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Overview of the basic concepts of
Petri nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html
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Why Petri nets?

Business process analysis:
validation: testing correctness
verification: proving correctness
performance: planning and optimization

Use of Petri nets (or alike)
visual + formal
tool supported



Approaching Petri nets

Are you familiar with automata / transition systems?
They are fine for sequential protocols / systems
but do not capture concurrent behaviour directly

A Petri net is a mathematical model
of a parallel and concurrent system

in the same way that a finite automaton is a
mathematical model of a sequential system



Approaching Petri nets

Petri net theory can be studied
at several level of detalls

We study some basics aspects, relevant to the
analysis of business processes

Petri nets have a faithful and convenient graphical
representation, that we introduce and motivate next



Preliminaries



Set notation

8. Are you familiar with set notation?

Altri dettagli
® Ve 46
® No 5




Set notation




Functions, relations

9. Are you familiar with functions (f:A->B) and relations?

Altri dettagli i{J: Dati analitici
® e 44
. No 7

10. Do you agree that a subset S of A can be seen as a function from A to the set of Booleans?

Altri dettagli {J: Dati analitici
® Ve 33
® No 4

. | do not understand the question 14 (




Functions, relations

f:A— B

sets as functions
(characteristic function)

fNZN%

A 1l ne N
fn(n) = { 0 otherwise

N =1{n| fn(n) =1}



First order logic

12. Are you familiar with propositional logic?

Altri dettagli {0¢ Dati analitici

. Yes 38
’ No 13




First order logic




First order logic

13. Logical implication "P implies Q" (also written "P => Q") is equivalent to:
Altri dettagli i Dati analitici

20
18

16
PorQ 2 14

Pand Q 11

(not P} or Q 20 12

10
P or (not Q) 7
(not P} or {not Q) 1
none of the above 10
L —

14. Do you agree that "P implies Q" is equivalent to "(not Q) implies (not P)?

o N A O @

Altri dettagli 4 Dati analitici
. Yes 35
® nNo 16




First order logic

15. Do you remember De Morgan's law about negation, conjunction and disjunction?

Altri dettagli J Dati analitici
® v 26
® nNo 25

. | do not understand the question 0

16. Do you know what are the universal and existential quantifiers in predicate logic?

Altri dettagli X Dati analitici
® 30
® o 21

| 4




Kleene-star notation A*

Given a set A we denote by A*

the set of finite sequences of elements in A, i.e.:
A*={a1---an, | n>0Aaq,...,a, € A}

We denote the empty sequence by € € A*

For example:
A={a,b} A* ={¢€,a,b,aa,ab,ba,bb, aaa, aab, ... }






Inductive definitions

17. Do you know what is an inductive definition?

Altri dettagli i{J: Dati analitici
. Yes 37
® nNo 14

18. Do you know what is a recursive definition?

Altri dettagli {J: Dati analitici
® ves 40
® nNo 11




Inductive definitions

A natural number is either:
- 0
= Or the successor n+17 of a natural number »n

A sequence over the alphabet 4 is either:
- the empty sequence ¢
- or the juxtaposition wa of a sequence w with an
element a of 4



Inductively defined
functions

Let us define the exponential function k"

base case: for any i>0 we set
exp(k,0) = 1

inductive case: for any k>0, n>0 we set
exp(kn+1) = exp(k,n) X k



Inductively defined
functions

Let us define the exponential function k"

base case: for any i>0 we set
exp(k,0) £ 1

inductive case:farany >0, n>0 we set

exp(k,n+1) lexpen)|x k

Recursive definition

20



Inductively defined
functions

Let us define the exponential function k"

base case: for any i>0 we set
exp(k,0) £ 1

inductive case: far any k>0, n>0 we set
exp(k = exp( Xk

More complex Simpler
case case

21



Recursive definitions




Inductive definitions




Finite automata
examples



Finite state automaton

21. Do you know what is a Finite State Automata?

Altri dettagli ¢ Dati analitici
@ Yo 24
® no 27

22. Do you know what is the language recognized by an automata?

Altri dettagli

® v 15
. No 31

@ | do not understand the question 5
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Applications

Finite automata are widely used, e.g., In
protocol analysis,
text parsing,
video game character behavior,

security analysis,

CPU control units,

natural language processing,
speech recognition,
mechanical devices
(like elevators, vending machines, traffic lights)

and many more ...

26



How to define an
automaton

1. ldentify the admissible states of the system
(Optional: mark some states as error states)

2. Add transitions
to move from one state to another
(no transition to recover from error states)

3. Set the initial state

4. (Optional: mark some states as final states)

27



Example: Turnstile

push
| ' card
\% push 4
card




Example:

Vendmg Machine

select select

select select

$0.25

start

$0.25

select select

$0.25,$1.00 $0.25, $1.00 $0.25,$1.00

select

($1.25 per soda)

$0.25, $1.00 T



xample: Language Processing
O
cjyo o

make moming

retumm

reservation

10

[ want some information please

non-stop )
t flight



Example: ATM

bad PIN
/’T}f\ PIN OK__
depOSlt wlthdrawal
¥
account account

insert amount
envelope

withdraw card
confirm?

withdraw card

31



Computer controlled
characters for games

States = characters behaviours

Transitions = events that cause a change in behaviour

oc

tUelbo

Example: i —
Pac-man moves In a maze P33 O
wants to eat pills e Bt s

is chased by ghosts B @

by eating power pills, pac-man can defeat ghosts

32



Example:
Pac-Man Ghosts )

Wander the Maze Chase Pac-Man

Return to Base O OFlee Pac-Man
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Example:
Pac-Man Ghosts )

Wander the Maze

Spot

Chase Pac-Man

Pac-Man

Return to Base O

Lose
Pac-Man

34

\I‘Q
OFlee Pac-Man



Example:
Pac-Man Ghosts )

Spot Chase Pac-Man

Pac-Man \

Lose
Pac-Man

Wander the Maze

Pac-Man Eats
Power Pellet

Power
Pellet
Expires

Return to Base Flee Pac-Man
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Example:
Pac-Man Ghosts )

Spot Chase Pac-Man

Pac-Man \

Lose
Pac-Man

Wander the Maze

Pac-Man Eats

Power Pellet
Pac-Mdn Eats

Power Power|Pellet

Pellet
Expires

Return to Base Flee Pac-Man
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Example:
Pac-Man Ghosts )

Spot Chase Pac-Man

Pac-Man \

Lose
Pac-Man

Wander the Maze

Pac-Man Eats

Power Pellet
Pac-Mdn Eats

Power Power|Pellet

Pellet
Expires

Return to Base Flee Pac-Man

Eaten by
Pac-Man

37



Example:
Pac-Man Ghosts )

Spot Chase Pac-Man

Pac-Man \

Lose
Pac-Man

Wander the Maze

Pac-Man Eats
Power Pellet

(I:?eachl Pac-Mdn Eats
entra Power Power|Pellet
Base Pellet

Expires

Return to Base Flee Pac-Man

Eaten by
Pac-Man

38



Example:
Pac-Man Ghosts )

Spot Chase Pac-Man

Pac-Man \

Lose
Pac-Man

Wander the Maze

Pac-Man Eats
Power Pellet

(I:?eachl Pac-Mdn Eats
entra Power Power|Pellet
Base Pellet

Expires

Return to Base Flee Pac-Man

Eaten by
Pac-Man

39



Other examples

Press “1”

Release “|”

Press “|” :
findaid | nealthpoints =" oyade
Sy
) 2
found player is
aid attacking back player
is idle
player
IS near
wander Y
e playe (:‘
.R out of sight

40



Exercises

Choose your favourite (video) game, and draw the
finite state automaton for one of the characters in
that game

4]



Finite state automata,
formally



DFA

A Deterministic Finite Automaton (DFA) is a tuple A = (Q, 3,9, qo, F),
where

e () is a finite set of states;

e X is a finite set of input symbols;

e 0:() x> — () is the transition function;

e (o € ( is the initial state (also called start state);

e I C (Q is the set of final states (also accepting states)

43



Example: Turnstile

push

card

-

push

card
A Deterministic Finite Automaton (DFA) is a tuple A = (Q, 3,9, qo, F),

where
e () is a finite set of states; Q — {IOCked7 UﬂlOCked}
e Y is a finite set of input symbols; p— {pUSh7 Cd rd}
e J:() xX — (@ is the transition function; 5(|0Cked, Card) — UnlOCked

® (o € ( is the initial state (also called start state);

qgo = locked
44 F = {lOCked}

e F' C (@ is the set of final states (also accepting states)



Extended transition function
(destination function)

Given A = (Q, X, 9, qo, I'), we define 5 : () x X* — () by induction:

base case: For any g € () we let
0 A
0(q,€) = q

inductive case: Forany g € Q,a € X, w € X* we let

S P

5(q, wa) £ 5(d(q.w) , a)

(g(q,w) returns the state reached from ¢ by observing w)

45



Extended transition function
(destination function)

Given A = (Q, X, 9, qo, I'), we define 5 : () x X* — () by induction:

base case: For any g € () we let
0 A
0(q,€) = q

inductive case: Forany g € Q,a € X, w € X* we let

3(g, wa) £ 5(|6(q, w)|, a)

Recursive definition

AN

(6(q,w) returns the state reached from ¢ by observing w)

46



Extended transition function
(destination function)

Given A = (Q, X, 9, qo, I'), we define 5 : () x X* — () by induction:

base case: For any g € () we let
0 A
0(q,€) = q

inductive case: Forany g € Q,a € X, w € X* we let

S(q[wa) £ 6(s(¢[@], o)
More complex Simpler
- case case

(6(q,w) returns the state reached from ¢ by observing w)

47



Example: Turnstile

push

card

card

g(locked,card card push)
= d(d(locked, card card), push)
(6 (Iocked card), card), push)

(6(0 (Iocked €), card), card), push)
(6(locked, card), card), push)

d(unlocked, card), push)
unlocked, push) — locked

d(locked, card) = unlocked

(
d(locked, push) = locked
(
(

S Sy

0
d(unlocked, push) = locked

unlocked, card) = unlocked

=0(0
O(
J
J
J



Example: Turnstile

push

card

card

ocked, ¢) = lockec

%

ocked, card) = unlocked

%

ocked, push) = locked ocked, card) = unlocked

%

unlocked, card) = unlocked ocked, card card) = unlockec

Z— N 77N /N /N
&n) &) S2) &)
/N /N /N /N

%

unlocked, push) = locked ocked, card card push) = locked

N
O



String processing

Given A = (Q, X, 6, qo, F') and w € ¥* we say that A accept w iff

AN

5(q0,w) c F

The language of A = (Q, 2,9, qg, F') is

L(A) ={w | d(qo,w) € F }

50



Transition diagram

We represent A = (Q, X3, 9, qo, F') as a graph s.t.

e () is the set of nodes;

a

e {qg—¢q | ¢ =0d(q,a)} is the set of arcs.

Plus some graphical conventions:

. . .., Start
e there is one special arrow Start with == qq

e nodes in F' are marked by double circles;

e nodes in (Q \ F' are marked by single circles.

51



String processing as
paths

A DFA accepts a string w, if there is a path in its
transition diagram such that:

It starts from the initial state
It ends in one final state

the sequence of labels in the path is exactly w

52



DFA: example

S t\a‘rt
0 1
&
(2 (2
1 0




DFA: question time

Does it accept 100 ?
Does it accept 011 ?
Does it accept 1010010 ?
What is L(A) ?

54



DFA: question time

Does it accept 100 ? NO
Does it accept 011 ?
Does it accept 1010010 ?
What is L(A) ?
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DFA: question time

Does it accept 100 ? NO
Does it accept 011 ? YES
Does it accept 1010010 ?
What is L(A) ?
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DFA: question time

Does it accept 100 ? NO

Does it accept 011 ? YES
Does it accept 1010010 ? YES
What is L(A) ?

57



DFA: question time

Does it accept 100 ? NO

Does it accept 011 ? YES

Does it accept 1010010 ? YES
What is L(A) ? { 201y | =,y € {0,1}" }



DFA: question time

push
l card
card

What is L(A) ?




Transition table

Conventional tabular representation
its rows are In correspondence with states
its columns are in correspondence with input symbols
its entries are the states reached after the transition
Plus some decoration
start state decorated with an arrow

all final states decorated with *

60



Transition table







DFA: gxercise

Does it accept 100 7? Does it accept 1010 ?
Write its transition table. What is L(A) ?

63



NFA

A Non-deterministic Finite Automaton (NFA) is a tuple A = (Q, X, 6, qo, I),
where

e () is a finite set of states;

e > is a finite set of input symbols;
powerset of Q = set of sets over Q

e 0:(Q) XX % Is the transition function:
e (o € ( is the initial state (also called start state);

e F C () is the set of final states (also accepting states)

64



NFA: example

Can you explain why it is not a DFA?

65



NFA: example

Can you explain why it is not a DFA?

66



NFA: example

0 0, 1
QO7Q1} 5(@1170) :@
5(q,0) = 8(qg, 1) = 0
qo } 0(q1,1) = {g2} (2,0) = 0lga, 1)
an you explain why it is not a DFA?

67



Reshaping



Step 1. get a token

@ 0 ) 1




Step 2: forgeft initial
state decoration

8 ——(——

0,1




Step 3: transitions as

boxes

3 —@
g




Step 4: forget final
states

3 —@
g




Step 5: allow for more
tokens

§——®
g




Example:

Four Pac-Man Ghosts

Wander the Maze

Return to Base

Reach
Central
Base

Spot Chase Pac-Man

Pac-Man \

Lose

Pac-Man

Power
Pellet
Expires

Pac-Man Eats

Pac-Man Eats

Power Pellet Power Pellet

Flee Pac-Man

74



Example: token game

§——®
g

1010 1



Step 6: allow for more
arcs

Y —® o
- J
x




Terminology

{2 @]
Transition Place




Some facts

Nets are bipartite graphs:
arcs never connect two places
arcs never connect two transitions

Static structure for dynamic systems:
places, transitions, arcs do not change
tokens move around places

Places are passive components
Transitions are active components:
tokens do not flow!

(they are removed or freshly created)

78



Token game: example

O—1—®
M

O—1F—




Token game: example

 —®
M

o—
@/

30 ®/ )®



Token game: example

 —®
M

o—
@/

3 O/ )®



Token game: example




Token game: example

O
® D<®
M

S D<g




Token game: example




Token game: firing rule

@\ /O Collect one token from
I:I\ each “input” place

@ (o
Produce one token into .
each “output” place O/ e




Example: token game

Y —® o
- J
x




Example: token game

%] o
= J
x




Example: token game

&[] o
> J
x




Example: token game

$——® o
> J
q




Example: token game

o —® o
: J
x




Example: Coin Handling

Coin handling

READY

. Read
| - -
- ~ Coih
Y
Cl .
' q
In
inserted . -

91

Ready to
dispense

oL
N,

Coin
hiox

r. CB



