Tecniche di Progettazione:
Design Patterns

GoF: Proxy

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Revisit the Gumball machine example

» The same example covered in the State pattern

» Now we want to add some monitor to a collection of
Gumball machines

Gumball Class

public class GumballMachine |{ A lotation is J“’{'- a Shi
// other instance variables | "

public GumballMachine (§€
LLEESE 2ot

' the
onsteuctor and stored in the

instance variable.

=,

// other methods here grab the lotation when we need it

Gumball Monitor

public class GumballMonitor |{

GumballMachine machine; P The monitor £akes the maching in s

‘M{:rufw a . .
public GumballMonitor (GumballMachine machine) { mathine ins " i 'H""ﬂ'c

this.machine = machine; tance variable.
}

public void report() |{
System.out.println(“Gumball Machine: “ + machine.getLocation());
System.out.println (“Current inventory: ™ + machine.getCount() + ™ gumballs”);
System.out.println(“Current state: “ + machine.getState());

\

Our veport method just pr i
: Jp: prmﬁsa |
location, inventory and the mhim;.&

Role of the remote Proxy

ekends to R*Mﬁ Gumball Maeh

but it's just, a stand A)
for ’d\cjkﬁ T“"“ﬁ Remote Heap ﬁ

..............
®

Here the 6"‘"‘"311'
Mﬂﬁrt“ s {"hﬂ L‘IE“£
4t thinks it's
hkm ko the Real
bl muhr;c;:* "
I‘E ﬂ“ s " nOJu] '
{_;:hg ?1;}“\" whith the PFE:_;\ Thndy “.-';g':d
then talks to the. Same 3 o0 old syt W T
Real gqumbal '":km tode, only it's that attvaly
over the netw talking to 3 proxy ceal wovk:

RMI Detour in looking at Proxy Pattern

€) First, we’re going to take the RMI
Detour and check RMI out. Even if
you are familiar with RMI, you might
want to follow along and check ocut the
scenery.

€© Then we’re going to take our
GumbaliMachine and make it a remote
service that provides a set of methods
calls that can be invoked remotely.

€© Then, we going to create a proxy that can
talk to a remote GumballMachine, again
using RMI, and put the monitoring system
back together so that the CEO can monitor
any number of remote machines.

Remote Methods

eal Thing

I-E."n u'lk!ﬂﬁ {',0
Real Sevvite. It
Ehinks £he tlient
hgl?r_r 18 the Jchg
that tan actually
do the veal work:

This is 6oing
to be our
provy

Client helper ?jfc{fm
4o be the sexvitt,

Cli-znt heap it's just @ POy for the

ds
but

I &f | - Vi A - I_. e gﬁi-lne :}:L 1'5 %I
vice helper gets the The 2 S 1k
request from the tlient k,'q-.g e b e ® N
h:llrcn unpacks it, and objtz ol does the
:: ihc f“*'h“d on the &.i-.i work

How the method call happens
Client calls method

@ (Client object calls doBigThing() on the client helper object.

Client heap

Client Helper forwards to service helper

@ Client helper packages up information about the call
(arguments, method name, etc.) and ships it over the
network to the service helper.

Service helper calls the real object

. Service help_er unpacks the information from the client helper,
finds out which method to call (and on which object) and
invokes the real method on the real service object.

isis‘l:\\ﬂ

Rgmzmhﬂj ‘u‘

n'bjtt.{: with the REAL

othod logic. The ont
Jc:gadu?ﬂw redl ok

Real object returns result

. The method is invoked on the service object, which returns
some result to the service helper.

ﬂ Client heap

Service helper forwards result to client

@ Service helper packages up information returned from the
call and ships it back over the network to the client helper.

Client helper returns result to client

Client helper unpackages the returned values and returns
them to the client object. To the client object, this was all
fransparent.

ﬂ Client heap
TR

Server heap [l

if

RMI Nomenclature: in RMI, the client helper is a ‘stub’ and the
service helper is a ‘skeleton’.

This is going
to att as our
proxy!

J
Skf'fton OBJ'EC-fJ
bht mc{hih on
Now let’s go through all the steps needed to make an object into a the servey. sid
service that can accept remote calls and also the steps needed to 'S still handli,

allow a client to make remote calls,

You might want to make Sure your seat belt is fastened; there are

a lot of steps and a few bumps and curves - but nothing to be too
worried about.

Steps in using Java RMI

Step one:

Make a Remote Interface

The remote interface defines the methods that
a client can call remotely. It's what the client MyService java
will use as the class type for your service. Both

the Stub and actual service will implement

this!
Step two: B} ¢ The Real sm'.:.js ’c::ii
Make a Remote Implementation = vith the methods lements
s bhe veal work [t implem
This is the class that does the Real Work. It

has the real implementation of the remote ~ MyServicelmpl java the remote intertaLe
methods defined in the remote interface.
It’s the object that the client wants to call
methods on (e.g., our GumballMachine!).

Additional steps

methods on (e.g., our GumballMachine!).

~5pits out
Step three: Running it aﬁa‘ms{:. the actwal Classes £ i:: new
Generate the stubs and skeletons using rmic sevvite implementation tlass: helper objeets
These are the client and server ‘helpers’. You File Edit Window Help Eat i:i:,:
don’t have to create these classes or ever look %$rmic MyServiceImpl ot
at the source code that generates them. It’s all

handled automatically when you run the rmic
tool that ships with your Java development kit.

MyServicelmpl_Stub.class

111
16 110
0119

Step four: o

*01 01

Start the RMI registry (rmiregistry) MyServicelmpl_Skel.class
The rmiregistry is like the white pages of a phone
book. It’s where the client goes to get the proxy
(the client stub/helper object).

File Edit Window Help Drink

$rmiregistry

Run s
a seya’ ate

Step five:
Start the remote service

You have to get the service object up and running. Your
service implementation class instantiates an instance , ;
of the service and registers it with the RMI registry. tjava MyServicelmpl
Reglatering it makes the service available for clients.

i i e

@ Extend java.rmi.Remote STEP 1

Remote is a ‘marker’ interface, which means it has no methods. It has special Remote Interface
meaning for RMI, though, so you must follow this rule. Notice that we say
‘extends’ here. One interface 1s allowed to extend another interface.

public interface MyRemote

. Declare that all methods throw a RemoteException

The remote interface is the one the clhient uses as the type for the service. In
other words, the client invokes methods on something that implements the
remote interface. That something is the stub, of course, and since the stub is
doing networking and 1/0, all kinds of Bad Things can happen. The client

has to acknowledge the risks by handling or declaring the remote exceptions. If
the methods in an interface declare exceptions, any code calling methods on a
reference of that type (the interface type) must handle or declare the exceptions.

ilﬂpﬂrt java .rmi.* 2 (—_—l Rtlﬁﬂkﬂ 1“*‘1,‘3‘.: is n j,a\‘a,\'ﬂ-l

public interface MyRemote extends Ramta .{ F ey Mﬂm -
public String sayHello() throws Remot:

Considered ‘visky'. Deelari
Remo{:cﬁn‘.-t?h:n on Hcr;s
method forces the tlient
to pay attention and
atknowledae that things

m&]’lt hof. work.

STEP 1
Remote Interface

@ Be sure arguments and return values are primitives or Serializable

Arguments and return values of a remote method must be either primitive

or Serializable, Think about it. Any argument to a remote method has to

be packaged up and shipped across the network, and that’s done through
Serialization. Same thing with return values. If you use primitives, Strings, and
the majority of types in the API (including arrays and collections), you'll be fine.

I[f you are passing around your own types, just be sure that you make your classes
implement Serializable.

[- :,- i +)

o b

! - i
ST 1
il

|-. “."J .‘z; pr l:-ni -
L E

'\ This veturn value is 9onng be shi

server back {0 the tlient, so it
how aras and vetuyy values

..-..1:_{
g

Pped over the wive from the

must be Sevializable. That'
get Packaged wp and sent. |

- STEP 2
@ Implement the Remote interface Remote Implementation

Your service has to implement the remote interface—the one with
the methods your client is going to call,

public class MyRemoteImpl extends UnicastRemoteObject ;
public String sayHello() ({
return “Server says, ‘Hey’”;

The f.omfﬂcr will make Sure ﬂli{’.

' e inplemented g
// more code in class Em the ,h&: Ly ‘ayofh:;:::ii
} [n this tase, there's nnly l .

@ Extend UnicastRemoteObject

In order to work as a remote service object, your object needs some functionality
related to ‘being remote’. The simplest way is to extend UnicastRemoteObject

(from the java.rmi.server package) and let that class (your superclass) do the
work for you.

P“bllc 01333 MYRemoteIm l h..il_l-:_...,,;:; ,*

STEP 2
Remote Implementation

@ Write a no-arg constructor that declares a RemoteException

Your new superclass, UnicastRemoteObject, has one little problem—its
constructor throws a RemoteException. The only way to deal with this is to
declare a constructor for your remote implementation, just so that you have a
place to declare the RemoteException. Remember, when a class is instantiated,
its superclass constructor is always called. If your superclass constructor throws
an exception, you have no choice but to declare that your constructor also throws

an exception. Yo dor't have to ok a T&ihﬁ n
£:r. tonshructor. You jush ne::r:hu
way to detlare that your sp€
tonstruttor throws an exteption

public MyRemoteImpl () |

@ Register the service with the RMI registry

Now that you've got a remote service, you have to make it available to remote
clients. You do this by instantiating it and putting it into the RMI registry (which
must be running or this line of code fails). When you register the implementation
object, the RMI system actually puts the stub in the registry, since that's what the
client really needs. Register your service using the static rebind() method of the
java.rmi.Naming class. : use
try { Give Your sevvite @ name (that Lgth:ﬁ::; ;
- v
te service = new Lo look it up in the regstry) a:u 5'..3,4. the
with the RMI r;‘ﬁ;cq‘:::’:;tvuwiu for the
ca 44 ice objeety KM sw .
L aasN g ::::‘:hd ‘;.,{,. Ehe stub in the registry

Run rmic on the remote implementation class
(not the remote interface)

The rmic tool, which comes with the Java software
development kit, takes a service implementation and

creates two new classes, the stub and the skeleton. It uses

a naming convention that is the name of your remote
implementation, with either _Stub or _Skel added to
the end. There are other options with rmic, including
not generating skeletons, seemg what the source code
for these classes looked like, and even using IIOP as
the protocol. The way we're doing it here is the way
you'll usually do it. The classes will land in the current
directory (i.e. whatever you did a cd to). Remember,
renic must be able to see your implementation class, so

you'll probably run rmic from the directory where your

remote implementation 1s located. (We're deliberately
not using packages here, to make it simpler. In the Real
World, you'll need to account for package directory
structures and fully-qualified names).

STEP 3
Create Stubs &
Skeletons

Rmic 9enerates 4,

’ Cplas? MW lasses | {

e that You dont say L e Lhy
N”i‘; end. jusjc the tiass name. MF” GbJ“t"
on

101108
10 1148

File Edit Window Help Whuffie kg

$rmic MyRemoteImpl

DL 10
ool ol

MyRemotelmpl_Stub.class

1011017
010
1l
ool 10
a0y ol

MyRemotelmpl_Skel.class

Step four: run rmiregistry

Bring up a terminal and start the rmiregistry.

Be sure you start it from a directory that has access to
vour classes. The simplest way is to start it from your
‘clagses’ directory.

Step five: start the service

Bring up another terminal and start your service

This might be from a mam() method m your remote
implementation class, or from a separate launcher class.

In this simple example, we put the starter code n the
implementation class, in a main method that instantiates the
object and registers it with RMI registry.

File Edit Window Help Huh?

$rmiregistry

File Edit Window Help Huh?

% java MyRemotelmpl

Complete code for the server side

The Remote interface:

f Rcmﬂ{tEif.cf'Jdan and Rtmujcz

AT i ¢
import java.rmi.*; ir.’u:r;&tt dre in javarm packa

¢ ‘]/r.wr 1n{:£r£al'.£ MUST extend jﬂ“ﬁ-rmi.REmo{’.ﬂ
public interface MyRemote extends Remote {

public String sayHello() throws RemoteException; Al of Your remote methods must
) .~ detlare a RemoteException

The Remote service (the implementation):

i . : .
:!.mport :]ava.rm:!.. ; e
import java.rmi.server.*; J (

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote |

public String sayMello() { & You have fo implement all the You MUgT mplement
return “Server says, ‘Hey’”; interfate methods, of tourse. Put Femote ihf"’"‘r‘“f” .
: notice that You do NOT have $o "
detlare the Rcrno{cﬁucp{ian.

public MyRemoteImpl () throws RemoteException { } Vour super tlass tonstruttor (For

i HnitachRtmo{c(}bjtﬂ{:) detlares an exteption, so

: 'E medn
_ _ . ‘ . VOU must write a tonstructor, betause it m
et e that your tonstruttor is ealling visky tode (its
try { super tonstruttor)

MyRemote service = new MyRemoteImpl () ; "\
Naming.rebind ("RemoteHello”, service);

} cateh(Exception ex) ({ Make the remote bi |
8 printicackTrace) ; __ rmiregistery using zﬁ:ihﬁ:ﬁq’:lhd t & the
) | name You registey i undey ing rebind(), The

. s th i .
} use to look it up in the RM| r:gfx{n::c .

Client talks to the stub

Code Up Close

The tlient a|wa}rs uses the remote

imPlementation as the +
. ype of the
:::::1;"1 faet, the ctlient never e
Your rf"lfhc actual lass name ﬁ; ,E:Sf e ar
™ Servide. c l
¢ lookup() is a statie method rcﬂis{c“;:::is -

\ﬁ of the Naminﬁ tlass.
”, d

MyRemote service =
(MyRemote) Naming. lookup (“rmi://127.0.0. 1/RemoteHello”) ;

\ ‘-Uﬁ—'\r-‘_'f
You have to tast it +o the The host name or |P
interface, since the lookup addvess wheve the

method returns {:'ﬂ?c Objm:'[; servite is running.

Hooking up client and server objects

How it works...

@ Client does a lookup on the RMI registry
Naming.lookup (“rmi://127.0.0.1/RemoteHello”) ;

@ RMI registry returns the stub object
(as the return value of the lookup method) and RMI deserializes the stub
automatically. You MUST have the stub class (that rmic generated for you)
on the client or the stub won't be deserialized,

. Client invokes a method on the stub, as if the
stub IS the real service

Complete client code

The Nami
L/f"—‘ e ming ifa:s_ (fg.r #ih

public class MyRemoteClient {
public static void main (String[] args) f{
new MyRemoteClient().go();

import java.rmi.*;

}

public void go() {

MyRemote service = (MyRemote) Naming. lookup (“rmi://127.0.0.1/RemoteHello") ;

String s = service.sayHello(); You need the P 4 the name wed to
System.out.println(s) R address or hostrame. :nd/ eebind the service
} catch(Exception ex) { [{ |ook Ju;{ like |
ex.printStackTrace() ; method ¢ all {Emcp{f%: aruaid
: } Jﬁkhuwlcdag the Rem 2 :

ftExcgpﬁgﬁ)
}

Back to Gumball machine problem

Remote Qumball Mathine

The stub iz 2 P with a JUm.

to the rcmo‘l’.ﬁ
GumballMathine:

Server heap

Client heap

7

This is owr

Monikor tode; it ‘
uses 3 prory to The skeleton ateepts the The "oa\\ma':'\{mt s
falk teo “""f’t "*E;o:tc ealls and makes aow ve wmt:;t
ball machines everything work on +h M e 10 €¥
*m servite si}c. S ‘J:z.:.::a- et 36¢

Gumball Machine remote interface

» import java.rmi.*;
4

» public interface GumballMachineRemote extends Remote

{
> public int getCount() throws RemoteException;
> public String getLocation() throws RemoteException;
> public State getState() throws RemoteException;

>}

State interface extends Serializable

import java.io.®;

public interface State extends Serializable {
public void insertQuarter();
public void ejectQuarter();
public void turnCrank();

4
4
4
4
4
4
> public void dispense();
4

}

Use of keyword “transient”

public class NoQuarterState implements State {

transient GumballMachine gumballMachine;

public NoQuarterState(GumballMachine gumballMachine) {
this.gumballMachine = gumballMachine;

public void insertQuarter() {
System.out.printIn("You inserted a quarter");
gumballMachine.setState(gumballMachine.getHasQuarterState());

}

/| other methods

J The use of transient to ensure that the serialization

does not involve this object as well.

Proxy Pattern defined

The Proxy Pattern provides a surrogate or

placeholder for another object to control access
to it.

The proxy pattern is used to create a
representative object that controls access
to another object, which may be remote,
expensive to create or in need of securing.

Proxy Class Diagram

nd the
Both the Proxy 2
[—\ RcalSu’o_}Ef-{’. un? lement the
Subjett nkevface. This

al‘mws 3!\'1 t‘.-\ltnf. {:,o {.r:a{:

Lhe provy sk like the
RealSub yee

.'-.

The Rtalgub ett is
usually the ‘i
that does most
the real work;
{:hE Pl'ony cah":i‘ois

attess .bo "E

eet The Prov. o-c{‘,Cn tmﬂnba&s
J ov hamdles the tveation of

the R Ealgubjcgt_

-——-' B

The Proxy keeps 3
cebevente to Lo the
Sub‘)tt.{:., <o it tan
L orward veques

Lo the Subjct.’c
when netessavy:

The CEO runs the monitor, which first grabs the proxies to the remote
gumball machines and then calls getState() on each one (along with
getCount() and getLocation()).

CEO's deskior

Remote Gumbl Mathin
Typc is ﬁ"ml?ﬂ"MaﬁhincR:mofe with 3 JV'M €

mball machine,

Making the call

© getState() is called on the proxy, which forwards the call to the remote
sevice. The skeleton receives the request and then forwards it to the

gunball machine.

€© GumballMachine returns the state to the skeleton, which serializes it and
transfers it back over the wire to the proxy. The proxy deserializes it and
returns it as an object to the monitor.

Likewise, the QumballMachine
im?ltmﬂn‘ﬁs another ih‘l:t\’fﬂd‘-t and

may throw a vemote exception in its
tonstruttor, but other than that, the
tode hasn't thanged.

We also have a small bit of tode to register and locate stubs using the
RMI vegistry. But no matter what, it we were writing something to
work over the [nternet, we'd need some kind of lotator sevvice.

Remote Proxy

Remote Proxy

With Remote Proxy, the proxy
acts as a local representative

for an object that lives ina
different JVM. A method call

on the proxy results in the call
being transferred over the wire,
invoked remotely, and the result
being returned back to the proxy
and then to the Client.

We know this diagram
pretty well by now..

Virtual Proxy

Virtual Proxy

Virtual Proxy acts as a
representative for an object that
may be expensive to create. The
Virtual Proxy often defers the
creation of the object until it

is needed; the Virtual Proxy

also acts as a surrogate for

the object before and while it

is being created. After that, the
proxy delegates requests directly to
the RealSubject.

Choose the album tover of

Your J'ilzn-l-g.l here. \}

Playing CD Covers

3. b S

iyt R G N, b it i il
!Fimrluf!l:l_s

“Loading CD cover, please wait...”.

PR e e

]I Favorite CDs

2 i T e m

When the b t-:-“"-: f.:-'-ll-ti‘
oy oaded: the ¥
" 1 jl'lnf ynadOyf

=

200

. Favorite CDs
Buddha Bar
Selected Ambient Works, vol. 2
i MNorthern Exposure

4 Ima

MCMXC AD.
Karma

. Ambient: Music for Alrports

Whilt {:l'lt CD Lover

| IS |o&dinﬂ, the proxy
dispfays a message.

Playing CD Cover Proxy

This is the Swing .
leon interface used mmﬁ?},w}
to display images in a getlcanWidthy)
user interfate. geticonHsight(
painticon()
' subject -
Imagelcon ImageProxy
getlconWidth() geticonWidth()
/ geticonHeight() getlconHeight(}
painticon() painticon()
This is Javax.swing.lmagckan,
a ¢tlass

{:ha{: diSPrE"fs an fm&s:

C This is our proxy, whith Fivst
displays a message and then when
the image is loaded, delegates to
Imageleon to display the image.

ImageProxy process

L

O

ImageProxy first creates an Imagelcon and starts
loading it from a network URL.

While the bytes of the image are being retrieved,
IimageProxy displays “Loading CD cover, please
wait...”.

When the image is fully loaded, ImageProxy del-
egates all method calls to the image icon, including
painticon(), getWidth() and getHeight().

If the user requests a new image, we’ll create a
new proxy and start the process over.

ImageProxy process

What did we do?

€ We created an ImageProxy for the display. The paintIcon
method is called and ImageProxy fires of f a ‘rhrfuud to .
retrieve the image and create the ImageIcon.

kes a
lma Prmw tyed .
= {.hrﬁ:ad to nstantiate the :
" g paintIcon() lmagtlm. i abars "
g reving the imagc: server on
= vc{:\'tcvmﬁ
> s get in'mge. the Internet
otz e ¥ S
o l |
H.”.pp-ﬂﬁ""
- displays lﬂﬂding

mﬁﬁuge

At some point the image is returned and
the ImageIcon fully instantiated,

{h’?’qgelco“

© After the ImageIcon is created, the next time paintIcon() is
called, the proxy delegates to the ImageIcon.

paintIcon()

paintIcon()

displays the real image

imag

class ImageProxy implements Icon {
ImageIcon imagelIcon;
URL imageURL;
Thread retrievalThread;
boolean retrieving = false;

public ImageProxy (URL url) { imageURL = url; }

public int getIconWidth() {
if (imageIcon != null) return imagelIcon.getIconWidth () ;
else return 800; 1}
public int getIconHeight () {
if (imagelIcon != null)return imageIcon.getIconHeight ();
else return 600;}
public void paintIcon(final Component ¢, Graphics g, int x, int y) {

if (imagelIcon != null) imagelIcon.paintlIcon(c, g, X, V);
else{ g.drawString("Loading CD cover, please wait...", x+300, y+190);
if (!retrieving) {
retrieving = true;
retrievalThread = new Thread (new Runnable () {
public void run() {
try |
imageIcon = new Imagelcon (imageURL, "CD Cover");

c.repaint();
} catch (Exception e) { e.printStackTrace();}

}
}) g

retrievalThread.start () ;

} 45 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Using Java API’s Proxy to create a
protection proxy

Subject

<<interface>>

request()

R

RealSubject

.

request()

~
~
~
~
~
~
~

Proxy

<<interface>>
InvocationHandler

request()

invoke())

InvocationHandler

invoke()

The proxy zoo

» Firewall proxy

» Smart Reference proxy

E.g. counts the number of references
» Caching proxy
» Synchronization Proxy
» Complexity hiding Proxy
Similar to fagcade pattern, it also controls accesses

» Copy-on-write Proxy

47 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

