Tecniche di Progettazione:
Design Patterns

GoF: Mediator Memento Prototype

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Mediator

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Applicability

» When a set of objects communicates in a well-defined,
but complex way

» When reusing an object is difficult because it refers to
and communicates with many other objects (tight
coupling)

» When a behavior that is distributed between several

classes should be customizable without a lot of
subclassing

BT Ilediator

s
ok

Flight 111 Flight 1011 Flight 112 Flight 747

Mediator: structure

T T

ConcreteColleague2

Mediator +hiediator Colleague
AN
ConcreteMediator ConcreteColleague
ot
5 Design patterns, Laura Semini,

Universita di Pisa, Dipartimento di

Structure

(" aColleague)
o mediator _J
(acotieague)
L\rrwdiatur
! (" aColleague)
aConcreteMediator =—t® mediator)
. _ ’
))
[(ul:fulllagu-ﬁ
l\medlatnr 32 W, racolhnmnj
mediator)

Mediator

» Encapsulates interconnects between objects
» |s the communications hub

» Is responsible for coordinating and conrolling colleague
Interaction

» Promotes loose coupling between classes

By preventing from referring to each other explicitly

» Arbitrates the message traffic

7 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

How to use Mediator

I, ldentify a collection of interacting objects whose
interaction needs simplification

2. Get a new abstract class that encapsulates that
interaction

3. Create a instance of that class and redo the interaction
with that class alone

8 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Consequences

» Limits subclassing

Localizes behavior that would be otherwise distributed among
many objects

Changes in behavior require changing only the Mediator class

» Decouples colleagues
Colleagues become more reusable.

You can have multiple types of interactions between colleagues,
and you don’t need to subclass or otherwise change the
colleague class to do that.

Consequences

» Simplifies object protocols

Many-to-many interactions replaced with one-to-many
interactions

More intuitive
More extensible

Easier to maintain
» Abstracts object cooperation

Mediation becomes an object itself

Interaction and individual behaviors are separate concepts that
are encapsulated in separate objects

Consequences

» Centralizes control
Mediator can become very complex

With more complex interactions, extensibility and maintenance
may become more difficult

Using a mediator may compromise performance

Implementation Issues

» Omitting the abstract Mediator class — possible when
only one mediator exists

» Strategies for Colleague-Mediator communication

Observer class

The colleagues are the subjects: any change in their state is notified to
the coordinator that may notify other colleagues.

Pointer / other identifier to “self” passed from colleague to
mediator, so that the mediator can identify the sender.

Related Patterns
» Facade

Unidirectional rather than cooperative interactions between
object and subsystem

Mediator is like a multi-way Fagade pattern.

» Observer

May be used as a means of communication between Colleagues
and the Mediator

Coordination Languages

» "Mediator" constructs as language primitives:

Linda and tuple spaces: late 80’s early 90’s

Middleware acting as a coordinator

» BPEL (Business Process Execution Language) and web
services (BPEL4WS o WS-BPEL)

14 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Homework

» This exercise wants to demonstrate the Mediator pattern
facilitating loosely coupled communication between
different Participants registering with a Chatroom.

The Chatroom is the central hub through which all
communication takes place.

Implement the Chatroom, having the following interface:

public interface AbstractChatroom {
public abstract void register(Participant participant);

public abstract void send(String from, String to, String msg);

}

At this point only one-to-one communication is implemented
in the Chatroom, optional: experiment with one-to-many.

15 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Memento

» Intent

“Without violating encapsulation, capture and externalize an
object’s internal state so that the object can be restored to this
state later.”

» Motivation

When we want to store off an object’s internal state without
adding any complication to the object’s interface.

Perhaps for an undo mechanism

Memento pattern

» Memento:

a saved "snapshot” of the state of an object or objects for
possible later use
useful for:

writing an Undo / Redo operation

ensuring consistent state in a network

Persistency: save / load state between executions of program

18

Applicability

» Use this
When you want to save state on a hierarchy’s elements.

When the hierarchy’s interface would be broken if
implementation details were exposed.

Structure

Originator Memento _
2 memantol Caretaker
-slale L _}-Slatﬂ (ol
+SetMemento(m Memento) - +GetState() I
+CreateMemento() N +SetState()
/ »
/ N .
relurn new Memento(state) state = m.GetState()

Participants

» Memento

stores the state of the Originator
» Originator

Creates the memento

“Uses the memento to restore its internal state”

» CareTaker
Keeps track of the Memento
Never uses the Memento’s Interface to the Originator

Collaboration

aCarelaker anQriginator alVlemento

| |
| |
| 1: CreateMementa() |
> 2 new Mementa

3. SetState()

)
} 4: setMemento(aMemento) }

o, Getstate()

-

22 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Collaboration

» Caretaker requests a memento from an Originator.
» Originator passes back memento.

» Originator uses it to restore state.

Consequences (good)

» “Preserves Encapsulation Boundaries”

» “lt simplifies Originator”

Consequences (bad)

» Might be expensive

» Difficulty defining interfaces to keep Originator
encapsulated
» Hidden costs in caring for mementos

Caretaker could have to keep track of a lot of information for
the memento

Storing Incremental Changes

» If storing state happens incrementally, then we can just
record the changes of what’s happened in a new
memento object.

» This helps with memory difficulties.

Homework

» Change the calculator example using memento instead of
undo to restore an old state.

27 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Prototype

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Prototype Pattern

» A creational pattern

» Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this
prototype

Problem

| Graphic

i Tool E)\

§ Manipulate() -

')\ ---- - Staff | MassicalNote

: RotateT ool GraphicT ool A

E Manipulate() Manipulatc() T
5 A 7| WholeNote HalfNote

i | |

StaffGraphicTool WholeNoteGraphicT ool
Mampulate() Manipulate()

Prototype solution

» Graphic
Tool Draw(Position)
Clonef)
Manipulate() /k
prototype
Staff ;
RotateTool GraphicTool ~— - MssicalNote
] Draw(Position)
Manipulate() Manipulate()9 Clone() \
E WholeNote HalfNote
: Draw(Position) Draw(Position)
p = prototype->Clone() B Clone() Clone()
while (user drags mouse){

p->Draw(new position)

}

insert p into drawing

=]
'
1
1
|
'
1
|
|
1

return copy of self BI

-mmmmem=|-0

return copy ofseif Iﬁ

Structure & Participants

Prototype(Graphic)
-declares an interface
for cloning itself.

ConcretePrototype
(Staff, WholeNote,
HalfNote)

-implements an
operation for cloning
itself.

Client(GraphicalTo
ol)

- creates a hew
object by asking a
prototype to clone
itself.

prototype

Operation() o

p = prootype->Clons() |

> w

Clone()

A

ConcretePrototypel

|

Clone()

Clone()

- - nqo

LA L L L L A 1 ..o

return copy of self b]

rohmeopyofsdflb]

java.lang Class Object
protected Object clone() throws
CloneNotSupportedException

Creates and returns a copy of this object. The precise meaning of "copy" may
depend on the class of the object. The general intent is that, for any object
X, the expression:

x.clone() = x
will be true, and that the expression:
x.clone().getClass() == x.getClass()

will be true, but these are not absolute requirements.While it is typically the
case that:

x.clone().equals(x)
will be true, this is not an absolute requirement.

By convention, the returned object should be obtained by calling super.clone.
If a class and all of its superclasses (except Object) obey this convention, it
will be the case that x.clone().getClass() == x.getClass().

33 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

java.lang Class Object
protected Object clone() throws

CloneNotSupportedException

» By convention, the object returned by this method should be
independent of this object (which is being cloned).

» To achieve this independence, it may be necessary to modify
one or more fields of the object returned by super.clone
before returning it.

34

Typically, this means copying any mutable objects that comprise the
internal "deep structure" of the object being cloned and replacing the
references to these objects with references to the copies.

If a class contains only primitive fields or references to immutable
objects, then it is usually the case that no fields in the object
returned by super.clone need to be modified.

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Ex.
Animal [awacis.

(2 AnimalClient

farm ”Grsmain“
Plsen

& Java Class»
(9 AnimalCreator
K sheep : Animal

o chicken : Animal |

' @ AnimalCreator ()

@ retrieveAnimal ()

“l «Java Class»
© Animal
L | @ numberOfLegs : int

<~ description : String
- < name : String

@' helloAnimal ()

@. clone ()
getDescription ()
setDescription ()
getNumberOfLegs ()
setNumberOflLegs ()
getName ()
setName ()

L

L _ 2 &l

2l «Java Class» 2 «Java Class»
(© Sheep © Chicken
o numberOfCIanes:int: o numbeerClcﬁes vint |
@ helloAnimal () @. helloAnimal ()
@. clone () @ clone ()

uL&Fn

Prototype Pattern Example code

oublic abstract class animal implements Cloneable {
protected int numberofLegs = 0;
protected string description = ™7
protected string name = "";

public abstract string helloanimal();

public Animal clone() {
Animal clonedanimal = null;
clonedanimal = (Animal) super.clone();
clonedanimal. setName{name);
return clonedanimal;

T // method clone
public string getName() 1
return name;
¥
public void setName(string name) {

this.name = name;
Ll

P /S class Aanimal

Prototype Pattern Example code

public class chicken extends animal {
private int numberofClones = 0;

public String helloanimal{) {
stringButfer chickenTalk = new Stringﬂuffer{};
chickenTalk. append("Cluck cluck world. I am ");
chickenTalk. append(name);

return chickenTalk. tostring();
t // helloanimal

public Cchicken clone() {
Chicken clonedChicken = (Chicken) super.clone(),
string chickenName = clonedChicken. getName();
numberofClones++;
clonedChicken. setName{chickenName + numberofClones);

return clonedChicken;
T+ // method clone

Prototype Pattern Example code

public class sheep extends animal {
private int numberofClones = 0;

public string helloanimal () {
stringButffer sheepTalk = new stringBuffer();
sheepTalk. append("'Meeeceee wWorld. I am ");
sheepTalk. append({name) ;

return 5hEE€T&1H.tG5tFng{};
T /S helloAanima

public ShEEE clone() {
sheep clonedsheep = (Sheep) super.clone();
string sheepName = clonedsheep. getName();
numberofclones++;
clonedsheep. setName{sheepName + numberofClones);

return clonedsheep;
7 // method clone

Prototype Pattern Example code

public class animalCreator {
private Animal ShEEE = new Sheep();
private Animal chicken = new Chicken();

public AnimalCreator() {
ShEEE.SEtNamE{“ShEEp“};
chicken. setName{ " 'Chicken");
¥ // no-arg constructor

public animal retrieveanimal (5tring kindofanimal) {
it ("Chicken". equals(kindotanimal)) {
return {(Animal) chicken.clone();

I
else if ("sheep"”.eguals(kindofanimal)) {
i 47 if return (animal) sheep.clone();

3

return null;
1 // method retrieveanimal
} // class AnimalCreator

Prototype Pattern Example code

public class animalclient {

public static void main(string[] args) {

AnimalCreator animalCreator

= new AnimalCreator();

Animal[] animalFarm = new Animal[8];

animalFarm[0]
animalFarm[1]
animalFarm[2]
animalFarm[3]
animalFarm[4]
animalFarm[5]
animalFarm[6]
animalFarm[7]

animalCreator.
animalCreator.
animalCreator.

animalCreator

animalCreator

retrieveAnimal ("Chicken");
retrieveanimal { 'Chicken™);
retrieveanimal { 'Chicken");

.retrieveanimal { "Chicken");
animalCreator.
animalCreator.

retrieveanimal ("sheep");
retrieveanimal ("'Sheep”);

.retrieveanimal ("sheep");
animalCreator.

retrieveanimal ("sheep");

for (Ant i= 0; i<=7;

i++) 1

system. out. printinf{animalFarm[i]. helloanimal ());

+ /S for
T // main method

¥ /S class animalClient

Cluck cluck world.
Cluck cluck world.
Cluck cluck world.
Cluck cluck world.

Meseeeee World., I
Meeeeeee World., I
Megeeeee World. I
Meeeeeee World. I

I
I
I
I
dm
am
dm
dm

am Chickenl.
am Chicken?Z.
am Chicken3.
am Chickend.

Sheepl.
sheep2.
sheep3.
Sheep4.

Prototype Pattern
» When to Use

When product creation should be decoupled from system
behavior

When to avoid subclasses of an object creator in the client
application

When creating an instance of a class is time-consuming or
complex in some way.

Consequences of Prototype Pattern

» Hides the concrete product classes from the client
» Adding/removing of prototypes at run-time

» Allows specifying new objects by varying values or
structure

» Reducing the need for sub-classing

Drawbacks of Prototype Pattern

» It is built on the method .clone(), which could be
complicated sometimes in terms of shallow copy and
deep copy. Moreover, classes that have circular references
to other classes cannot really be cloned.

