Tecniche di Progettazione:
Design Patterns

GoF: Decorator

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



2 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



} 3 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



4 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Decorator

» Intent

Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for
extending functionality.

» Also Known As
Wrapper

» Motivation

We want to add properties, such as borders or scrollbars to a
GUI component. We can do this with inheritance (subclassing),
but this limits our flexibility. A better way is to use
composition!

5 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Motivation

aBorderDecorator

asScrollDecoralor -

aTextView -

|/ aBorderDecorator

aScrntlDe-ﬁnrntnu'_hH

I\_cu-mpunent &

6 Design patterns, Laura Semini, Universita di Pisa,

Gamw applcaloes woulkd Bsrsh)
liim pgdng abecis 0 moel sy
pepacl al lhar kinchaasihy Bl

H narss design anamaach wesld ba
prehiiiesk) aapansss

Far gxarmgls, mesl dosumant gi-
fers el ubares T te) orimnsl-
(g arwd Achireg S hiss G sane
snlarl. Howses', [y ramriakly
piop ahart of psrg cbjests o
mpreaanl aach chamcks aml
graphical &wman] K e decumsnl
Diarg 20 woukd promots Jaatdly
ul the lres) sl s
apphsatan, Teel and graphics
ik b st riler iy =ik

| @

aTextView -\I

componen;

<

b

Dipartimento di Informatica.




Decorator in Lexi

» |l problema
Attaccare al glifo altri elementi, quali scrollbar e bordi

Nel contempo si vogliono tenere questi elementi separati, visto
che sono necessari o meno a seconda della situazione

» La soluzione: applicare Decorator

7 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Structure: the TextView example

VisualComponent &
Oirawi)
| | componeni

TextView Decorator

Diraw() Drrawi} ©———-
ScrolliDecorator BorderDecorator
Drawi() Draw() o--—------
ScrollTo() DrawBorder)
scrollPosttion borderWidth

8 Design patterns, Laura Semini, Universita di Pisa,

component—>Draw()

Decorator::Drawt };
DrawBorder();

s

Dipartimento di Informatica.



Structure

component-=COparation()

Dacorator::Operation(); p=
AddedBehavior():

Compaonernt -
Clperatony)
| | component
ConcreteComponent Decorator
Crperation() Cperation(] &-pF----—--=-=--=-====-=-—17
ConcreteDecoratord ConcreteDecoratorB
Operation() Operation]) ©----==q=-=—==1
AddedBehavion)
addedState
9 Design patterns, Laura Semini, Universita di Pisa,

Dipartimento di Informatica.



Decorator: partecipanti

» Component

Linterfaccia comune degli oggetti da decorare

» ConcreteComponent

La classe degli oggetti base che possono ricevere nuove responsabilita

» Decorator

Definisce un’interfaccia conforme a quella comune e mantiene un riferimento a un solo
oggetto Component (eventualmente gia decorato)

» ConcreteDecorator

Definisce una nuova responsabilita

10 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Decorator: collaborazione

11

Ohject1 Ohject2
ConcreteDecor Component

I I

I I

' ;| I
Csuper.operationd |

1.1 operation]: |

fo== ]

é: addedBehawior

Design patterns, Laura Semini, Universita di Pisa,

b — — — — — ——— —

Dipartimento di Informatica.



public clas=s AdministrrativeManager extend=s Responsiblslorker |
public AdministrativaManager ( Emploves empl ) ek
super( empl );:
|
public woid whols ()
saylamBoss (); h
super.whols{|; -
]
i ble Warkier
private void savIamBoas{) { 1
w System.gut.print { "I am a bozs. " |;
] || snng
\ o () Senng
} : =
'.':.II I.'-\.l?"'\-.
L
.
| Administrativela nger Frojectianger
. profc: Siring
| +whals(;
A3y iamEoss|) L

12 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Motivation for the Decorator pattern in
a little more detail.

» Suppose we have a TextView GUI component and we want to
add different kinds of borders and scrollbars to it.

» Suppose we have three types of borders:
Plain, 3D, Fancy

» And two types of scrollbars:

Horizontal,Vertical

» Solution |: Let’s use inheritance first.We’ll generate subclasses
of TextView far all the required cases.We’'ll need the |5

TextView-Plain TextView-Plain-Horizontal-Vertical

SUbClaSSeS: TextView-Fancy TextView-3D-Horizontal

TextView-3D TextView-3D-Vertical
TextView-Horizontal TextView-3D-Horizontal-Vertical
TextView-Vertical TextView-Fancy-Horizontal
TextView-Horizontal-Vertical TextView-Fancy-Vertical
TextView-Plain-Horizontal TextView-Fancy-Horizontal-Vertical

TextView-Plain-Vertical
13 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Bad solution

» We already have an explosion of subclasses.What if we
add another type of border? Or an entirely different
property?

We have to instantiate a specific subclass to get the behavior
we want.

» This choice is made statically and a client can't control
how and when to decorate the component.

14 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



at some paint, stratedy. algorithminterfaced |\_\.I

Scollbar

SN

HorzScrollbar

HwScrollbar

YertScrollbar

I
| Context Strategy
I
I
H +contextinterface: strategy +algoritteninterface:
ConcreteStrat1 ConcreteStrat?
+algorithminterface: +algarithminterface):
Component
Textiaw Decorator
Border
PlainBaorder A0Border FancyBorder
15 Design patterns, Laura Semini, Universita di Pisa,

Dipartimento di Informatica.




Using Strategy

» Now the TextView Class looks like this:

public class TextView extends Component {
private Border border;
private Scrollbar sb;
public TextView(Border border, Scrollbar sb) {

this.border = border;

this.sb = sb;

}

public void draw() {
border.draw();
sb.draw();

I/l Code to draw the TextView obiject itself.

I

16 Design patterns, Laura Semini, Universita di Pisa,  Dipartimento di Informatica.



Using Strategy: pro and cons

» Pro:

we can add or change properties to the TextView component
dynamically. For example, we could have mutators for the
border and sb attributes and we could change them at run-

time.

» Cons:

But note that the TextView object itself had to be modified and
it has knowledge of borders and scrollbars! If we wanted to
add another kind of property or behavior, we would have to
again modify TextView.

17 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Let’s turn Strategy inside out to get the

Decorator pattern

Compaonent

i

Component

7

!

Teutview

Cecorator

<

Barder

el

FlainBarder 3DBarder

FancyBorder HorzScrollbar

scollbar

LI

HarzScrallbar

HWScrollbar

WertScrallbar

Text e Crecaratar
Border
FlainBaorder J0Border FancyBorder
18

Design patterns, Laura Semini, Universita di Pisa, Dipartimento

di Informatica.

z

T 1



Implementing the Decorator solution

» Now the TextView class knows nothing about borders
and scrollbars:

public class TextView extends Component {
public void draw() {
/I Code to draw the TextView object itself.

}

19 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Implementing the Decorator solution
(cont’d)

» But the decorators need to know about components:

public class FancyBorder extends Decorator {

private Component component;

public FancyBorder(Component component) {
this.component = component;

}

public void draw() {
component.draw();
// Code to draw the FancyBorder object itself.

20 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Implementing the Decorator solution
(cont’d)

» Now a client can add borders as follows:
public class Client {
public static void main(String[] args) {
TextView data = new TextView();
Component borderData = new FancyBorder(data);
Component scrolledData = new VertScrollbar(borderData);
Component borderAndScrolledData = new

HorzScrollbar(scrolledData);

}

» Decorator: Changing the skin of an object

» Strategy: Changing the guts (viscere) of an object

21 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



22

STAGE

Actor class Stoge(
Actor forAct]l = new Santo(new Actor)
Actor forAct2 = new Spy({new Frank(new Actor)

}

F

Actl is a Santa act
Act2 the actor is o Frankenstein who Disguises os o
Spy.

Sante Fronka

Concrete Decorators

o

L

f ' |

ey ¢ el e A S e L T

B & ] il B i il e

B pgma sbew |

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



23

Design patterns, Laura Semini, Universita di Pisa,

Dipartimento di Informatica.



An example

Welcome to Starbuzz Coffee

Starbuzz Coffee has made a name for itself as the

fastest growing coffee shop around. If you've seen one

on your local corner, look across the street; you'’ll see
another one.

Because they've grown so quickly, they're scrambling

to update their ordering systems to match their
beverage offerings.

When they first went into business they designed their
classes like this...

24 Design patterns, Laura Semini, Universita di Pisa , Dipartimento di Informatica.



Your first idea of implementation
Peverage is an abstratt :.lass, /w/
A )

description

Beverage

The d:sf.rl?{‘,ioh instante vaviable
s set in eath subelass and holds a
deseviption of the h:#tragt.”hk:

“Most Excellent Dark Roast .

The 3¢£D:5ﬂrif'|:'mn“ method
veburns the deseription.

The eost() method is getDescription)

ahs-l;rac,{-,j subelassses :——*—-._______? cost{)
need to define their

oW ]m?‘!mth{.a‘hnh-

[f Other useful methods

DarkRoast

~ ]

Eath subelass im?l:rﬂch{'j tost() Lo vetwen the cost of the bcvcragc-

25 Design patterns, Laura Semini, Universita di Pisa  , Dipartimento di Informatica.



In reality

In addition to your coffee, you can also ask for several condiments like
steamed milk, soy, and mocha {(otherwise known as chocolate), and have
it all topped off with whipped milk. Starbuzz charges a bit for each of
these, so they really need to get them built into their order system.

Here’s their first attempt...

26 Design patterns, Laura Semini, Universita di Pisa , Dipartimento di Informatica.



Now a beverage can be mixed from different condiment to form a
new beverage

Whod

Can you say
“class explosion?”

HouseBlendWithSteamedMilk

27 Design patterns, Laura Semini, Universita di Pisa , Dipartimenjg di Informatica.



This is stupid; why do we need
all these classes? Can't we just use
instance variables and inheritance in
the superclass to keep track of the
condiments?

Well, let's give it a try. Let's start with the Beverage base
class and add instance variables to represent whether or
not each beverage has milk, soy, mocha and whip...

description New boolean values -Fn'r

milk eath tondiment.

B0y

nmdﬁ

e Now we'll implement cost() in Beverage (instead of
getDescription(] keeping it abstract), so that it can caleulate the

costl) tosts assotiated with the tondiments for 2 Far{itu'lar

h:\r;raag instante. Subelasses will still override

hasMilk

setl'l.n'lilk{i} tost(), but they will also invoke the super version so
hasSoyl) that they can caleulate the fotal eost of +he basie
h !Iml 0 beveraae plus the tosts of the added condiments.
z=tMochal)

has Whipl) These aet and set the boelean

setihip() values ¥or the rondiments.

i Other ussful methods._.

28 Design patterns, Laura Semini, Universita di Pisa  , Dipartimento di Informatica.



Beverage

Mow let's add in the subclasses, one wwnn
for each beverage on the menu: soy
macha
. lah 'H'H'.' '|I|'h'|:|
lass eostl) will ealew :
e e e
i,m avevvidden ost() n the subtlasses > cost)
e o bt fncbirdity s
(B4l
. tlude tosts For that spet heston)
beverane type: L selSoy()
Eath eastl) method needs to tompule hashocha()
the tost of the beverade ahﬁ' {h?hc r;ﬁwhilf}ﬂ
5dd in the tondiments by €21 selWhip()

5u?:rt.1.ass im?\r.mr:n'l;a-l;iah ok tost().

OSS

il Other useful methods..

HouseBlend

cost()

29 Design patterns, Laura Semini, Universita di Pisa

, Dipartimento di Informatica.



Now, your turns. It is a good
solution?

See, five
classes total. This is
definitely the way to go.

I'm not so sure: I can
see some potential problems
with this approach by thinking
about how the design might need
to change in the future.

30 Design patterns, Laura Semini, Universita di Pisa  , Dipartimento di Informatica.



Try several minutes to complete

% E Write the cost ) methods for the following classes (pseudo-Java 1s okay):

public class Beverage { public class DarkRoast extends Beverage {

blic double
public double cost() { public DarkRoast() {

description = "Most Excellent Dark Roast";
}

public double cost() {

31 Design patterns, Laura Semini, Universita di Pisa  , Dipartimento di Informatica.



What can you criticize about this
inheritance architecture?

» Write down your notes to see if you are right

32 Design patterns, Laura Semini, Universita di Pisa , Dipartimento di Informatica.



@Pﬂ" jr per

What requirements or other factors might change that will impact this design?

Price thanges for tondiments will forte us £o alter existing Lode

New condiments will force us to add mew methods and alter the cost method in the supertlass.

O
h‘. w o\ ; a“-
We may have new beverages. For some of these beverages (iced tea?), the tondiments C,\‘ﬂt:\uﬁa' 9
may not be appropriate, yet the Tea subelass will still inherit methods like hasWhipl). 3¢

What if a tustomer wants a double motha?

\{ w‘f t“““‘

33 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



) Design Principle
Classes should be open
® for extension, but closed for

modification.

» SOLID 2: Open Closed Principle :

Extending a class shouldn't require modification of that class.

Software entities like classes, modules and functions should be

open for extension but closed for modifications.
OPC is a generic principle.You can consider it when writing your
classes to make sure that when you need to extend their behavior

you don’t have to change the class but to extend it. The same principle
can be applied for modules, packages, libraries.

34 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Come on 1n; we're
open. Feel free to extend
our classes with any new behavior you
like. If your needs or requirements change (and we
know they will), just go ahead and make your own

extensions.

Sorry, we're closed.
That's nght, we spent
a lot of ame getting this code correct and

bug free, so we can't let you alter the exasting code.
It must remain closed to modification. If you don’t
like it, you can speak to the manager:

35 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Q‘ How can | make every part of Q: How do | know which areas of

my design follow the Open-Closed change are more important?
Principle?

A: That is partly a matter of

A: Usually, you can’t. Making OO experience in designing 0O systems and
design flexible and open to extension also a matter of the knowing the domain
without the modification of existing you are working in. Looking at other
code takes time and effort. In general, examples will help you learn to idenfify
we don't have the luxury of tying areas of change in your own designs.

down every part of our designs (and it
would probably be wastefu). Following
the Open-Closed Principle usually
introduces new levels of abstraction,
which adds complexity to our code.
You want to concentrate on those areas
that are most likely to change in your
designs and apply the principles there.

36 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Decorator Pattern

» The problems of two previous designs
we get class explosions, rigid designs,

or we add functionality to the base class that isn’t
appropriate for some of the subclasses.

37 Design patterns, Laura Semini, Universita di Pisa  , Dipartimento di Informatica.



Revisit the problem again

» If a customer wants a Dark Roast with Mocha and Whip
Take a DarkRoast object
Decorate it with a Mocha object
Decorate it with a Whip object

Call the cost() method and rely on delegation to add on the
condiment costs

38 Design patterns, Laura Semini, Universita di Pisa  , Dipartimento di Informatica.



Constructing a drink order with
Decorators

€@ We start with our DarkRoast object. sekRoast

© The customer wants Mocha, so we create a Mocha

object and wrap it around the DarkRoast.
cﬂ.ﬂ'fa'ta'r‘ l'ts‘

; s ad .
The Moth? *-g':ito;‘):tf it s dct«oratme\"

F ’c.\ﬁt S Peverage (BT Naaiiadl

[ 1 a
n this £ase, Y,
we mean ik is the same Yy

method too
. Motha has 3 t:;{.;;:ﬁs: we tan tred

o D ?iza??:d in Motha as

aﬁéﬁe::;_?c{,oo (betavse Mothd is 3
eve i

aiub*:,\f?z o'c B:V:ragc)-

39 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



The customer also wants Whip, so we create a
Whip decorator and wrap Mocha with it.

WhiP is @ detovrator, so it also
mivrors DarkRoast’s type and
intludes a tost() method.

So, a DarkRoast wrapped in Motha and Whip is still
d Bﬂtrgc and we ¢an do an\/fhing wi{’h 'l{ we tan do
with a DarkRoast, including call its cost() method.

40 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



@ Now it’s time to compute the cost for the customer. We do this
by calling cost() on the outermost decorator, Whip, and Whip is
going to delegate computing the cost to the objects it decorates.

Once it gets a cost, it will add on the cost of the Whip. _
(You'll see how ™"

5 few pages)

[

First, we call cost() on the Mocha calls cost() on
outmost decorator, Whip. DarkRoast.

0 Whip calls cost() on Mocha.

o parkRoast
returns its cost,

99 cents.

Whip adds its total, 10 cents,
to the result from Mocha, and Mocha adds its cost, 20
returns the final result—$1.29, o cents, to the result from

parkRoast, and returns
the new total, $1.19.

} 41 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



The Decorator Pattern attaches additional
responsibilities to an object dynamically.
Decorators provide a flexible alternative to
subclassing for extending functionality.

42 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Decorator Pattern detftined

Eath tomponent tan be used on its
oWIn, OF m-a?ped b"‘ a dc-f.al"a-{;ar

component

The ContreteComponent
is the objeet we'vre going
to dynamically add rnew
behavior to- [t extends
Component.

Each decovator HAS-A
(wraps) a tomponent, which
means the detorator has an
instance variable that holds
a veference to a component.

s 'm?lem“:- the
Desorabort ses o sostract

class as the component Ehey

ave 'ﬁ“"“&h d.tﬂ-d"a'hc

methodA)
The cw.;,ﬂhDgtara{:ar has an

tend the
mstante vaviable £or the thing mu-aumuu DMTE}:T;‘;““*__
‘t decovates (the Component I other methods state

the Detovator wraps).

Detorators tan add new methods; however, new
behavior is ically added by dong tomputation
before or after an existing methed in the omponent.

43 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



The decorator pattern for Starbuzz

beverages

Beveraae 3
astt,\’aL'h tom?

onent tlass:

component

Beverage

description

getDescription()
cost()
If other useful methods

b 44

NN 722

And heve are owr condiment detorators; notice
ﬂ\tbhccd {;o imP[CMCH{: not only ws{( ) bu{', also

3d: cstrip‘[:iOnO. We'll see why in @ moment...

Design patterns, Laura Semini, Universita di Pisa , Dipartimento di Informatica.



Some confusion over Inheritance versus Composition

Okay, I'm a little
confused...I thought we weren't

) ; S . d s
e going to use inheritance in this
( o pattern, but rather we were going
0 to rely on composition instead.
' 4
y ' Sue: What do you mean?
Mary: Look at the class diagram. The CondimentDecorator is extending the Beverage class.
That’s inheritance, right?
Sue: True. I think the point is that it's vital that the decorators have the same type as the
\ objects they are going to decorate. So here we're using inheritance to achieve the #ype matching,
but we aren't using inheritance to get behavior.
Mary: Okay, I can see how decorators need the same “interface” as the components they wrap
because they need to stand in place of the component. But where does the behavior come in?
\ /
Sue: When we compose a decorator with a component, we are adding new behavior. We
| A are acquiring new behavior not by inheriting it from a superclass, but by composing objects
¥ tGgether.

45 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Mary: Okay, so we're subclassing the abstract class Beverage in order to have the correct type,
not to inherit its behavior. The behavior comes in through the compositon of decorators with
the base components as well as other decorators.

Sue: That’s right.

Mary: Ooooh, I see. And because we are using object composition, we get a whole lot more
flexability about how to mix and match condiments and beverages. Very smooth.

Sue: Yes, if we rely on inheritance, then our behavior can only be determined statically at

compile tme. In other words, we get only whatever behavior the superclass gives us or that we
override. With composition, we can mix and match decorators any way we hke. .. at runtime.

Mary: And as I understand it, we can implement new decorators at any time to add new
behavior. If we relied on inheritance, we’d have to go in and change existing code any ame we
wanted new behavior.

Sue: Exactly.

Mary: I just have one more question. If all we need to inherit is the type of the component,
how come we didn’t use an interface instead of an abstract class for the Beverage class?

Sue: Well, remember, when we got this code, Starbuzz already /ad an abstract Beverage class.
Tradinonally the Decorator Pattern does specify an abstract component, but in Java, obviously,
we could use an interface. But we always try to avoid altering existing code, so don’t “fix” it if
the abstract class will work just fine.

} 46 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Let’s see the code

public abstract class Beverage ({ m e abs{:rat:l'.
String description = “Unknown Beverage”; Beverage Lwo
¢lass with the WO ) M tas’c(]
public String getDescription() { %*D stﬂ?‘b

return description;
} \ :w:sr.ﬁ?{mn is already

] - Im lEm:n{',cd 'FG‘I" us, bu'!', we
} public abstract double cost(): h“d to Im?tg.,.gnﬁ ' L0

in the subelasses.

47 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



The abstract class of condiments

public abstract class-EﬁﬂdﬁﬁEﬁEb&&ﬁrﬂfﬂﬁﬂgﬂﬁéﬁﬂﬁ=Eéﬁﬁ@ﬁﬁﬁ'{
public abstract String getDescription():
}

We've also going to require

'Eha{ the ﬂﬂndimtw{:

detorators all reimplement the
3:£D:5:‘.ﬁ?-|:iant') methed. Plﬁa'lh,

we |l see wh'f in 3 sel...

» 48 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Concrete Base Classes of Beverages

_ Lend the Beverade
f\ First ::;?hh’ﬂ 3 beverdde:

L‘Hﬁl
public class Espresso extends Beverage {
public Espresso() { . 1
description = “Espresso”; & To take tave of the dcgﬂ??“’{;:
} gl;l;hisin-&hcm{:ruc{:or_gr :
tlass. Remember the destription instance
public double cost() ({ vaviable is inhevited feom Deverage:

return 1.99;

]' w: dﬂ"h
| of an Espresso .
} L/ Finally, we need to 0 di ‘t-:twﬁ"’im; i Ehis class, we ys{:
\LW‘I‘M&A ‘:}hﬁmﬁmﬂm-

49 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



A concrete Condiment class

- Detor s
Motha is a detorator, so we e Condime® nskantiate Motha with
. merm ' ) - ns
extend CondimentDetorator. ?:ihf-“'d““ Peverdd We TE;?-:EJC; 5 Beverage usin%
l L e d’l_ﬂ 'Eo hﬂ'ld- ‘E’ﬂﬁ
(1) An instance V¥t
public class Mocha extends CondimentDecorator { beveraae we are wrappmdy
Beverage beverage; 1o sek khis instante
When UI.J h wa‘f ) {: we are wa??m?}
Mocha public Mocha(Beverage beverage) { J—: avigble to {:’hc‘ o'aﬁ.'. he beverage
price this.beverage = beverage; Wavei we've 6oy ?3:;“ ha's
changed, } ke wrapping to the
we only -
need to public String getDescription() { Lmimw
change return beverage.getDescription() + ™, Mocha”;
this }
public double cost() { ,R_/ :f:lu:?th:u; j::;:{f:a:o“g:r I?
w it e Roast” — but. ako to inchde each
} 7 item dcf.arafing the bcvcragc, for
"t the tost of our beverdde instance, “Davk Roast, Motha”. So
Now we need +’° T? delegate the eall to the we first delegate to the objeet we are
with Maﬂ:a- Fivs ;{“ o that it can mm?u’ce the dg{.ora{;ina to 3:{', its deseription, then
obiett wevre GECONEND: } of Motha to the vesult. append *, Motha” to that destription.

eost; then we add the tos

» 50 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Constructing new beverages from
decorator classes dynamically

public class StarbuzzCoffee | mmnﬂ""‘”fs
£550) <
an €YY . - and L0
public static void main(String args([]) { P Ovaer ??*, ks de.ﬁf-"‘?boh
Beverage beverage = new Espresso():; and T

System.out.println (beverage.getDescription|()
+ " $” + beverage.cost()); ek
Make a DackRoast object

Beverage beverage2 = new DarkRoast():; « Wrap it with 3 Motha:

beverage2 = new Mocha(beverage2); &—_—"
beverage2 = new Mocha (beverage2); &~ Wrap it in a second Motha.
beverage2 = new Whip (beverage2); ¢—— Wrap it in 3 Whip.

System.out.println(beverage2.getDescription()
+ “ 5" + beverageZ.cost()):

Beverage beveragel = new HouseBlend(); € T

beverage3 = new Soy(beverage3); Fina“'}': give us 3 HGN'—BI‘“‘!
beverage3 = new Mocha (beverage3) ; vith Soy, Motha, and Whip.
beverage3 = new Whip (beverage3);

System.out.println(beverage3.getDescription/()
+ “ 5" + beverage3d.cost()):

51 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Real world decorator — Java I/O

A text File for veading,

i

ents, ncludnd .
\ies 5;: :L:TEE“%&HM“?:*?;';T
LineNumber|nputStream is Filelngut™e L Stream i t from
also a tontvete decovator. Bﬁ-p; dlnputStream Wﬁ*‘;ﬁ:?‘:“ s 3 base Lowmponen
It adds the ability fo D iaots dceveata. Al of L: Y btes
tount the line numbers as = o o e addi whith b
it reads data. Buf fevedinputStream aad

behavier in two walyfs v

buf fers input Lo improve
?cr-FoFmJnt-c. and also augw-:n{'.s
the inktevfate with a new
method veadline() for veading
thavacter—based mput, 3 line
at a time.

» 52 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Pecorating the java.io classes

.
(_\ Peve's 0¥ Joskratt pasiyret
FilterlnputStream
y N A J /-\ is an abstract
detorator.

FilelnputStream StringBufferinputStream | ByteArrayinputStream FilterinputStream

/ PushbackinputStream | BufferedinputStream I DatalnputStream ' LineNumberinputStream '
These [nputStreams act as

the tontrete f.oh?m:n‘[:s &E{;l:{: ‘\ ] /I {
F:E:;”&:a; F;wth mii?:c di&n’{ And Fina“*ﬁ here ave all our tontrete detorators.

show, like ObjectinputStream.

53 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Comments

» You can see that this isn’t so different from the Starbuzz
design.You should now be in a good position to look over
the java.io APl docs and compose decorator s on the
various input streams.

» You’ll see that the output streams have the same design.
And you've probably already found that the
reader/Writer streams (for character-based data) closely
mirror the design of the streams classes (with a few
differences and inconsistencies, but close enough to figure
out what’s going on).

54 Design patterns, Laura Semini, Universita di Pisa , Dipartimento di Informatica.



Let’s write a new decorator

e Fivst, extend the Filter[nputStream, the
Dont Ed{ﬁj i:mr& abstract decovator for all [nputStreams.

jpvaio- )/

public class LowerCaseInputStream extends FilterInputStream {
publi = gInputStream(InputStream in) {

OException {

return (c == -1 ? ¢

Character.tolLowerCase((char)c)):

}

public int read(byte(] b, int offset, int len) throws IOException {
int result = super.read(b, offset, len);
for (int i = offset; i < offset+result; i++) {

b[i] = (byte)Character.tolLowercCase((char)b([i]); \ Now we need to im?lemch{‘. two

} vead methods. They take a
return result; (or an avvay of s)
} and convert eacth byte that
} vepresents 3 chavacter) to

lowerease if it's an uppertase
55 Design patterns, Laura Semini, Universita di Pisa, Diparﬁh‘?é‘?'&tfﬁ”i Informatica.



Test out your new Java I/O decorator

public class InputTest {
public static void main(String[] args) throws IOException ({

int c;
try {
InputStream in =
new LowerCaseInputStream( L Sebwp v
new BufferedInputStream ( and deto¥
new FileInputStream(“test.txt”))): aewgﬂﬂ-
ahd H““

while((c = in.read()) >= 0) {
System.out.print ((char)c):

Lowc\’CC
}

in.close();

} catch (IOException e) { I know the Decorator Pi
e.printStackTrace();

}

} Just use the stream to vead
tharacters until the end of o~
file and print as we go. f

» 56 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Dark Side

» You can usually insert decorators transparently and the
client never has to know it’s dealing with a decorator

» However, if you write some code is dependent on specific
types -> Bad things happen

» Java library is notorious to be used badly by people who
do not know decorator pattern

Beverage beverage2 = new DarkRoast();
beverage2 = new Mocha(beverage?);
beverage2 = new Mocha(beverage?);

Beverage beverage2 = new DarkRoast();
beverage2 = new Mocha(beverage?);

beverage?2 = new Mocha(beverage2); ‘ .
beverage2 = new Whip(beverage2); Whip beverage3 = new Whip(beverage2);

System.out.println(beverage2.getDescription() Syfte,r’n.out.println(beverage3.getDescription()
+“ $” + beverage2.cost()); +7$" + beveragel.cost());

The right way The poor way

57 Design patterns, Laura Semini, Universita di Pisa , Dipartimento di Informatica.



Exercise solutions

public class Beverage {

// declare instance variables for milkCost,

// soyCost, mochaCost, and whipCost, and

// getters and setters for milk, soy, mocha public class DarkRoast extends Beverage {
// and whip.

public DarkRoast() {
public float cost() { description = "Most Excellent Dark Roast”;

float condimentCost = 0.0: )
if (hasMilk()) { public float cost() {

condimentCost += milkCost:
} return 1.99 + super.cost();
if (hasSoy()) {

condimentCost += soyCost; ) }
}

if (hasMocha()) {
condimentCost += mochaCost:
}
if (hasWhip()) {
condimentC += whipCost;
}

return condimentCost:

58 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.




Decorator: Consequences
» Good

More Flexibility than static inheritance
Much easier to use than multiple inheritance
Can be used to mix and match features
Can add the same property twice
Allows to easily add new features incrementally

59 Design patterns, Laura Semini, Universita di Pisa  , Dipartimento di Informatica.



Decorator: Consequences
» Bad

If Decorator is complex, it becomes costly to use in quantity

A decorator and its component aren’t identical

From an object identity point of view, a decorated component is not
identical to the component itself

Don’t rely on object identity when using decorators

Lots of little objects
Often end up with systems composed of lots of little objects

Can be hard to learn and debug

60 Design patterns, Laura Semini, Universita di Pisa  , Dipartimento di Informatica.



Implementation Issues

» Several issues should be considered when applying the
Decorator pattern:

|. Interface conformance:

A decorator object’s interface must conform to the interface
of the component it decorates.

2. Omitting the abstract Decorator class:

If only one responsibility is needed, don’t define abstract
Decorator. Merge Decorator’s responsibility into the
ConcreteDecorator.

61 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Implementation Issues

3. Keeping Component classes light weight:

The Component class is inherited by components and
decorators. Component class should be dedicated to defining
an interface, no other functions. E.g.The Component class
should not be used for storing data, and defining data. That
should be done in subclasses. If the Component class becomes
complex, it might make the decorators too heavyweight to use
in quantities. Keep it light and simple.A complex Component
class might make Decorator too costly to use in quantity.

4. Changing the skin of an object versus its guts:

Decorator classes should act as a layer of skin over an object.
If there’s a need to change the object’s guts, use Strategy
pattern.

62 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



References

» [GoF95]: Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.Addison-VWesley
Professional Computing Series, Addison-Wesley, Reading Mass. 1995.

» [AGCS]:AG Communication Systems,

» SDSU & Roger Whitney (2001) CS 635 Advanced Object-Oriented Design
& Programming, Decorator, Chain of Responsibility, OO Recursion, San
Diego State University,

» BobTarr,C ,

63 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



