Tecniche di Progettazione:
Design Patterns

GoF: Decorator

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

An example

Welcome to Starbuzz Coffee

Starbuzz Coffee has made a name for itself as the

fastest growing coffee shop around. If you've seen one

on your local corner, look across the street; you'’ll see
another one.

Because they've grown so quickly, they're scrambling

to update their ordering systems to match their
beverage offerings.

When they first went into business they designed their
classes like this...

2 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Your first idea of implementation
Peverage is an abstratt :.lass, /w/
A)

description

Beverage

The d:sf.rl?{‘,ioh instante vaviable
s set in eath subelass and holds a
deseviption of the h:#tragt.”hk:
“Most Excellent Dark Roast .

The 3¢£D:5ﬂrif'|:'mn“ method
veburns the deseription.

The eost() method is getDescription)

ahs-l;rac,{-,j subelassses :——*—-._______? cost{)
need to define their

oW]m?‘!mth{.a‘hnh-

[f Other useful methods

DarkRoast

~]

Eath subelass im?l:rﬂch{'j tost() Lo vetwen the cost of the bcvcragc-

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

In reality

In addition to your coffee, you can also ask for several condiments like
steamed milk, soy, and mocha {(otherwise known as chocolate), and have
it all topped off with whipped milk. Starbuzz charges a bit for each of
these, so they really need to get them built into their order system.

Here’s their first attempt...

q Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Now a beverage can be mixed from different condiment to form a
new beverage

Whoal

Can you say
“class explosion?”

HouseBlendWithSteamedMilk

5 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

This is stupid; why do we need
all these classes? Can't we just use
instance variables and inheritance in
the superclass to keep track of the
condiments?

Well, let's give it a try. Let's start with the Beverage base
class and add instance variables to represent whether or
not each beverage has milk, soy, mocha and whip...

description New boolean values -Fn'r

milk eath tondiment.

B0y

nmdﬁ

e Now we'll implement cost() in Beverage (instead of
getDescription(] keeping it abstract), so that it can caleulate the

costl) tosts assotiated with the tondiments for 2 Far{itu'lar

h:\r;raag instante. Subelasses will still override

hasMilk

setl'l.n'lilk{i} tost(), but they will also invoke the super version so
hasSoyl) that they can caleulate the fotal eost of +he basie
h !Iml 0 beveraae plus the tosts of the added condiments.
z=tMochal)

has Whipl) These aet and set the boelean

setihip() values ¥or the rondiments.

i Other ussful methods._.

6 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Beverage

Mow let's add in the subclasses, one wwnn
for each beverage on the menu: soy
macha
. lah 'H'H'.' '|I|'h'|:|
lass tostl) will ealew :
e e S
i,m avevvidden ost() n the subtlasses > cost)
e o it fncbirdity s
(E g4
':d'-ldt f,nzl;s?fnr £'r-a{: 5?:“ HI :ﬁﬂsltﬂ}n
verade ’ &
‘;, eh tostl) method needs to *'e"""?"‘tr' hasMachal)
fi: cost ok the beverase ahﬁ' {h?hc r;ﬁwhilf}ﬂ
5dd in the tondiments by €21 selWhip()

5u?:rt.1.ass im?\r.mr:n'l;a-l;iah ok tost().

OSS

il Other useful methods..

HouseBlend

cost()

7 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Now, your turns. It is a good
solution?

See, five
classes total. This is
definitely the way to go.

I'm not so sure: I can
see some potential problems
with this approach by thinking
about how the design might need
to change in the future.

8 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

@P&" jr per

What requirements or other factors might change that will impact this design?

Price changes Lor tondiments will forte us 4o alter existing tode

New condiments will force us o add mew methods and alter the cost method in the supertlass.

b
We maY have new bevr.ragc.t For some of these bcm'agcs (ited tea?), the tondiments C’\\ﬁw \036 W
may not be appropriate, Yet the Tea subtlass will still inherit methods like hasihip(). o V&

What if a customer wants a double mocha?

oo

9 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

) Design Principle
Classes should be open
® for extension, but closed for

modification.

» SOLID 2: Open Closed Principle :

Extending a class shouldn't require modification of that class.

Software entities like classes, modules and functions should be

open for extension but closed for modifications.
OPC is a generic principle.You can consider it when writing your
classes to make sure that when you need to extend their behavior

you don’t have to change the class but to extend it. The same principle
can be applied for modules, packages, libraries.

10 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Q: How can | make every part of
my design follow the Open-Closed
Principle?

AZ Usually, you can't. Making OO
design flexible and open to extension
without the modification of existing
code takes time and effort. In general,
we don't have the luxury of tying

down every part of our designs (and it
would probably be wastefu). Following
the Open-Closed Principle usually
introduces new levels of abstraction,
which adds complexity to our code.
You want to concentrate on those areas
that are most likely to change in your
designs and apply the principles there.

Q: How do | know which areas of
change are more important?

A: That is partly a matter of
experience in designing OO systems and
also a matter of the knowing the domain
you are working in. Looking at other
examples will help you learn to identify
areas of change in your own designs.

1 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Decorator Pattern

» The problems of two previous designs
we get class explosions, rigid designs,

or we add functionality to the base class that isn’t
appropriate for some of the subclasses.

12 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Revisit the problem again

» If a customer wants a Dark Roast with Mocha and Whip
Take a DarkRoast object
Decorate it with a Mocha object
Decorate it with a Whip object

Call the cost() method and rely on delegation to add on the
condiment costs

13 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Constructing a drink order with
Decorators

€@ We start with our DarkRoast object. aekRoast

© The customer wants Mocha, so we create a Mocha

object and wrap it around the DarkRoast. y
The Motha cbiett is 3 dccafratar- i
p Lype mivrors ‘g'hc o"nj:f.{:. it s :i.c_t:)
'WJ:H case, 3 Deverage: (Bj‘ -
| o is the same {:\f?r..-}

we medn I"E-

14 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

The customer also wants Whip, so we create a
Whip decorator and wrap Mocha with it.

Whip is @ detovator, so it also
mivrors DarkRoast’s type and
intludes a ost() method.

So, a DarkRoast wrapped in Motha and Whip is still
a Beverage and we tan do anything with it we tan do
with a ?arkRaast, intluding call its tost() method.

15 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

(4] Now it’s time to compute the cost for the customer. We do this
by calling cost() on the outermost decorator, Whip, and Whip is
going to delegate computing the cost to the objects it decorates.

Once it gets a cost, it will add on the cost of the Whip. ‘
(You'll see how

é’/ 3 ch ?agcs,)

[

First, we call cost() on the Mocha calls cost() on
outmost decorator, Whip. DarkRoast.

© whip calls cost() on Mocha.

parkRoast
returns its cost,

99 cents.

Whip adds its total, 10 cents,
to the result from Mocha, and Mocha adds its cost, 20
returns the final result—$1.29, o cents, to the result from

parkRoast, and returns
the new total, $1.19.

» 16 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

The Decorator Pattern attaches additional
responsibilities to an object dynamically.
Decorators provide a flexible alternative to
subclassing for extending functionality.

17 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Decorator Pattern detfined

Each component tan be used on its
own, or wrapped by a decorator.

- component
methodA[)
methodB(}
{'. I other methods
mponen Each decorator HAS-A
‘ve going (wraps) a tomponent, which
dd new means the detovator has an
sntends instante variable that holds
ConcreteComponent a vekerente to a component.
methodA()
rresthiodiE()
= S b,
same nkerkate or L they
are 9o to detar
ConcereteDecoratorf
//_$ ‘Componenl wrappedObj

eDetorator has an methodB()
iable for the thing newBehavion()
s (the Component If other methods

kov wraps)-

Detorators tan extend the
ctate of the component-

Decorators tan add new methods; however, new
behavior is typically added by doing computation
before or an existing method in the component.

nformatica.

The decorator pattern for Starbuzz

beverages

Beverage 3
abstract compon

component

Beverage

description

getDescription()
cost()
Il other useful methods

> 19

N\ 7 A

And heve ave our condiment decorators; notice
{:hCBnccd to im?[tmcr\‘t not only tost() but also

5& estription(). We'll see why in 3 moment...

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Some confusion over Inheritance versus Composition

Okay, I'm a little
confused...I thought we weren't

<\ ai:
e going to use inheritance in this
((o\, pattern, but rather we were going
0 to rely on composition instead.
4
y Sue: What do you mean?
Mary: Look at the class diagram. The CondimentDecorator is extending the Beverage class.
That’s inheritance, right?
Sue: True. I think the point is that it’s vital that the decorators have the same type as the
\ objects they are going to decorate. So here we're using inheritance to achieve the #ype matching,
but we aren't using inheritance to get behavior.
Mary: Okay, I can see how decorators need the same “interface” as the components they wrap
because they need to stand in place of the component. But where does the behavior come in?
Sue: When we compose a decorator with a component, we are adding new behavior. We
» are acquiring new behavior not by inheriting it from a superclass, but by composing objects
N4 t5gether.

20 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Mary: Okay, so we're subclassing the abstract class Beverage in order to have the correct type,
not to inherit its behavior. The behavior comes in through the compositon of decorators with
the base components as well as other decorators.

Sue: That’s right.

Mary: Ooooh, I see. And because we are using object composition, we get a whole lot more
flexability about how to mix and match condiments and beverages. Very smooth.

Sue: Yes, if we rely on inheritance, then our behavior can only be determined statically at

compile time. In other words, we get only whatever behavior the superclass gives us or that we
override. With composition, we can mix and match decorators any way we hke. .. at runtime.

Mary: And as I understand it, we can implement new decorators at any time to add new
behavior. If we relied on inheritance, we’d have to go in and change existing code any ame we
wanted new behavior.

Sue: Exactly.

Mary: Ijust have one more question. If all we need to inherit is the type of the component,
how come we didn’t use an interface instead of an abstract class for the Beverage class?

Sue: Well, remember, when we got this code, Starbuzz already /ad an abstract Beverage class.
Tradinonally the Decorator Pattern does specify an abstract component, but in Java, obviously,
we could use an interface. But we always try to avoid altering existing code, so don’t “fix” 1t if
the abstract class will work just fine.

» 21 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Let’s see the code

public abstract class Beverage { m s an sbstract

String description = “Unknown Beverage”: Beverate ‘{,'hc two methods

elass W"Jd‘“ _ cost().
public String getDescription() { ytDﬂ‘-‘-ﬁ" ?{-,.an() and

return description;
: _ aetDeseription is alveady

i : implemented for us, but we
} public abstract double cost(): ngzd o i..?lgmr_h{; 10

in the subelasses.

22 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

The abstract class of condiments

b
Fiﬁh = h“\j:c:i{; a Beuﬂ*aﬁ‘

‘ 3
‘::: T:E:nd the Deverage elas \

public abstract class CondimentDecorator extends Beverage {
public abstract String getDescription():

}
We've also going to requive

$hat the condiment
detorators all veimplement the
attpciﬂri?{inn() method. f\ga’m,

we |l see why in 3 sec...

23 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Concrete Base Classes of Beverages

public class Espresso extends Beverage {

public Espresso() ({ : ’
description = “Espresso”; & To take tare of the d“.{:.. }?m £::
} set this in the tonstrut or
tlass. Remember the destription instance
public double cost() { vaviable is inhevited Lrom Bcveragc
return 1.99;
} !Hr. don't
} of an Espresso-
L/ we nee d to W“:& *‘Rﬁ e {’.5 m Lhis elass, we
utd\LWYMad ‘jhﬁmw

need 1o vetun Hﬂ Ui

24 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

A concrete Condiment class

Detord™
Motha is a detorator, so we ber ndiwme” Lantiate Mothd with
cknd CmimerDtrsor. Rt g st T
L
. hold the
\l g (1) An instante ‘3”.3]"1‘ e
public class Mocha extends CondimentDecorator { bevevage we ave wrappmd:
Beverage beverage; ‘e instante
'bo Stt Eh'-i ns
When {1-] h ‘Hﬂ‘f \ f-’C we ave w\-w?mﬁ,
Mocha public Mocha (Beverage beverage) { (_\/T aviable Lo the ob i the beveradge
' is. = ; : n '
Chzrr:;z . } this.beverage = beverage H’g‘l:l'tl we Ve ?o Eo the detorator s
we only, b wﬂhﬁ
need to public String getDescription() { porsy
change return beverage.getDescription() + ™, Mocha”;
this }
public double cost() { IR_/ !Nel :aht: L dcsﬁriﬁ:im touf;t;“ I?
i ntlude everage — say Lar
L{& 20 + beverage.cost () Roast” - but also to intlude each
7 ? item detorating the beverage, For
compute the tost of our beveraje instance, “Davk Roast, Motha". So
Now we need to com? deleaate the call to the we first deleaate to the objeet we are
h Motha. FL\'SJC-. we Y : mpute the ting to aet its Pt
wi } tina, o Ehat £ ean tomp detorating to get its destription, then
bjeet weve dELaT Y L of Mocha to the vesult append *, Motha” to that destription.

sock: then, we add the cos
25 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Constructing new beverages from
decorator classes dynamically

public class StarbuzzCoffee { - m“dimchb
an eV 1 and oSt
ol’d-ﬂ “? b dﬂiﬁfﬁ%‘ﬂ“

public static void main(String args[]) { L %
Beverage beverage = new Espresso(): £ and ?““!t'
System.out.println(beverage.getDescription()
+ “ 5" + beverage.cost()): ek
Wake a DavkRoast 0XES

Beverage beverage2? = new DarkRoast():; ¢ Wyap it with a Motha.

beverage2 = new Mocha (beverage2); €&——
beverage2Z = new Mocha(beverage2); &Z— W'"EF itina setond Mocha.
beverage2 = new Whip (beverage2); &——— Wrap it in 3 Whip.

System.out.println(beverage2.getDescription()
+ “ $” + beverageZ.cost()):

Beverage beveragel = new HouseBlend(): € .

beverage3 = new Soy(beverage3); ‘Fi.-.,al'l'}t, give us 3 HouseBlend
beverage3 = new Mocha (beverage3); with gq-f, Motha, and Whip-
beverage3 = new Whip (beverage3);

System.out.println(beverage3.getDescription/()
+ “ $” + beverage3.cost()):

26 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Real world decorator — Java I/O

A text File for veading,.

o

ol

) Ls, mtluding
; eval compom wkStream
. Puk beviny
:] T:\\e\n?“hghveah“ o and @ TEW AP
LineN mb:rfnPuf,Stmam is ? h..-q.-a‘j'.h?"*s‘{“a: gt ?M"j" from
?Lmadadﬂn;cﬂt; l*d Emﬁa ' BufferedinputStream hm Lhese ojve vs 3 .
o ;_-_h : - ”{Tbe is a contrete é.“'-'m'___.*?—..-‘b"" wieh to cead bytes
Gunt the Ine mumbers 38 B flevedimputStream 2dds ¥

behavior in £wo ways: it

buf Fers input to improve
performante, and also augments
the inkterfate with a new
method ﬂﬂdLinc” for r:&ding
chavacter—based input, a line
at a time.

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Pecorating the java.io classes

t.
onen
(—\ Beve's o¥¢ Josbract £
FilterlnputStream
/\ is an abstract
detorator.

FilelnputStream StringBufferinputStream ByteArraylnputStream

These InputStreams act as]‘ / /)
the contrete components that R

we will wrap with decorators.
There ave a few move we didnt

show, like ObjectinputStream.

And finally, here are all our contrete detorators.

28 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Comments

» You can see that this isn’t so different from the Starbuzz
design.You should now be in a good position to look over
the java.io APl docs and compose decorator s on the
various input streams.

» You’ll see that the output streams have the same design.
And you've probably already found that the
reader/Writer streams (for character-based data) closely
mirror the design of the streams classes (with a few
differences and inconsistencies, but close enough to figure
out what’s going on).

29 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Let’s write a new decorator

Dont
:)aua,im-

(

& tomport First, extend the FilterinputStream, the

d?,{ ghown) absbract decovator for all [nputStreams.

)

public class LowerCaselInputStream extends FilterInputStream {

}

eInputStream(InputStream in) {

OException {

return (c == -1 ? ¢ Character.tolLowerCase ((char)c)):

public int read(byte([] b, int offset, int len) throws IOException {

30

int result = super.read(b, offset, len):

for (int i = offset; i < offset+result; i++) {

b[i] = (byte)Character.toLowerCase((char)b(i])’ \ Now we need to im?l:mcu{: two
r:&dnmhhﬂh-T}Ej*ﬂkﬂa
byte (or an avray of bytes)
and eonvert each b\ﬂ;c that
rg?rgsm'bs a ﬂ-‘\i\'iﬂ‘hﬁr} to
lowertase if it's an uppevease

Design patterns, Laura Semini, Universita di Pisa, Dipaﬁh‘?’l’é‘hﬁﬂ'di Informatica.

}

return result;

Test out your new Java I/O decorator

public class InputTest {
public static void main(String[] args) throws IOException {

int c;
try {
InputStream in =
new LowerCaseInputStream (L Sebwp v
new BufferedInputStream (and deto¥
new FileInputStream(“test.txt”))):; 3 Bw(iﬁgr
and then

while((c = in.read()) >= 0) { .
. LoweY
System.out.print ((char)c);

}

in.close();

} catch (IOException &) { I know the Decorator Pi
e.printStackTrace();

}

} \)us{: use {:lnc s{rcam 'l:o vead
thavactevrs until the end o‘c test
file and Print as we go- ,(;

» 3 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Dark Side

» You can usually insert decorators transparently and the
client never has to know it’s dealing with a decorator

» However, if you write some code is dependent on specific
types -> Bad things happen

» Java library is notorious to be used badly by people who
do not know decorator pattern

Beverage beverage2 = new DarkRoast();
beverage?2 = new Mocha(beverage2);
beverage?2 = new Mocha(beverage2);

Whip beverage3 = new Whip(beverage?2);
System.out.println(beverage3.getDescription()
+“ $” + beverage2.cost());

Beverage beverage2 = new DarkRoast();
beverage?2 = new Mocha(beverage2);
beverage?2 = new Mocha(beverage2);
beverage?2 = new Whip(beverage2);
System.out.println(beverage2.getDescription()
+“ $” + beverage2.cost());

The right way The poor way

32 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Exercise so]utions

public class Beverage {

// declare instance variables for milkCost,

// soyCost, mochaCost, and whipCost, and

// getters and setters for milk, soy, mocha public class DarkRoast extends Beverage {
// and whip.

public DarkRoast() {
public float cost() { description = "Most Excellent Dark Roast";

float condimentCost = 0.0: }
if (hasMilk()) { public float cost() {

condimentCost += milkCost;
} return 1.99 + super.cost();
if (hasSoy()) {

condimentCost += soyCost;) }
}

if (hasMocha()) {
condimentCost += mochaCost:

}
if (hasWhip()) {
condimentCost += whipCost;

}

return condimentCost:

33 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Decorator: Consequences
» Good

More Flexibility than static inheritance
Much easier to use than multiple inheritance
Can be used to mix and match features
Can add the same property twice
Allows to easily add new features incrementally

34 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Decorator: Consequences
» Bad

If Decorator is complex, it becomes costly to use in quantity

A decorator and its component aren’t identical

From an object identity point of view, a decorated component is not
identical to the component itself

Don’t rely on object identity when using decorators

Lots of little objects
Often end up with systems composed of lots of little objects

Can be hard to learn and debug

35 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Implementation Issues

» Several issues should be considered when applying the
Decorator pattern:

|. Interface conformance:

A decorator object’s interface must conform to the interface
of the component it decorates.

2. Omitting the abstract Decorator class:

If only one responsibility is needed, don’t define abstract
Decorator. Merge Decorator’s responsibility into the
ConcreteDecorator.

36 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Implementation Issues

3. Keeping Component classes light weight:

The Component class is inherited by components and
decorators. Component class should be dedicated to defining
an interface, no other functions. E.g.The Component class
should not be used for storing data, and defining data. That
should be done in subclasses. If the Component class becomes
complex, it might make the decorators too heavyweight to use
in quantities. Keep it light and simple.A complex Component
class might make Decorator too costly to use in quantity.

4. Changing the skin of an object versus its guts:

Decorator classes should act as a layer of skin over an object.
If there’s a need to change the object’s guts, use Strategy
pattern.

37 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Decorator

» Intent

Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for
extending functionality.

» Also Known As
Wrapper

» Motivation

We want to add properties, such as borders or scrollbars to a
GUI component.We can do this with inheritance (subclassing),
but this limits our flexibility. A better way is to use
composition!

38 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Motivation

aBorderDecorator

asScrollDecoralor -

aTextView -

|/ aBorderDecorator

aScrntlDe-ﬁnrntnu'_hH

Eovie appl ealices wiukd Baref)
Trizims uging aliscis W risl ey
pepacl al lhar kinchaasihy Bl

B ke design snnrach woukd be
prihibialy sapanse

Far gxarmgls, mesl dosumant gi-
fers el ubares T te) orimnsl-
(g arwd Achireg S hiss G sane
snlarl. Howses', [y ramriakly
piop ahart of psrg cbjests o
mpreaanl aach chamcks aml
graphical &wman] K e decumsnl
Diarg 20 woukd promots Jaatdly
ul the lres) sl s
apphsatan, Teel and graphics
ik b st riler iy =ik

'*]_l_ ||¢

I_cu-mpunent &

aTextView -\I

componeni

b

39 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Structure: the TextView example

VisualComponent &

Oirawi)

A

comgponent
TextView Decorator
Dirawl) Drawl) s e e AT T SRR component-=Draw()
| |
ScrolliDecorator BorderDecorator
Draw() Draw() 0-======-|-====-=: DieBooe o
ScrollTo() DrawBorder)
scrollPosttion borderWidth
40 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Structure

component-=COparation()

Dacorator::Operation(); p=
AddedBehavior():

Compaonernt -
Clperatony)
| | component
ConcreteComponent Decorator
Crperation() Cperation(] &-pF----—--=-=--=-====-=-—17
ConcreteDecoratorA ConcreteDecoratorB
Operation() Operation]) ©----==q=-=—==1
AddedBehavior])
addedState
41

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Decorator in Lexi

» |l problema
Attaccare al glifo altri elementi, quali scrollbar e bordi

Nel contempo si vogliono tenere questi elementi separati, visto
che sono necessari o meno a seconda della situazione

» La soluzione: applicare Decorator

42 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Decorator pattern (Wrapper)

» Scopo

Aggiungere dinamicamente responsabilita a un oggetto

» Motivazioni

Spesso puo essere necessario aggiungere responsabilita a un oggetto di
una classe e magari successivamente toglierle:ad esempio le barre di
scorrimento al testo contenuto in una finestra

Se si usano le sottoclassi ci puo essere un problema di proliferazione, se
si vogliono combinare diverse responsabilita: con decorator si aggiunge
una classe per ogni responsabilita e si combinano a piacere le
responsabilita, dinamicamente

43 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Decorator: struttura

Component
component
+oparationg); 1
ConcreteComponent Decorator
_ _ component.operation)
+operation(): +operationd: f — — T —
ConcreteDecor1 ConcreteDecor2
+addedState: String _ super.operation(;
+operation(y: _ addedBeahviar(;
+operation(); +addedBehavior:

44 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

public class AdministrariveManager extends Responsibleforker |

public AdministrativeManager({ Employes empl)} |
super{ empl);
}

public void whols{ly {
gayIlamBaas () ; -
super.whols(};

]

private wolid saylamBoss () {
q System.out.print("I am a boss. " };
]

} N

o= Exfends

-\"\-

sl bleWarker

ha|: Sring
(] Sering

AdministrativeManger

+whaols|}
| a3y lamBnss|)

ProjectManger

-prajpcs: Siring

wholsf)

45 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Decorator: partecipanti

» Component

Linterfaccia comune degli oggetti da decorare

» ConcreteComponent

La classe degli oggetti base che possono ricevere nuove responsabilita

» Decorator

Definisce un’interfaccia conforme a quella comune e mantiene un riferimento a un solo
oggetto Component (eventualmente gia decorato)

» ConcreteDecorator

Definisce una nuova responsabilita

46 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Decorator: collaborazione

Object1 Object2
ConcreteDecor Component

;I: super.operationg

1.1 operation]:

b — — ——— - ——— —

é: addedBehawior

47 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Motivation for the Decorator pattern in
a little more detail.

» Suppose we have a TextView GUI component and we want to
add different kinds of borders and scrollbars to it.

» Suppose we have three types of borders:
Plain, 3D, Fancy

» And two types of scrollbars:

Horizontal,Vertical

» Solution |: Let’s use inheritance first.We’ll generate subclasses
of TextView far all the required cases.We’'ll need the |5

TextView-Plain TextView-Plain-Horizontal-Vertical

SUbClaSSeS: TextView-Fancy TextView-3D-Horizontal

TextView-3D TextView-3D-Vertical
TextView-Horizontal TextView-3D-Horizontal-Vertical
TextView-Vertical TextView-Fancy-Horizontal
TextView-Horizontal-Vertical TextView-Fancy-Vertical
TextView-Plain-Horizontal TextView-Fancy-Horizontal-Vertical

TextView-Plain-Vertical
48 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Bad solution

» We already have an explosion of subclasses.What if we
add another type of border? Or an entirely different
property?

We have to instantiate a specific subclass to get the behavior
we want.

» This choice is made statically and a client can't control
how and when to decorate the component.

49 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

at some paint, stratedy. algorithminterfaced |_\.I

I

| Context Strategy

I

I

H +contextinterface: strategy +algoritteninterface:

ConcreteStrat1 ConcreteStrat?
+algorithminterface: +algarithminterface):
Component
Testvfieny Cecaorator
Border

R SN

PlainBorder 3DBorder FancyBarder HorzScrollbar HvScrollbar YertScrollhar

50 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Using Strategy

» Now the TextView Class looks like this:

public class TextView extends Component {
private Border border;
private Scrollbar sb;
public TextView(Border border, Scrollbar sb) {

this.border = border;

this.sb = sb;

}

public void draw() {
border.draw();
sb.draw();

I/l Code to draw the TextView obiject itself.

I

51 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Using Strategy: pro and cons

» Pro:

we can add or change properties to the TextView component
dynamically. For example, we could have mutators for the
border and sb attributes and we could change them at run-

time.

» Cons:

But note that the TextView object itself had to be modified and
it has knowledge of borders and scrollbars! If we wanted to
add another kind of property or behavior, we would have to
again modify TextView.

52 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Let’s turn Strategy inside out to get the
Decorator pattern

Component

i

Textview Ciecaratar

7

Barder

i LI

PlainBordar 2DBorder FancyBorder HorzScrollbar HvSerollbar VerScrallbar

53 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Implementing the Decorator solution

» Now the TextView class knows nothing about borders
and scrollbars:

public class TextView extends Component {
public void draw() {
/I Code to draw the TextView object itself.

}

54 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Implementing the Decorator solution
(cont’d)

» But the decorators need to know about components:

public class FancyBorder extends Decorator {

private Component component;

public FancyBorder(Component component) {
this.component = component;

}

public void draw() {
component.draw();
// Code to draw the FancyBorder object itself.

55 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Implementing the Decorator solution
(cont’d)

» Now a client can add borders as follows:
public class Client {
public static void main(String[] args) {
TextView data = new TextView();
Component borderData = new FancyBorder(data);
Component scrolledData = new VertScrollbar(borderData);
Component borderAndScrolledData = new

HorzScrollbar(scrolledData);

}

» Decorator: Changing the skin of an object

» Strategy: Changing the guts (viscere) of an object

56 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Homework

The winter holidays will be
here (again) before you know
1t! Being the organized
individual you are, you have a
plan for next year's holiday
tree. Implement a software
system that allows you to
calculate the price of any tree
plus any combination of
decorations. The system must
be easily extendable in the
sense that whenever new
decorations are added in the
store you will have to at most
add one class.

57 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Homework (cont’d)

Here are two tables representing costs of trees and
decorations, respectively

Trees Cost Decorations Cost

Fraser Fir 12 Star 4

Colorado Blue Spruce 20 Balls Red I
Balls Silver 3
Lights 5

58 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Homework (cont’d)

A very important requirement is that a tree can only have one star.When a
user wants to decorate a tree with a star with a new star you must print a
warning that the tree already has a star and not add the price of a star to tree.
Users must be able to continue decorating their tree if they add another star
to it:

Tree mytree = new BlueSpruce();
mytree = new Star(mytree);
mytree = new BallsRed(mytree);
mytree = new Star(mytree);
mytree = new Lights(mytree);
printtree(mytree);

should lead to:
Tree already has a star!
Blue spruce tree decorated with, a Star, BallsRed, Lights costs $30.00

59 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

