Tecniche di Progettazione:
Design Patterns

GoF: Proxy

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Revisit the Gumball machine example

» The same example covered in the State pattern

» Now we want to add some monitor to a collection of
Gumball machines

Gumball Class

public class GumballMachine { A lotation is j“’{‘- a Shvi
// other instance variables | "

public GumballMachine
// other constru

tion, int count) {

catio B e T lotation is
) tonstructor and S":orl: in the

instance variable.

S . Let's also add 8 S‘H"! ﬂ;
// other methods here arab the lotation when we need

Gumball Monitor

public class GumballMonitor |{

GumballMachine machine; p The monitor takes the mathine in iks

‘m&u& a . .
public GumballMonitor (GumballMachine machine) ({ mathine iu{:a:; -imgr; it to the
this.machine = machine; varidble.

}

public void report() |{
System.out.println(“Gumball Machine: “ + machine.getLocation());
System.out.println (“Current inventory: ™ + machine.getCount() + ™ gumballs”);
System.out.println(“Current state: “ + machine.getState());

\

Our veport method just oy i
: Jus P\'lh‘ti d]
location, inventory and the mhim;.‘l’h

Role of the remote Proxy

g’c,cr.ds to Rtmo{:e Gumbal| .

but it's just a stand 4)
for ’cMJR‘*" T“"“ﬁ Remote Heap i

the Red! | VI ethod
Came as ﬂ“" old ¢ Wi
Rr.a\ gumball ma-f-hm! M: HEI ﬂ Sekwally 806 e
over the neLworKs Lalking toa ?ro'ﬁ\f~ ceal wovk:

Remote Methods

eal Thing

Client objc!-’t Ehinks |
Real Sevvite. [t N\
Ehinks the tlient
ht'l?r.'r 16 the Jch'mﬁ
that can actually

do the veal work.

This is 6oy
%o be ow
pro®y:

Client helper preven
to be the sevvite,

CIir.nt heap it's st @ POl

but

for the

ds

&mrh&ﬂpél :

is
PR T

I Sevvice hﬂ?ﬂaeb{h Corite uhjﬂk::.f "
. Wwe-
:c;lu:st From the client he R:a\ iﬁ:hl il
Echn unpacks it, and ob)et "{.,ua\l‘f does the
;i Is the method on the st a¢
o | ok

How the method call happens
Client calls method

T T T

. Client object calls doBigThing() on the client helper object.

Client Helper forwards to service helper

@ Client helper packages up information about the call
(arguments, method name, etc.) and ships it over the
network to the service helper.

"client wants to call a method"

Client heap

Service helper calls the real object

. Service help'ar unpacks the information from the client helper,
finds out which method to call (and on which object) and
invokes the real method on the real service object.

| Client heap Server heap

ke

“client wants to call a method"

Remember,) this s the

o'b:)tﬁ.'l‘, with the REAL

method logic- Thgione |
hat, does the real work

438

Real object returns result

. The method is invoked on the service object, which returns
some result to the service helper.

Service helper forwards result to client

. Service helper packages up information returned from the
call and ships it back over the network to the client helper.

Client helper returns result to client

Client helper unpackages the returned values and returns
them to the client object. To the client object, this was all

transparent.
ﬂCIierﬂ' heap Server heap (i
'.T:'_J irII 'u'? ; -

RMI Nomenclature: in RMI, the client helper is a ‘stub’ and the
service helper is a ‘skeleton’,

This is going
to att as owr
?'ro'ﬁjf

J
<Keleton oiept
but Something o
Now let’s go through all the steps needed to make an object into a the servey Side
service that can accept remote calls and also the steps needed to S still handfi,
allow a client to make remote calls.)

eleton bch&viar.
You might want to make sure your seat belt is fastened; there are

a lot of steps and a few bumps and curves - but nothing to be too
worried about.

Hooking up client and server objects

Client

How it works...

@ Client does a lookup on the RMI registry
Naming.lookup (“rmi://127.0.0.1/RemoteHello”) ;

. RMI registry returns the stub object
(as the return value of the lookup method) and RMI deserializes the stub
automatically. You MUST have the stub class (that rmic generated for you)
on the client or the stub won't be deserialized,

Client invokes a method on the stub, as if the
stub IS the real service

Back to Gumball machine problem

% ory Remote Qumball .
B
GumballMathine: . L)
Client heap Server heap i

|||||

7~

This is owr

Mﬂ'“-"w tode, it Tl !
sses 3 Proy %o The skeleton accepts the T;:,:.,aunnac-‘m“‘ s .
Lalk to rf.m:)t-t rc:::t: ealls and makes S servil a;t
wweball mathines: everything work on +h s skl 10 EE
3 sevvite side. v ‘:z.:’::’cﬁﬁ ket 3¢

L ov the hient

Proxy Pattern defined

The Proxy Pattern provides a surrogate or

placeholder for another object to control access
to it.

The proxy pattern is used to create a
representative object that controls access
to another object, which may be remote,
expensive to create or in need of securing.

Proxy Class Diagram

nd the
Both the Proxy 2
[—\ RealSubject implement the

o Lkevcface. Ths
Sub‘}ﬂh £:‘;:n£ Lo treat

i\ an
1\:";#1’ '{s{: like the

Rcalgubj:f.

subject
RealSubject [
K request()

Thc RcaiSul,-“{,_ 2
usually the c;)b
that does most

of the veal oyl
the Pr.“y P

attess to ik

K

ool The Pro:ﬂy o-H:Cn instantiates
J or handles the tveation of

the REE'SHBJ:&{_

Proxy
request() é\

he Proxy keeps 3
T‘:’F:ﬂremz Lo the
Cubiett, so it ean
Lorward \rtﬂ\uts"c,s
Lo the Subjtc{:.
when netessavy:

The CEO runs the monitor, which first grabs the proxies to the remote
gumball machines and then calls getState() on each one (along with
getCount() and getLocation()).

CEO's desktop

Remote Qumbal| Maehin
] ¢
T'ype is ﬁumlaa"MaghiMR:M{c with 3 J/m

mball machine

Making the call

@© getState() is called on the proxy, which forwards the call o the remote
sevice. The skeleton receives the request and then forwards it to the

gunball machine.

GumballMachine returns the state to the skeleton, which serializes it and

transfers it back over the wire to the proxy. The proxy deserializes it and
returns it as an object to the monitor.

£ all Likewise, the QumballMathine
The monitor hasn t c'hangcdo:n{ﬂ’ im?ltrntn{:s another interface and
extept it knows it TE :\i oo Vit may throw a vemote exteption in its
‘fﬁl‘ﬂﬂh‘- :“E?bﬂﬁ' : w‘F ate raﬂ'}f,\' ﬂﬂhﬁ't\'"uf-'ﬁoh b'ﬂ'-'[.'. ﬂ{'.hﬂ' 'u\ah 'Eha‘Ej ‘H’IE
6""“’3“”!'““”:?&“0:“ :;Jc‘;ban tode hasn't thanged.
em

Jc\\i“ 3 g,m-.t',rt‘t! imp

We also have a small bit of tode to register and locate stubs using the
RMI vegistry. But no matter what, if we were writing something to
work over the [ntevnet, we'd need some kind of lotator sevvice.

Remote Proxy

Remote Proxy

With Remote Proxy, the proxy
acts as a local representative

for an object that lives ina
different JVM, A method call

on the proxy results in the call
being transferred over the wire,
invoked remotely, and the result
being returned back to the proxy
and then to the Client,

We know this diagram
pretty well by now..

Virtual Proxy

Virtual Proxy

Virtual Proxy acts as a
representative for an object that
may be expensive to create, The
Virtual Proxy often defers the
creation of the object until it

Is needed; the Virtual Proxy

also acts as a surrogate for

the object before and while it

is being created. After that, the
proxy delegates requests directly to
the RealSubject.

Choose the album tover of a0

' Favorite CDs

Buddha Bar
Selected Ambient Works, Vol. 2
§ Northern Exposure

4 Ima

MCMXC A.D.
Karma
Ambient: Music for Airports

Your J’ikir.g here. \}

Playing CD Covers

Ees

i ORIV IRBRE e
| Favorite COs

| ? Whilt {:l'lt CD Lover
. / IS |a&dih5.. the proxy
| “Loading CD cover, please wait...”. ' disPia‘YS 4 messdae.
Y N SRR e _Itﬂﬁww-w :
]_Tawri:tcm
| 5.

’ ‘ﬂl.lx
!;u'\"-"f I'Iaidtﬂ. the Y f
dnﬁ'\d‘h e mdeyf

s /—al
When ke CD LoNEY ‘
i

Playing CD Cover Proxy

This is the Swing
|f.'.oh ihtcr‘Fﬂf.c used

to display images in a
user interface.

/‘

This is Javax.swingrlmasdﬂon,

a ¢lass that displays an [mage.

S <<interface=>
leon
getlconWidthy)
geticonHeight()
painticon)
: subject -
Imagelcon ImageProxy
getlconWidthy) getlconWidth()
geticonHeight() getlconHeight()
paintlcon() painticon()

C This is our proxy, which first
displays a message and then when
the image is loaded, delegates to
Imageleon to display the imaae.

ImageProxy process

o

O

ImageProxy first creates an Imagelcon and starts
loading it from a network URL.

While the bytes of the image are being retrieved,
ImageProxy displays “Loading CD cover, please
wait...”.

When the image is fully loaded, ImageProxy del-
egates all method calls to the image icon, including
painticon(), getWidth() and getHeight().

If the user requests a new image, we’ll create a
new proxy and start the process over.

ImageProxy process

What did we do?

€) We created an ImageProxy for the display. The paintIcon
method is called and ImageProxy ﬁraspnﬁ a ‘rhrf:d to .

retrieve the image and create the ImageIcon.

Proxy ereates 3
mﬁd .Lo iﬂ{’,ﬁhﬁﬂ& ‘Eﬂ"

g _ ; I
h”__..:-'_‘_'*.ﬁri-; ' paintIcon() |mageleon, whith stavts Some image
e ovins the image: server on
” vekrieving
d - get i o ge the Internet
...,-H“"""## l
displays loading

| message

At some point the image is returned and
the ImageIcon fully instantiated. %

z.mﬂgelco“

Q After the ImageIcon is created, the next time paintIcon() is
called, the proxy delegates to the ImageIcon,

paintIcon()

paintIcon()

displays the real image

class ImageProxy implements Icon {
ImageIcon imagelcon;
URL imageURL;
Thread retrievalThread;
boolean retrieving = false;

public ImageProxy (URL url) { imageURL = url; }

public int getIconWidth() {
if (imageIcon != null) return imagelIcon.getIconWidth();
else return 800; 1}
public int getIconHeight () {
if (imageIcon != null)return imageIcon.getIconHeight();
else return 600;}
public void paintIcon(final Component ¢, Graphics g, int x, int y) {

if (imageIcon != null) imagelIcon.paintIcon(c, g, X, V);
else{ g.drawString("Loading CD cover, please wait...", x+300, y+190);
if (!retrieving) {
retrieving = true;
retrievalThread = new Thread(new Runnable () {
public void run() {
try {
imageIcon = new Imagelcon(imageURL, "CD Cover");

c.repaint () ;
} catch (Exception e) { e.printStackTrace();}

}
}) g

retrievalThread.start () ;

} 29 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

java.lang.reflect package can be used to
create a proxy class on the fly.

A proxy controls the access to the real object applying protection to the method calls in

a transparent way. T he client will invoke methods against the proxy thinking it is the real
object.

coitlernaoess cclitlernacess
Subject InvocationHandler
+ request() + invoke()

Tn A

Extends Extends Extends
RealSubject Proxy InvecationHandler
%)
+ request() + request() + invoke()

The proxy zoo

» Firewall proxy

» Smart Reference proxy

E.g. counts the number of references
» Caching proxy
» Synchronization Proxy
» Complexity hiding Proxy
Similar to fagade pattern, it also controls accesses

» Copy-on-write Proxy

31 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Homework

» Consider your phone being the subject.

» Build a firewall proxy that filters sms and phone calls to

block those of stalkers (e.g. your former girlfriends).
(Updatable)

32 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

