 = p1 + p2 + p3 + p5 + p6

Which of the following holds true?

• M0
t1t4t2t3������!

• M0
t2t7t4�����!

• M0
t1t2t7�����!

• M0
t1t4t2t1������!



Question time
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M0 = p1 + p2 + p3 + p5 + p6

Which of the following holds true?

• M0
t1t4t2t3������!

• M0
t2t7t4�����!

• M0
t1t2t7�����!

• M0
t1t4t2t1������!

Yes

Yes

No (t2 not enabled)

No (t1 not enabled)



Example
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M0 = p1 + p2 + p3 + p5 + p6

We have that

• M0
t1t4t2t3������! p4 + p5 + p6

• M0
t2t7t4�����! 2p1 + 2p2 + p3 + p6

• M0
t1t4t3t2t7�������! p2 + p5 + 2p6



Infinite sequence
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Let � = t1t2... 2 T! be an infinite sequence of transitions.

We write M
�! if:

there is an infinite sequence of markings M1,M2, ...

with M = M1 and Mi
ti�! Mi+1 for 1  i

(i.e. M = M1
t1�! M2

t2�! ...)



Example
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M0 = p1 + p2 + p3 + p5 + p6

We have that

• M0
t1t4t1t4t1t4···����������!

• M0
t1t4t7t1t4t7t1t4t7···��������������!



Enabled sequence
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We say that an occurrence sequence � is enabled if M
��!

(� can be finite or infinite)

Note that an infinite sequence can be represented as
a map � : N ! T , where �(i) = ti



More on sequences:

concatenation & prefix
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Concatenation:
for ⇥1 = a1...an and ⇥2 = b1...bm, we let ⇥1⇥2 = a1...anb1...bm
for ⇥1 = a1...an and ⇥2 = b1b2..., we let ⇥1⇥2 = a1...anb1b2...

⇥ is a prefix of ⇥� if ⇥ = ⇥� or ⇥⇥�� = ⇥� for some ⇥��

⇥ is a proper prefix of ⇥� if ⇥⇥�� = ⇥� for some ⇥��

Restriction: (also extraction / projection)
given T � � T we inductively define ⇥|T � as:

�|T � = � (t⇥)|T � =

�
t(⇥|T �) if t ⇥ T �

⇥|T � if t ⇤⇥ T �

6= ✏
6= ✏

finite + finite = finite

finite + infinite = infinite



Enabledness
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Proposition: M
��! i↵ M

�0
�! for every prefix �0 of �

()) immediate from definition

(() trivial if � is finite (� itself is a prefix of �)

When � is infinite: taken any i 2 N we need to prove that ti = �(i) is enabled
after the firing of the prefix �0 = t1t2...ti�1 of �.

But this is obvious, because

M
t1�! M1

t2�! ...
ti�1�! Mi�1

ti�! Mi

is also a finite prefix of � and therefore Mi�1
ti�!



More on sequences:

projection
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Concatenation:
for ⇥1 = a1...an and ⇥2 = b1...bm, we let ⇥1⇥2 = a1...anb1...bm
for ⇥1 = a1...an and ⇥2 = b1b2..., we let ⇥1⇥2 = a1...anb1b2...

⇥ is a prefix of ⇥� if ⇥ = ⇥� or ⇥⇥�� = ⇥� for some ⇥��

⇥ is a proper prefix of ⇥� if ⇥⇥�� = ⇥� for some ⇥��

Restriction: (also extraction / projection)
given T � � T we inductively define ⇥|T � as:

�|T � = � (t⇥)|T � =

�
t(⇥|T �) if t ⇥ T �

⇥|T � if t ⇤⇥ T �



Example
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(t1t4t7t1t4t7)|{t1,t4} = t1(t4t7t1t4t7)|{t1,t4}
= t1t4(t7t1t4t7)|{t1,t4}
= t1t4(t1t4t7)|{t1,t4}
= t1t4t1(t4t7)|{t1,t4}
= t1t4t1t4(t7)|{t1,t4}
= t1t4t1t4(t7✏)|{t1,t4}
= t1t4t1t4(✏)|{t1,t4}
= t1t4t1t4✏

= t1t4t1t4



Exercises
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Determine the pre- and post-set of each element


Which are the currently enabled transitions?

For each of them, which state would the firing lead to?


What are the reachable states?

Which transitions are enabled? 
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r1

rg1

g1

go1

o1

or1

r2

rg2

g2

go2

o2

or2

x y

t1

p1

t2

p2

t4

t3

p3



Exercises
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Which are the currently enabled transitions?


For each of them, which state would the firing lead to?


What are the reachable states?



Petri nets:�
occurrence graph

50



Occurrence graph 

(aka Reachability graph)
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The reachability graph is a graph that represents 
all possible occurrence sequences of a net


 Nodes of the graphs = reachable markings

Arcs of the graphs = firings

Formally, OG(N) = ([M0i, A) where A ✓ [M0i ⇥ T ⇥ [M0i s.t.

(M, t,M
0) 2 A i↵ M

t�! M
0



52

1. Initially R = { M0 } and A = ∅

How to compute OG(N)
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1. Initially R = { M0 } and A = ∅

2. Take a marking M ∈ R and a transition t ∈ T such that


1. M enables t and there is no arc labelled t leaving from M

How to compute OG(N)



54

1. Initially R = { M0 } and A = ∅

2. Take a marking M ∈ R and a transition t ∈ T such that


1. M enables t and there is no arc labelled t leaving from M


3. Let M' = M - •t + t•

How to compute OG(N)
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1. Initially R = { M0 } and A = ∅

2. Take a marking M ∈ R and a transition t ∈ T such that


1. M enables t and there is no arc labelled t leaving from M


3. Let M' = M - •t + t•

4. Add M' to R and (M,t,M') to A

How to compute OG(N)
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1. Initially R = { M0 } and A = ∅

2. Take a marking M ∈ R and a transition t ∈ T such that


1. M enables t and there is no arc labelled t leaving from M


3. Let M' = M - •t + t•

4. Add M' to R and (M,t,M') to A

5. Repeat steps 2,3,4 until no new arc can be added

How to compute OG(N)



How to compute OG(N)
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The occurrence graph can be constructed as follows:

1. Nodes = {}, Arcs = {}, Todo = {M0}

2. M = next(Todo)

3. Nodes = Nodes [ {M}, Todo = Todo \ {M}

4. Firings = {(M, t,M 0) | 9t 2 T, 9M 0 2 µ(P ), M
t�! M 0}

5. New = {M 0 | (M, t,M 0) 2 Firings} \ (Nodes [ Todo)

6. Todo = Todo [ New , Arcs = Arcs [ Firings

7. isEmpty(Todo) ? stop : goto 2



Example: traffic light
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red



Example: traffic light

59

red

green

go-green



Example: traffic light
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red

green

go-green

yellow go-yellow



Example: traffic light
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red

green

go-green

yellow go-yellow

go-red



Example: two traffic 
lights
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red + red’



Example: two traffic 
lights
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red + red’

(we omit arc labels

for readability issues)



Example: two traffic 
lights
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red + red’

green + red’

red + green’

(we omit arc labels

for readability issues)



Example: two traffic 
lights
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red + red’

green + red’

yellow + red’

red + green’

green + green’

(we omit arc labels

for readability issues)



Example: two traffic 
lights
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red + red’

green + red’

yellow + red’

red + green’

green + green’

yellow + green’

(we omit arc labels

for readability issues)



Example: two traffic 
lights
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red + red’

green + red’

yellow + red’

red + green’

green + green’

yellow + green’
red + yellow’

(we omit arc labels

for readability issues)



Example: two traffic 
lights
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red + red’

green + red’

yellow + red’

red + green’

green + green’

yellow + green’
red + yellow’

green + yellow’
(we omit arc labels


for readability issues)



Example: two traffic 
lights
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red + red’

green + red’

yellow + red’

red + green’

green + green’

yellow + green’
red + yellow’

green + yellow’

yellow + yellow’

(we omit arc labels

for readability issues)



Example: two traffic 
lights
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red + red’

green + red’

yellow + red’

red + green’

green + green’

yellow + green’
red + yellow’

green + yellow’

yellow + yellow’

(we omit arc labels

for readability issues)



Example: two traffic 
lights
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red + red’

green + red’

yellow + red’

red + green’

green + green’

yellow + green’
red + yellow’

green + yellow’

yellow + yellow’

(we omit arc labels

for readability issues)



Example: two traffic 
lights
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red + red’

green + red’

yellow + red’

red + green’

green + green’

yellow + green’
red + yellow’

green + yellow’

yellow + yellow’

(we omit arc labels

for readability issues)



Example: two traffic 
lights
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2 red



Example: two traffic 
lights
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2 red

green + red



Example: two traffic 
lights
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2 red

green + red

yellow + red

2 green



Example: two traffic 
lights

76

2 red

green + red

yellow + red

2 green

green + yellow



Example: two traffic 
lights
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2 red

green + red

yellow + red

2 green

green + yellow



Example: two traffic 
lights
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2 red

green + red

yellow + red

2 green

green + yellow

2 yellow



Example: two traffic 
lights
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2 red

green + red

yellow + red

2 green

green + yellow

2 yellow



Example: two traffic 
lights
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2 red

green + red

yellow + red

2 green

green + yellow

2 yellow



Question time
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Complete the net in 
such a way that 

the two lights 


can never be green

at the same time



Question time
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Complete the net in 
such a way that 

the two lights 


can never be green

at the same time



Exercises

83

Draw the reachability graph of the last net


Modify the net so to guarantee that green alternate 
on the two traffic lights and then draw the reachability 

graph


Play the “token games” on the above nets

using Workflow Petri net Designer: 


http://www.woped.org 

http://www.woped.org/


Exercise: �
German traffic lights

84

German traffic lights have an extra phase: traffic lights turn 
not suddenly from red to green but give a red light together 

with a yellow light before turning to green.


Identify the possible states and model the transition 
system that lists all possible states and state transitions.


Provide a Petri net that is able to behave exactly like a 
German traffic light. There should be three places 

indicating the state of each light and make sure that the 
Petri net does not allow state transitions which should not 

be possible.



Exercise: �
Producer and consumer
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Model a process with one producer and one consumer:

Each one is either busy or free.


Each one alternates between these two states

After every production cycle the producer puts a 

product in a buffer and the consumer consumes one 
product from this buffer (when available) per cycle.


Draw the reachability graph

How to model 4 producers and 3 consumers connected 

through a single buffer?

How to limit the size of the buffer to 2 items?



Exercise: �
Dining philosophers
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The problem is originally due to E.W. Dijkstra (and 
soon elaborated by T. Hoare) as an examination 

question on a synchronization problem where five 
computers competed for access to five shared tape 

drive peripherals. 


It can be used to illustrate several important concepts 
in concurrency (mutual exclusion, deadlock, starvation)



Exercise: Dining 
philosophers

87

The life of a philosopher consists of 

an alternation of thinking and eating


Five philosophers are living in a house where a table is laid 
for them, each philosopher having his own place at the table


Their only problem (besides those of philosophy) is that the 
dish served is a very difficult kind of spaghetti, that has to be 
eaten with two forks. There are two forks next to each plate, 
so that presents no difficulty: as a consequence, however, 

no two neighbours may be eating simultaneously.



Exercise: Dining 
philosophers

88

Design a net for representing the dining 
philosophers problem, then use WoPeD to 

compute the reachability graph

image taken from wikipedia

philosophers clockwise from top:


Plato, Konfuzius, Socrates, 

Voltaire and Descartes



Exercise
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Use a Petri net to model a circular railway system 

with four stations (st1, st2, st3, st4) and one train


At each station passengers may 

"hop on" or "hop off"


(this is impossible when the train is moving)


The train has a capacity of 50 persons

(if the train is full no passenger can hop on,


if the train is empty no passenger can hop off)


What is the number of reachable states?


