Business Processes Modelling MPB (6 cfu, 295AA)

08 - From automata to nets

Object

Overview of the basic concepts of Petri nets

Free Choice Nets (book, optional reading)

https://www7.in.tum.de/~esparza/bookfc.html

Why Petri nets?

Business process analysis:

validation: testing correctness

verification: proving correctness

performance: planning and optimization

Use of Petri nets (or alike)
visual + formal
tool supported

Approaching Petri nets

Are you familiar with automata / transition systems? They are fine for sequential protocols / systems but do not capture concurrent behaviour directly

A Petri net is a mathematical model of a parallel and concurrent system

in the same way that a finite automaton is a mathematical model of a sequential system

Approaching Petri nets

Petri net theory can be studied at several level of details

We study some basics aspects, relevant to the analysis of business processes

Petri nets have a faithful and convenient graphical representation, that we introduce and motivate next

Preliminaries

Set notation

8. Are you familiar with set notation?

Altri dettagli

Yes

No

Set notation

$$\varnothing \qquad A \cap B \qquad A \cup B \qquad \stackrel{A \setminus B}{A - B} \qquad \overline{A}$$

$$a \in A \qquad A = B \qquad A \subseteq B \qquad A \subset B \qquad A \times B$$

$$a \not\in A \qquad A \neq B \qquad A \not\subseteq B \qquad \wp(A) \qquad A \cap B = \emptyset$$

$$\mathbb{N} \qquad \mathbb{Z} \qquad \mathbb{Q} \qquad \mathbb{R} \qquad \mathbb{B}$$

$$N \subseteq \mathbb{N} \qquad N \in \wp(\mathbb{N}) \qquad S \subseteq \wp(\mathbb{N})$$

Functions, relations

9. Are you familiar with functions (f:A->B) and relations?

10. Do you agree that a subset S of A can be seen as a function from A to the set of Booleans?

Functions, relations

$$f:A\to B$$

$$R \subseteq A \times B$$

functions as relations

$$R_f \stackrel{\triangle}{=} \{(a, f(a)) \mid a \in A\}$$

sets as functions (characteristic function)

$$f_N:\mathbb{N}\to\mathbb{B}$$

$$f_N(n) \stackrel{\triangle}{=} \left\{ \begin{array}{ll} 1 & n \in N \\ 0 & \text{otherwise} \end{array} \right.$$

$$N = \{ n \mid f_N(n) = 1 \}$$

12. Are you familiar with propositional logic?

Altri dettagli

Yes

No

13

meaning of implication!

$$P \Rightarrow Q$$

$$Q \lor \neg P$$

$$\neg Q \Rightarrow \neg P$$

order of quantifiers matters!

$$\forall n \in \mathbb{N}. \ \exists m \in \mathbb{N}. \ n < m$$

$$\exists m \in \mathbb{N}. \ \forall n \in \mathbb{N}. \ n < m$$

13. Logical implication "P implies Q" (also written "P => Q") is equivalent to:

14. Do you agree that "P implies Q" is equivalent to "(not Q) implies (not P)?

Altri dettagli

Yes

No

16

15. Do you remember De Morgan's law about negation, conjunction and disjunction?

16. Do you know what are the universal and existential quantifiers in predicate logic?

Kleene-star notation A*

Given a set A we denote by A^* the set of finite sequences of elements in A, i.e.: $A^* = \{ a_1 \cdots a_n \mid n \geq 0 \land a_1, ..., a_n \in A \}$ We denote the empty sequence by $\epsilon \in A^*$

For example:

$$A = \{a,b\} \qquad A^* = \{\epsilon,a,b,aa,ab,ba,bb,aaa,aab,\dots\}$$

Strings

Alphabet
$$A$$
 $A^n \stackrel{\triangle}{=} \underbrace{A \times \cdots \times A}_n$

$$A^* \stackrel{\triangle}{=} \bigcup_{n \in \mathbb{N}} A^n$$

```
\mathbb{B} = \{0, 1\}
\mathbb{B}^0 = \{\epsilon\}
\mathbb{B}^1 = \{0, 1\}
\mathbb{B}^2 = \{00, 01, 10, 11\}
\mathbb{B}^3 = \{000, 001, 010, 011, 100, 101, 110, 111\}
\mathbb{B}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \ldots\}
```

Inductive definitions

17. Do you know what is an inductive definition?

18. Do you know what is a recursive definition?

Altri dettagli

○ Yes 40

○ No 11

Inductive definitions

A natural number is either:

- **-** 0
- or the successor n+1 of a natural number n

A sequence over the alphabet A is either:

- the empty sequence ε
- or the juxtaposition wa of a sequence w with an element a of A

Inductively defined functions

Let us define the exponential function k^n

base case: for any k>0 we set exp(k,0)=1

inductive case: for any k>0, $n\ge 0$ we set exp(k,n+1)=exp(k,n) x k

Inductively defined functions

Let us define the exponential function k^n

base case: for any k>0 we set $exp(k,0) \triangleq 1$

inductive case: for any
$$k>0$$
, $n\ge 0$ we set $exp(k,n+1) \triangleq exp(k,n)$ $x k$

Recursive definition

Inductively defined functions

Let us define the exponential function k^n

base case: for any k>0 we set $exp(k,0) \triangleq 1$

inductive case: for any k>0, $n\ge 0$ we set $exp(k, n+1) \triangleq exp(k, n) \times k$

More complex Simpler case case

Recursive definitions

$$\binom{n}{k} \triangleq \frac{n!}{k! (n-k)!}$$

$$\binom{n}{0} \triangleq 1$$

$$\binom{n+1}{k+1} \triangleq \frac{(n+1)\binom{n}{k}}{k+1}$$

$$f(n) \stackrel{\triangle}{=} \begin{cases} 1 & \text{if } n \leq 1\\ f(n/2) & \text{if } n > 1 \land n\%2 = 0\\ f(3n+1) & \text{otherwise} \end{cases}$$

$$f(12) = f(6) = f(3) = f(10) = f(5) = f(16) = f(8) = f(4) = f(2) = f(1) = 1$$

Inductive definitions

$$0! \stackrel{\triangle}{=} 1$$

$$(n+1)! \stackrel{\triangle}{=} n! \cdot (n+1)$$

$$A^{0} \stackrel{\triangle}{=} \{\epsilon\}$$

$$A^{(n+1)} \stackrel{\triangle}{=} A \times A^{n}$$

$$\begin{aligned} |\epsilon| & \stackrel{\triangle}{=} & 0 \\ |w \ a| & \stackrel{\triangle}{=} & |w| + 1 \end{aligned}$$

Finite automata examples

Finite state automaton

21. Do you know what is a Finite State Automata?

22. Do you know what is the language recognized by an automata?

Altri dettagli

Applications

Finite automata are widely used, e.g., in protocol analysis, text parsing, video game character behavior, security analysis, CPU control units, natural language processing, speech recognition, mechanical devices (like elevators, vending machines, traffic lights) and many more ...

How to define an automaton

- 1. Identify the admissible **states** of the system (Optional: mark some states as error states)
- 2. Add transitions to move from one state to another (no transition to recover from error states)
- 3. Set the initial state
- 4. (Optional: mark some states as final states)

Example: Turnstile

Example: Vending Machine

Example: Language Processing

Example: ATM

Computer controlled characters for games

States = characters behaviours

Transitions = events that cause a change in behaviour

Example:

Pac-man moves in a maze wants to eat pills is chased by ghosts by eating power pills, pac-man can defeat ghosts

Wander the Maze

Chase Pac-Man

Return to Base

Example: Pac-Man Ghosts

Example: Pac-Man Ghosts

Example: Pac-Man Ghosts

Other examples

Exercises

Choose your favourite (video) game, and draw the finite state automaton for one of the characters in that game

Finite state automata, formally

DFA

A Deterministic Finite Automaton (DFA) is a tuple $A=(Q,\Sigma,\delta,q_0,F)$, where

- Q is a finite set of states;
- \bullet Σ is a finite set of input symbols;
- $\delta: Q \times \Sigma \to Q$ is the transition function;
- $q_0 \in Q$ is the initial state (also called start state);
- $F \subseteq Q$ is the set of final states (also accepting states)

Example: Turnstile

A Deterministic Finite Automaton (DFA) is a tuple $A=(Q,\Sigma,\delta,q_0,F)$,

where

- ullet Q is a finite set of states;
- \bullet Σ is a finite set of input symbols;
- $\delta:Q\times\Sigma\to Q$ is the transition function;
- $q_0 \in Q$ is the initial state (also called start state);
- $F \subseteq Q$ is the set of final states (also accepting states)

$$Q = \{\mathsf{locked}, \mathsf{unlocked}\}$$

$$\Sigma = \{\mathsf{push}, \mathsf{card}\}$$

$$\delta(locked, card) = unlocked$$

$$q_0 = locked$$

$$F = \{locked\}$$

Extended transition function (destination function)

Given $A=(Q,\Sigma,\delta,q_0,F)$, we define $\widehat{\delta}:Q\times\Sigma^*\to Q$ by induction:

base case: For any $q \in Q$ we let

$$\widehat{\delta}(q,\epsilon) \triangleq q$$

inductive case: For any $q \in Q, a \in \Sigma, w \in \Sigma^*$ we let

$$\widehat{\delta}(q, wa) \triangleq \delta(\widehat{\delta}(q, w), a)$$

 $(\widehat{\delta}(q,w))$ returns the state reached from q by observing w

Extended transition function (destination function)

Given $A=(Q,\Sigma,\delta,q_0,F)$, we define $\widehat{\delta}:Q\times\Sigma^*\to Q$ by induction:

base case: For any $q \in Q$ we let

$$\widehat{\delta}(q,\epsilon) \triangleq q$$

inductive case: For any $q \in Q, a \in \Sigma, w \in \Sigma^*$ we let

$$\widehat{\delta}(q, wa) \triangleq \delta(\widehat{\delta}(q, w), a)$$

Recursive definition

 $(\widehat{\delta}(q,w))$ returns the state reached from q by observing w)

Extended transition function (destination function)

Given $A=(Q,\Sigma,\delta,q_0,F)$, we define $\widehat{\delta}:Q\times\Sigma^*\to Q$ by induction:

base case: For any $q \in Q$ we let

$$\widehat{\delta}(q,\epsilon) \triangleq q$$

inductive case: For any $q \in Q, a \in \Sigma, w \in \Sigma^*$ we let

$$\widehat{\delta}(q|wa) \triangleq \delta(\widehat{\delta}(q|w), a)$$
More complex Simpler case case

 $(\widehat{\delta}(q,w))$ returns the state reached from q by observing w)

Example: Turnstile

 $\delta({\sf locked}, {\sf card}) = {\sf unlocked}$ $\delta({\sf locked}, {\sf push}) = {\sf locked}$ $\delta({\sf unlocked}, {\sf card}) = {\sf unlocked}$ $\delta({\sf unlocked}, {\sf push}) = {\sf locked}$ $\delta({\sf locked}, {\sf card} \ {\sf card} \ {\sf push})$

 $=\delta(\widehat{\delta}(locked, card card), push)$

 $=\delta(\delta(\delta(\delta(\delta(\log \epsilon), \operatorname{card}), \operatorname{card}), \operatorname{push}))$

 $=\delta(\delta(\delta(locked, card), card), push)$

 $=\delta(\delta(unlocked, card), push)$

 $= \delta(\mathsf{unlocked}, \ \mathsf{push}) = \mathsf{locked}$

Example: Turnstile

$$\begin{split} &\delta(\mathsf{locked},\mathsf{card}) = \mathsf{unlocked} \\ &\delta(\mathsf{locked},\mathsf{push}) = \mathsf{locked} \\ &\delta(\mathsf{unlocked},\mathsf{card}) = \mathsf{unlocked} \\ &\delta(\mathsf{unlocked},\mathsf{push}) = \mathsf{locked} \end{split}$$

 $\widehat{\delta}(\operatorname{locked}, \epsilon) = \operatorname{locked}$

 $\widehat{\delta}(\mathsf{locked},\mathsf{card}) = \mathsf{unlocked}$

 $\delta(locked, card card) = unlocked$

 $\widehat{\delta}(\operatorname{locked},\operatorname{card}\,\operatorname{card}\,\operatorname{push})=\operatorname{locked}$

String processing

Given $A=(Q,\Sigma,\delta,q_0,F)$ and $w\in\Sigma^*$ we say that A accept w iff

$$\widehat{\delta}(q_0, w) \in F$$

The **language** of $A = (Q, \Sigma, \delta, q_0, F)$ is

$$L(A) = \{ w \mid \widehat{\delta}(q_0, w) \in F \}$$

Transition diagram

We represent $A=(Q,\Sigma,\delta,q_0,F)$ as a graph s.t.

- Q is the set of nodes;
- $\{q \xrightarrow{a} q' \mid q' = \delta(q, a)\}$ is the set of arcs.

Plus some graphical conventions:

- ullet there is one special arrow Start with $\stackrel{Start}{\longrightarrow} q_0$
- ullet nodes in F are marked by double circles;
- ullet nodes in $Q\setminus F$ are marked by single circles.

String processing as paths

A DFA accepts a string w, if there is a path in its transition diagram such that:

it starts from the initial state

it ends in one final state

the sequence of labels in the path is exactly w

DFA: example

Does it accept 100?

Does it accept 011?

Does it accept 1010010?

What is L(A)?

Does it accept 100? NO Does it accept 011? Does it accept 1010010? What is L(A)?

Does it accept 100? NO Does it accept 011? YES Does it accept 1010010? What is L(A)?

Does it accept 100 ? NO
Does it accept 011 ? YES
Does it accept 1010010 ? YES
What is L(A) ?

Does it accept 100 ? NO Does it accept 011 ? YES Does it accept 1010010 ? YES What is L(A) ? $\{x01y \mid x, y \in \{0, 1\}^*\}$

What is L(A)?

Transition table

Conventional tabular representation

its rows are in correspondence with states

its columns are in correspondence with input symbols

its entries are the states reached after the transition

Plus some decoration

start state decorated with an arrow

all final states decorated with *

Transition table

			a		
\rightarrow					
	\mathbf{q}		$\delta(q,a)$		
*					
*					

DFA: example

DFA: exercise

Does it accept 100? Write its transition table.

Does it accept 1010? What is L(A)?

NFA

A Non-deterministic Finite Automaton (NFA) is a tuple $A=(Q,\Sigma,\delta,q_0,F)$, where

- Q is a finite set of states;
- Σ is a finite set of input symbols;
- $\bullet \ \delta: Q \times \Sigma \to \wp(Q) \ \text{is the transition function;}$
- $q_0 \in Q$ is the initial state (also called start state);
- $F \subseteq Q$ is the set of final states (also accepting states)

NFA: example

Can you explain why it is not a DFA?

NFA: example

Can you explain why it is not a DFA?

NFA: example

Start

Can you explain why it is not a DFA?

Reshaping

Step 1: get a token

0 1 0 1

Step 2: forget initial state decoration

Step 3: transitions as boxes

Step 4: forget final states

Step 5: allow for more tokens

Example: Four Pac-Man Ghosts

Step 6: allow for more

Terminology

Some facts

Nets are **bipartite graphs**: arcs never connect two places arcs never connect two transitions

Static structure for dynamic systems: places, transitions, arcs do not change tokens move around places

Places are passive components

Transitions are active components:
tokens do not flow!

(they are removed or freshly created)

Token game: firing rule

Collect one token from each "input" place

Produce one token into each "output" place

Example: Coin Handling

