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Formalization of the basic concepts of
Petri nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html
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Petri nets:
basic definitions
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Petri nets for us

Formal and abstract business process specification

Formal: the semantics of process instances becomes
well defined and not ambiguous

Abstract: execution environment is disregarded

(Remind about separation of concerns)



Places

A place can stand for

a state

a medium
a buffer

a condition

a repository of resources
a type
a memory location



Transitions

A transition can stand for
an operation
a calculation
an evaluation
a transformation
a transportation
a task
an activity



Tokens

A token can stand for
a physical object
a piece of data
a record
a resource
an activation mark
a message
a document
a case
a value



Notation: from sets...

Let S be a set.
Let ©(.S) denote the set of sets over S.

Elements A € p(5) (i.e., A C S5)
are In bijective correspondence with

functions f : S — {0, 1}

r e A iff fA(ZE) =1



Sets vs Multisets
Set Multiset

Order of elements does not matter Order of elements does not matter

Each element appears at most once Each element can appear multiple times
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Notation: ... to multisets

Let 11(S) (or S?) denote the set of multisets over S.

Elements B € 1(S) are in bijective correspondence with
functions M : § — N

Mp(x) is the number of instances of x in B
r € Biff Mg(z) >0



Marking

A marking M : P — N denotes the number of tokens in each place

The marking of a Petri net represents its state

M (a) = 0 denotes the absence of tokens in place a



Notation: sets
(I;ripzy}sie::such that x € 0) for all x € S

Set inclusion:
we write AC Bif x € A impliesx € B

Set strict inclusion:
we write AC BifACBand A# B

Set union:
AUB isthesetst. x € (AUB) iffr€e Aorxz e B

Set difference:
A—Bisthesetst. xr € (A—B)iffre Aandz ¢ B
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Notation: multisets

Empty multiset:
0 is such that @(x) =0 for all x € S

Multiset containment:
we write M C M'" if M(z) < M'(x) forall x € S

Multiset strict containment:
we write M C M" it M C M' and M # M’

Multiset union:
M + M’ is the multiset s.t. (M + M')(z) = M(z) + M'(x) for all z € S

Multiset difference|(defined only if M O M)
M — M’ is the multiset s.t. (M — M")(x) = M(x) — M'(z) for all x € S
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Operations on Multisets
g é?\1%ﬁ

undefined




Notation: multisets

Multiset M = { kx4, kaxo, ..., kpx, } as formal sum:

kix1 + koxo + ... + k,,x,,

T
E kix;
i—1



Question time

3a 4+ 2b C 2a + 3b+ ¢
?
3a + 2b O 2a + 3b+ ¢

?
a—+2b C 2a + 3b
(a+2b)+ (2a+c¢) =7
(2a + 3b) — (2a + b) =7

(2 4+2b) — (a+c¢c) =7
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Petri nets

A Petri net is a tuple (P, T, F, My) where

e P is a finite set of places;

e ' is a finite set of transitions;

e FC(PxT)U(T x P) is a flow relation;

o My : P — Nis the initial marking.
(|e My € /L(P))



Example

JORBIEEO)
Q—' t1 4’0—' t2 P3 send books P> t5 4>Q
p1 receive p2 process complete p7

t4
order order order

p4 update p6
inventory

P = {p1,p2,p3,P4ap5ap67p7}
T = {t1,t2,t3,t4,15}

F={(p1,t1),(t1,p2),...7}
M() — 2}?3 -+ ... 7
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Pre-set and post-set

O A place p is an input place for transition ¢ iff

} (p,t) € F
We let ot denote the set of input places of ¢.
(pre-set of t)

A place p is an output place for transition t iff

é) (t,p) € F
We let te denote the set of output places of ¢.
(post-set of t)

21



Example: pre and post

¥
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{QmCIz}

{(Jo}




Pre-set and post-set

Analogously, we let
ep denote the set of transitions that share p as output place
pe denote the set of transitions that share p as input place

Formally:
or =1y | (y,x) € F'} pre-set
re={y | (r,y) € '} Ppost-set
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update p6
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Petri nets:
enabling and firing



Enabl in M "') (a set can be seen
9 as a multiset
whose elements

have multiplicity 1)

A transition t is enabled at marking M iff of C M
and we write M —— (also M [t))

A transition is enabled if each of its input places
contains at least one token

26



Question time

Mo =p1 +p2+p3+ps+ ps

p2

7N

i Which of the following holds true?

t
o My —

27



) [ [ |
Firing M[T>M
A transition ¢ that is enabled at M can fire.
The firing of ¢ at M changes the state to
M = M — ot + te

and we write M —— M’ (also M [t) M’)

When a transition fires
it consumes a token from each input place
it produces a token into each output place

29



Question time

Mo =p1 +p2+p3+ps+ ps

p2

7N

Which of the following holds true?
t
o My — p3 + pa+ps + pe

¢
e My —> p1+ ps+ Do

5 0 o My~ 2p1 + 2p2 + 2p3 + ps

30



Some remarks

Firing is an atomic action

Our semantics is interleaving:
multiple transitions may be enabled,
but only one fires at a time

The network Is static, but
the overall number of tokens may vary over time
(if transitions are fired for which the number of input
places is not equal to the number of output places)
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Notation

We write M — if M - for some transition ¢
We write M — M’ if M - M’ for some transition t
We write M 7@ if transition ¢ is not enabled at M

We write M -4 if no transition is enabled at M
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Example

Mo =p1 +p2+p3+ps+ ps

We can write that

QM()%

o M() — D1 -+ D4 -+ D6 (by firing t2)

o My /%

® D1+ ps5 A

35



Firing sequence
Let 0 = t1ts...t,,—1 € T™ be a sequence of transitions.

We write M = M’ (and M =) if;
there is a sequence of markings M, ..., M,
with M = M; and M’ = M,

t; :
and MiHMH—l forl <i1<n

36



Reachable markings [M>

We write M = M’ if M % M’ for some o € T*
A marking M’ is reachable from M if M = M’
Note that M — M for € the empty sequence

The set of markings reachable from M is often denoted:

reach(M) or also |[M)

37



Question time

Mo =p1 +p2+p3+ps+ ps

. > Which of the following holds true?
pl t2
° MO t1t4t2t3 >
7N
/ o MO totrly >
t1 A p4
®
o M, 127,

pb 5
@
, . A [ t1tatot1
/t4 Y //DS ‘ O >
C./
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Example

Mo =p1 +p2+p3+ps+ ps

® 3>
" 71 We have that
//t? ) o My Al > P4 + D5 T De
) o ) o My 2" 2p) + 2py + p3 + Pe

t1tatstoty

% , 5 @ o My > P2 + D5 + 26
@/ /-
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Infinite sequence

Let 0 = t1ts... € T be an infinite sequence of transitions.
We write M = if:

there is an infinite sequence of markings My, M, ...

with M = Ml and Mz t%z M’i—l—l for 1 < 7

4]



Example

Mo =p1 +p2+p3+ps+ ps

® 3-
. y We have that
//t7 A\ o MO t1tat1tatity--- N
t1 4 : pa o M, t1tatrtitatrtitaty - >
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Enabled sequence

We say that an occurrence sequence o is enabled if M —

(o0 can be finite or infinite)

Note that an infinite sequence can be represented as
amapo:N— T, where o(i) = t;
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More on sequences:
concatenation & prefix

Concatenation: finite + finite = finite

for o1 = aq...a,, and 09 = b1...b,,,, we let 0109 = a1...a,,01...b,,

for o1 = ay...a,, and 09 = b1bs..., we let 0109 = a7...a,,b105...
finite + infinite = infinite

o is a prefix of o’ if 0 = ¢’ or 00" = ¢’ for some 0"+ ¢

o is a proper prefix of ¢’ if co” = o’ for some 0"~ ¢

44



Enabledness

Proposition: M — iff M —— for every prefix ¢’ of o

(=) immediate from definition
(«=) trivial if o is finite (o itself is a prefix of o)

When ¢ is infinite: taken any ¢ € N we need to prove that ¢; = o(¢) is enabled
after the firing of the prefix o’ = t1tq...t;_1 of 0.
But this is obvious, because

t 4 t;— t;
M =% My 2 ... 2= M,_{ — M,
: .. : t;
is also a finite prefix of o and therefore M, —
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More on sequences:
projection

Restriction: (also extraction / projection)
given T C T we inductively define o7 as:

t(or If ¢ - T,
e =c (o) = { g(|T|,T ) if t & T"
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Example

(Brtatvtitaty) e, e t1(tatrtitats)|qey 43

— t1t4(t7t1t4t7) {t1,ta}
o > — t1t4(t1t4t7) {t1,ta}

p2 t2

p— t1t4t1 (t4t7) {t17t4}
7 N — t1t4t1t4(t7) {t1,ta}

t1 p4 — t1t4t1t4(t7€)|{t1,t4}

> ; = titat1ta(€) |1ty 101
/ @ — t1t4t1t4€
<>/ V / = T1tal1tyg
®
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Exercises

{2 t3

t1 t4

Determine the pre- and post-set of each element

Which are the currently enabled transitions?
For each of them, which state would the firing lead to?

What are the reachable states?

48



Exercises

JORBIEEO}
Q—’ t1 HQ—’ t2 3 send books PS t5 4>Q
p1 receive p2 process complete p7

t4
order order order

p4 update p6
inventory

M. Weske: Business Process Management
© Springer-Verlag Berlin Heidelberg 2007

Which are the currently enabled transitions?
For each of them, which state would the firing lead to?

What are the reachable states?
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Petri nets:
occurrence graph



Occurrence graph
(aka Reachability graph)

The reachability graph is a graph that represents
all possible occurrence sequences of a net

Nodes of the graphs = reachable markings
Arcs of the graphs = firings

Formally, OG(N) = (|My), A) where A C [My) x T x [Mp) s.t.

(M,t, M) e A iff M — M
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How to compute OG(N)

1. Initialy R={ My }and A=



How to compute OG(N)

1. Initialy R={ My }and A=

2. Take a marking M € R and a transition t € T such that
1. M enables t and there is no arc labelled t leaving from M

53



How to compute OG(N)

1. Initialy R={ My }and A=

2. Take a marking M € R and a transition t € T such that
1. M enables t and there is no arc labelled t leaving from M

3. LetM'=M--t+t

54



How to compute OG(N)

1. Initialy R={ My }and A=

2. Take a marking M € R and a transition t € T such that
1. M enables t and there is no arc labelled t leaving from M

3. LetM'=M--t+t
4. Add M'to R and (M,t,M") to A
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How to compute OG(N)

1. Initialy R={ My }and A=

2. Take a marking M € R and a transition t € T such that
1. M enables t and there is no arc labelled t leaving from M

3, leteM'=M-t+t
4. Add M'to R and (M,t,M") to A
5. Repeat steps 2,3,4 until no new arc can be added

56



How to compute OG(N)

The occurrence graph can be constructed as follows:

1. Nodes =}, Arcs ={}, Todo = { My}

2. M = next(Todo)

3. Nodes = Nodes U{M}, Todo = Todo \ {M}

4. Firings = {(M,t,M’)| 3t € T,3M' € u(P), M — M’}
5. New ={M" | (M,t, M") € Firings} \ (Nodes U Todo)

6. Todo = Todo U New, Arcs = Arcs U Firings

7. isEmpty(Todo) 7 stop : goto 2
7

5



Example traffic light

red




Z \)
e

‘f."!

Example: traffic light

red
Wreen

green
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Example traffic light

red
\en

green
w




Example: traffic light

go-green
go-red

green

go- yeIIow




E
xample: two traffic
lights

Z )\
o

go-green




Example two traffic

Z \)
‘/’ red + red’

(we omit arc labels

for readability issues)
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Example two traffic

Z \)
‘/’ red + red’ —

green + red’

> red + green’

(we omit arc labels

for readability issues)
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Examplel two traffic

—» red + green’

yellow + red’

_y green + green’

green + red’ —

(we omit arc labels

for readability issues)
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Examplel two traffic

—» red + green’

red + red’ —
—»yellow + green’
yellow + red’ —
_y green + green’
\4
green + red’ —

(we omit arc labels

for readability issues)
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Example: two traffic

e lights

> red + green’

red + yellow’

—»yellow + green’

yellow + red’ —

\4
_y green + green’

green + red’ —

(we omit arc labels
for readability issues)
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Examplel two traffic

> red + green’

red + red’ —
red + yellow’
—»yellow + green’
yellow + red’ —
V )
_y green + green
V ]
green + red —

green + yellow’

(we omit arc labels

for readability issues)
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Example two traffic
- lights

> red + green’

red + red’ —
red + yellow’
—» yellow + green’
yellow + red’ —
yellow + yellow’ v
_y green + green’
V ]
green + red —

green + yellow’

(we omit arc labels

for readability issues)
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Example two traffic
- lights

> red + green’

red + red — /
\ red + ye”OW,
—» yellow + green’

yellow + red’ —

yellow + yellow’

M
_y green + green’

green + red’ —

\
green + yellow’

(we omit arc labels

for readability issues)
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Example two traffic
- lights

> red + green’

red + red’ —

\ red +ye”OW,

—» yellow + green’

yellow + red’ —

yellow + yellow’

M
_y green + green’

\d
green + red’ —

\ \ 4 ,
green + yellow

(we omit arc labels

for readability issues)
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Example two traffic
- lights

> red + green’

red + red’ —

\ red +ye”OW,

—» yellow + green’

yellow + red’ ™

\

—~ yellow + yellow’ )

_y green + green’

\d
green + red’ —

\ \ 4 ,
green + yellow

(we omit arc labels

for readability issues)
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Example: two traffic
lights




Example: two traffic
lights




Example: two traffic
lights

yellow + red

o4red
vellow
/ _» 2green
\ 4
) + r




Example: two traffic
lights

2 red
go-fed
yellow yeIIow + red
go-green
_y 2areen
v
green + red —

gc-Tellow

green + yellow

green
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Example: two traffic
lights

yeIIow red

o-red
vellow
_, 2 green
v
, green + red —

green vellow




Example: two traffic
lights

N\

yellow + red

o-rea
vellow
2 yellow
_y 2 green
\
. green + red — / /

green + yellow




Example: two traffic
lights

\

yellow + red

\szeow
e / /

green + yellow




Example: two traffic
/@ lights

2 red
ed

N\

vellow yellow + red

| \/
QC-Tellow green + red —

go

go-green

green
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Question time

Complete the net in
such a way that

the two lights

can never be green o
at the same time

81
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Question time

Complete the net in
such a way that \
the two lights
can never be green
at the same time
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Exercises

Draw the reachability graph of the last net

Modify the net so to guarantee that green alternate
on the two traffic lights and then draw the reachability
graph

Play the "token games” on the above nets

using Workflow Petri net Designer:
http://www.woped.org
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Exercise:
German traffic lights

German traffic lights have an extra phase: traffic lights turn
not suddenly from red to green but give a red light together
with a yellow light before turning to green.

ldentify the possible states and model the transition
system that lists all possible states and state transitions.

Provide a Petri net that is able to behave exactly like a
German traffic light. There should be three places
indicating the state of each light and make sure that the
Petri net does not allow state transitions which should not
be possible.

84



Exercise:
Producer and consumer

Model a process with one producer and one consumer:
Each one is either busy or free.

Each one alternates between these two states
After every production cycle the producer puts a
product in a buffer and the consumer consumes one
product from this buffer (when available) per cycle.

Draw the reachability graph
How to model 4 producers and 3 consumers connected
through a single buffer?
How to limit the size of the buffer to 2 items?
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Ay Exercise:

(4) O

.+ Dining philosophers

The problem is originally due to E.W. Dijkstra (and
soon elaborated by T. Hoare) as an examination
qguestion on a synchronization problem where five
computers competed for access to five shared tape
drive peripherals.

It can be used to illustrate several important concepts
in concurrency (mutual exclusion, deadlock, starvation)
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Exercise: Dining
philosophers

The life of a philosopher consists of
an alternation of thinking and eating

Five philosophers are living in a house where a table is laid
for them, each philosopher having his own place at the table

Their only problem (besides those of philosophy) is that the
dish served is a very difficult kind of spaghetti, that has to be
eaten with two forks. There are two forks next to each plate,
so that presents no difficulty: as a consequence, however,
no two neighbours may be eating simultaneously.
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Exercise: Dining
philosophers

Design a net for representing the dining
philosophers problem, then use WoPeD to
compute the reachability graph

g
l { 3 '

image taken from wikipedia
philosophers clockwise from top:
Plato, Konfuzius, Socrates,
Voltaire and Descartes




Exercise

Use a Petri net to model a circular railway system
with four stations (st1, sto, st3, st4) and one train

At each station passengers may
"hop on" or "hop off”
(this is Impossible when the train is moving)

The train has a capacity of 50 persons
(if the train is full no passenger can hop on,
iIf the train is empty no passenger can hop off)

What is the number of reachable states?
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