

: Sale

makePayment(cashTendered)

: Payment
create(cashTendered)

implies Sale objects have a
responsibility to create Payments

INFORMATION EXPERT (OR EXPERT)

ClassName

attributes

methods

third section is for
methods

Sale

date
time

Sales

LineItem

quantity

Product

Specification

description
price
itemID

Described-by*

Contains

1..*

1

1

Sale

date

time

getTotal()

:Sale
t := getTotal()

New method

Sale

date
time

getTotal()

SalesLineItem

quantity

getSubtotal()New method

1 *: st := getSubtotal()
: Sale

t := getTotal()

*

:SalesLineItem
:SalesLineItem

Sale

date
time

Sales
LineItem

quantity

Product
Specification

description
price
itemID

Described-by*

Contains

1..*

1

1

: Register : Sale

makeLineItem(quantity)

: SalesLineItem
create(quantity)

: Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

: Register :Sale

:Payment

makePayment() 1: makePayment()

1.1. create()

: Register : Sale

addPayment(p)

p : Payment
create()

makePayment()

: Register : Sale

makePayment()

 : Payment
create()

makePayment()

System

endSale()
enterItem()
makeNewSale()
makePayment()

. . .

Which class of object should be responsible for receiving this
system event message?

It is sometimes called the controller or coordinator. It does not
normally do the work, but delegates it to other objects.

The controller is a kind of "facade" onto the domain layer from
the interface layer.

actionPerformed(actionEvent)

: ???

: Cashier

:SaleJFrame

presses button

enterItem(itemID, qty)

Interface
Layer

Domain
Layer

system event message

:Register
enterItem(id, quantity)

:ProcessSaleHandler
enterItem(id, quantity)

CONTROLLER

It may contain the following controllers:

Use-case controllers

MakeReservationHandler

ManageSchedulesHandler

ManageFaresHandler

2. Design the controller so that it primarily delegates the fulfillment of

each system operation responsibility on to other objects.

Interface Layer Does Not Handle System Events

To reiterate: an important corollary of the Controller pattern is that interface

objects (for example, window objects) and the interface layer should not have

responsibility for handling system events. As an example, consider a design in

Java that uses a JFrame to display the information.

Assume the NextGen application has a window that displays sale information

and captures cashier operations. Using the Controller pattern, Figure 16.17

illustrates an acceptable relationship between the JFrame and Controller and

other objects in a portion of the POS system (with simplifications).

Notice that the SaleJFrame class—part of the interface layer—passes the

enter-Item message to the Register object. It did not get involved in processing

the operation or deciding how to handle it; the window only delegated it to

another layer.

Assigning the responsibility for system operations to objects in the application

or domain layer—using the Controller pattern rather than the interface layer

supports increased reuse potential. If an interface layer object (like the SaleJ-

Frame) handles a system operation—which represents part of a business pro-

cess—then business process logic would be contained in an interface (for

example, window-like) object, which has low opportunity for reuse because of its

coupling to a particular interface and application.

Consequently, the design in Figure 16.18 is undesirable.

Placing system operation responsibility in a domain object controller makes it

easier to reuse the program logic supporting the associated business process in

future applications. It also makes it easier to unplug the interface layer and use

a different interface framework or technology, or to run the system in an offline

"batch" mode.

243

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Message Handling Systems and the Command Pattern

Some applications are message-handling systems or servers that receive
requests from other processes. A telecommunications switch is a common exam-
ple. In such systems, the design of the interface and controller is somewhat dif-
ferent. The details are explored in a later chapter, but in essence, a common
solution is to use the Command pattern [GHJV95] and Command Processor pat-
tern [BMRSS96], introduced in Chapter 34.

Related Patterns

Figure 16.17 Desirable coupling of interface layer to domain layer.

• Command—In a message-handling system, each message may be repre
sented and handled by a separate Command object [GHJV95].

• Facade—A facade controller is a kind of Facade [GHJV95].

• Layers—This is a POSA pattern [BMRSS96]. Placing domain logic in the
domain layer rather than the presentation layer is part of the Layers
pattern.

244

actionPerformed(actionEvent)

:Register

: Cashier

:SaleJFrame

presses button

1: enterItem(itemID, qty)

:Sale
1.1: makeLineItem(itemID, qty)

Interface Layer

Domain Layer

system event message

controller

OBJECT DESIGN AND CRC CARDS

Pure Fabrication—This is another GRASP pattern. A Pure Fabrication is an
arbitrary creation of the designer, not a software class whose name is
inspired by the Domain Model. A use-case controller is a kind of Pure
Fabrication.

Cashier

:SaleJFrame

actionPerformed(actionEvent)

:Sale
1: makeLineItem(itemID, qty)

Interface Layer

Domain Layer

It is undesirable for an interface

layer object such as a window to get

involved in deciding how to handle
domain processes.

Business logic is embedded in the

presentation layer, which is not useful.

SaleJFrame should not

send this message.

presses button

Figure 16.18 Less desirable coupling of interface layer to domain layer.

16.11 Object Design and CRC Cards

Although not formally part of the UML, another device sometimes used to help
assign responsibilities and indicate collaboration with other objects are CRC
cards (Class-Responsibility-Collaborator cards) [BC89]. These were pioneered
by Kent Beck and Ward Cunningham, who are largely responsible for encourag-
ing objects designers to think more abstractly in terms of responsibility assign-
ment and collaborations, and also for the use of patterns.

245

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

CRC cards are index cards, one for each class, upon which the responsibilities of

the class are briefly written, and a list of collaborator objects to fulfill those

responsibilities. They are usually developed in a small group session. The

GRASP patterns may be applied when considering the design while using CRC

cards.

CRC cards are one approach to recording the results of responsibility assign-

ment and collaborations. The recording can be enhanced with the use of interac-

tion and class diagrams. The real value is not the cards or the diagrams, but the

consideration of responsibility assignment.

16.12 Further Readings

The metaphor of collaborating objects with responsibilities, or

Responsibility-Driven Design, especially emerged from the influential object

work in Smalltalk at Tektronix in Portland, from Kent Beck, Ward Cunningham,

Rebecca Wirfs-Brock, and others. Designing Object-Oriented Software [WWW90]

is the landmark text, and as relevant today as when it was written.

Two other recommended texts emphasizing fundamental object design princi-

ples are Object-Oriented Design Heuristics by Riel, and Object Models by Coad.

246

