Chapter 16

GRASP: DESIGNING OBJECTS
WITH RESPONSIBILITIES

The most likely way for the world to be destroyed, most
experts agree, is by accident. That's where we come in;
we're computer professionals. We cause accidents.

—Nathaniel Borenstein

Objectives
m Define patterns.

m Learn to apply five of the GRASP patterns.

Introduction

Object design is sometimes described as some variation of the following:

After identifying your requirements and creating a domain
model, then add methods to the software classes, and define the
messaging between the objects to fulfill the requirements.

Such terse advice is not especially helpful, because there are deep principles and
issues involved in these steps. Deciding what methods belong where, and how
the objects should interact, is terribly important and anything but trivial. It
takes careful explanation, applicable while diagramming and programming.

And this is a critical step—this is at the heart of what it means to develop an
object-oriented system, not drawing domain model diagrams, package diagrams,
and so forth.

N
e
{9)]

16.1

216

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

GRASP as a Methodical Approach to Learning Basic Object

Design

It is possible to communicate the detailed principles and reasoning required to
grasp basic object design, and to learn to apply these in a methodical approach
that removes the magic and vagueness.

The GRASP patterns are a learning aid to help one understand essential object
design, and apply design reasoning in a methodical, rational, explainable way.
This approach to understanding and using design principles is based on patterns of
assigning responsibilities.

Responsibilities and Methods

The UML defines a responsibility as "a contract or obligation of a classifier"
[OMGO1]. Responsibilities are related to the obligations of an object in terms of its
behavior. Basically, these responsibilities are of the following two types:

* knowing
* doing
Doing responsibilities of an object include:

o doing something itself, such as creating an object or
doing a calculation

o initiating action in other objects
o controlling and coordinating activities in other objects
Knowing responsibilities of an object include:
o knowing about private encapsulated data
o knowing about related objects
o knowing about things it can derive or calculate

Responsibilities are assigned to classes of objects during object design. For
example, I may declare that "a Sale is responsible for creating SalesLineltems" (a
doing), or "a Sale is responsible for knowing its total" (a knowing). Relevant
responsibilities related to "knowing" are often inferable from the domain model,
because of the attributes and associations it illustrates.

The translation of responsibilities into classes and methods is influenced by the
granularity of the responsibility. The responsibility to "provide access to rela-
tional databases" may involve dozens of classes and hundreds of methods, pack-
aged in a subsystem. By contrast, the responsibility to "create a Sale” may
involve only one or few methods.

RESPONSIBILITIES AND INTERACTION DIAGRAMS

A responsibility is not the same thing as a method, but methods are imple-
mented to fulfill responsibilities. Responsibilities are implemented using meth-
ods that either act alone or collaborate with other methods and objects. For
example, the Sale class might define one or more methods to know its total; say, a
method named getTotal. To fulfill that responsibility, the Sale may collaborate
with other objects, such as sending agetSubtotal message to each SalesLineltem
object asking for its subtotal.

16.2 Responsibilities and Interaction Diagrams

The purpose of this chapter is to help methodically apply fundamental principles
for assigning responsibilities to objects. This will often be done while pro-
gramming. Within the UML artifacts, a common context where these
responsibilities (implemented as methods) are considered is during the creation
of interaction diagrams (which are part of the UP Design Model), whose basic
notation we examined in the previous chapter.

implies Sale objects have a
responsibility to create Payments

Figure 16.1 Responsibilities and methods are related.

Figure 16.1 indicates that Sale objects have been given a responsibility to create
Payments, which is invoked with a makePayment message and handled with a
corresponding makePayment method. Furthermore, the fulfillment of this
responsibility requires collaboration to create the SalesLineltem object and
invoke its constructor.

In summary, interaction diagrams show choices in assigning responsibilities to
objects. When created, decisions in responsibility assignment are made, which
are reflected in what messages are sent to different classes of objects. This chapter
emphasizes fundamental principles—expressed in the GRASP patterns—to
guide choices in where to assign responsibilities. These choices are reflected in
interaction diagrams.

217

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

16.3 Patterns

Experienced object-oriented developers (and other software developers) build up a
repertoire of both general principles and idiomatic solutions that guide them in
the creation of software. These principles and idioms, if codified in a structured
format describing the problem and solution, and given a name, may be called
patterns. For example, here is a sample pattern:

Pattern Name: Information Expert

Solution: Assign a responsibility to the class that has the
information needed to fulfill it.

Problem It Solves: What is a basic principle by which to assign
responsibilities to objects?

In object technology, a pattern is a named description of a problem and solution
that can be applied to new contexts; ideally, it provides advice in how to apply it in
varying circumstances, and considers the forces and trade-offs.! Many patterns
provide guidance for how responsibilities should be assigned to objects, given a
specific category of problem.

Most simply, a pattern is a named problem/solution pair that can be applied
in new context, with advice on how to apply it in novel situations and
discussion of its trade-offs.

"One person's pattern is another person's primitive building block" is an object
technology adage illustrating the vagueness of what can be called a pattern
[GHJV94]. This treatment of patterns will bypass the issue of what is appropriate
to label a pattern, and focus on the pragmatic value of using the pattern style as
a vehicle for naming, presenting, learning, and remembering useful software
engineering principles.

Repeating Patterns

New pattern could be considered an oxymoron, if it describes a new idea. The
very term "pattern” is meant to suggest a repeating thing. The point of patterns is
not to express new design ideas. Quite the opposite is true—patterns attempt to
codify existing tried-and-true knowledge, idioms, and principles; the more honed
and widely used, the better.

1. The formal notion of patterns originated with the (building) architectural patterns of
Christopher Alexander [AIS77]. Patterns for software originated in the 1980s with
Kent Beck, who became aware of Alexander's pattern work in architecture, and then
were developed by Beck with Ward Cunningham [BC87, Beck94].

GRASP: PATTERNS OF GENERAL PRINCIPLES IN ASSIGNING RESPONSIBILITIES

Consequently, the GRASP patterns—which will soon be introduced—do not
state new ideas; they are a codification of widely used basic principles. To an
object expert, the GRASP patterns—by idea if not by name—will appear very
fundamental and familiar. That's the point!

Patterns Have Names

All patterns ideally have suggestive names. Naming a pattern, technique, or
principle has the following advantages:

» It supports chunking and incorporating that concept into our understanding
and memory.

« It facilitates communication.

Naming a complex idea such as a pattern is an example of the power of abstrac-
tion—reducing a complex form to a simple one by eliminating detail. Therefore,
the GRASP patterns have concise names such as Information Expert, Creator,
Protected Variations.

Naming Patterns Improves Communication

When a pattern is named, we can discuss with others a complex principle or
design idea with a simple name. Consider the following discussion between two
software designers, using a common vocabulary of patterns (Creator, Factory,
and so on) to decide upon a design:

Fred: "Where do you think we should place the responsibility for creating a
SalesLineltem? 1 think a Factory."

Wilma: "By Creator, I think Sale will be suitable."
Fred: "Oh, right—I agree."

Chunking design idioms and principles with commonly understood names facili-
tates communication and raises the level of inquiry to a higher degree of
abstraction.

16.4 GRASP: Patterns of General Principles in Assigning
Responsibilities

To summarize the preceding introduction:

* The skillful assignment of responsibilities is extremely important in object
design.

« Determining the assignment of responsibilities often occurs during the cre
ation of interaction diagrams, and certainly during programming.

219

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

m Patterns are named problem/solution pairs that codify good advice and prin-
ciples often related to the assignment of responsibilities.

Question: What are the GRASP patterns?

Answer: They describe fundamental principles of object design and
responsibility assignment, expressed as palterns.

Understanding and being able to apply these principles during the creation of
interaction diagrams is important because a software developer new to object
technology needs to master these basic principles as quickly as possible; they
form the foundation of how a system will be designed.

GRASP is an acronym that stands for General Responsibility Assignment Soft-
ware Patterns.” The name was chosen to suggest the importance of grasp ing
these principles to successfully design object-oriented software.

How to Apply the GRASP Patterns

The following sections present the first five GRASP patterns:
* Information Expert

* Creator

* High Cohesion

* Low Coupling

+ Controller

There are others, introduced in a later chapter, but it is worthwhile mastering
these five first because they address very basic, common questions and funda-
mental design issues.

Please study the following patterns, note how they are used in the example
interaction diagrams, and then apply them during the creation of new interaction
diagrams. Start by mastering Information Expert, Creator, Controller, High
Cohesion, and Low Coupling. Later, learn the remaining patterns.

16.5 The UML Class Diagram Notation

220

A UML class box used to illustrate software classes often shows three compart-
ments; the third illustrates the methods of the class, as shown in Figure 16.2.

2. Technically, one should write "GRAS Patterns" rather than "GRASP Patterns," but the
latter sounds better.

INFORMATION EXPERT (OR EXPERT)

ClassName third section is for
methods
attributes

methods o

Figure 16.2 Software classes illustrate method names.

The details of this notation are explored in a subsequent chapter. In the following
discussion on patterns, this form of class box will occasionally be used.

16.6 Information Expert (or Expert)

Solution

Problem

Example

Assign a responsibility to the information expert—the class that has the infor-
mation necessary to fulfill the responsibility.

What is a general principle of assigning responsibilities to objects?

A Design Model may define hundreds or thousands of software classes, and an
application may require hundreds or thousands of responsibilities to be fulfilled.
During object design, when the interactions between objects are defined, we
make choices about the assignment of responsibilities to software classes. Done
well, systems tend to be easier to understand, maintain, and extend, and there is
more opportunity to reuse components in future applications.

In the NextGEN POS application, some class needs to know the grand total of a
sale.

Start assigning responsibilities by clearly stating the responsibility.

By this advice, the statement is:
Who should be responsible for knowing the grand total of a sale"?

By Information Expert, we should look for that class of objects that has the
information needed to determine the total.

Now we come to a key question: Do we look in the Domain Model or the Design
Model to analyze the classes that have the information needed? The Domain
Model illustrates conceptual classes of the real-world domain; the Design Model
illustrates software classes.

221

222

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Answer:
1. If there are relevant classes in the Design Model, look there first.

2. Else, look in the Domain Model, and attempt to use (or expand) its represen
tations to inspire the creation of corresponding design classes.

For example, assume we are just starting design work and there is no or a minimal
Design Model. Therefore, we look to the Domain Model for information experts;
perhaps the real-world Sale is one. Then, we add a software class to the Design
Model similarly called Sale, and give it the responsibility of knowing its total,
expressed with the method named getTotal. This approach supports low
representational gap in which the software design of objects appeals to our con-
cepts of how the real domain is organized.

To examine this case in detail, consider the partial Domain Model in Figure
16.3.

Sale
date
time
1
Contains
1
- Product
Sales Specification
Lineltem Described-by !
description
quantity price
itemID

Figure 16.3 Associations of Sale.

What information is needed to determine the grand total? It is necessary to
know about all the SalesLineltem instances of a sale and the sum of their subtotals.
A Sale instance contains these; therefore, by the guideline of Information Expert,
Sale is a suitable class of object for this responsibility; it is an information expert
for the work.

As mentioned, it is in the context of the creation of interaction diagrams that
these questions of responsibility often arise. Imagine we are starting to work
through the drawing of diagrams in order to assign responsibilities to objects. A
partial interaction diagram and class diagram in Figure 16.4 illustrate some
decisions.

INFORMATION EXPERT (OR EXPERT)

reeere - sae
—

date
time

Figure 16.4 Partial interaction and class diagrams.

We are not done yet. What information is needed to determine the line item sub-
total? SalesLineltem.quantity and ProductSpecification.price are needed. The
SalesLineltem knows its quantity and its associated ProductSpecification;
therefore, by Expert, SalesLineltem should determine the subtotal; it is the
information expert.

In terms of an interaction diagram, this means that the Sale needs to send
get-Subtotal messages to each of the SalesLineltems and sum the results; this
design is shown in Figure 16.5.

Sale

date
time

getTotal()

SalesLineltem

quantity

Figure 16.5 Calculating the Sale total

To fulfill the responsibility of knowing and answering its subtotal, a Sales-
Lineltem needs to know the product price.

The ProductSpecification is an information expert on answering its price; there-
fore, a message must be sent to it asking for its price.

The design is shown in Figure 16.6.

In conclusion, to fulfill the responsibility of knowing and answering the sale's
total, three responsibilities were assigned to three design classes of objects as
follows.

223

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Design Class Responsibility
Sale knows sale total
SalesLineltem knows line item subtotal
ProductSpecification knows product price

The context in which these responsibilities were considered and decided upon
was while drawing an interaction diagram. The method section of a class diagram
can then summarize the methods.

The principle by which ecach responsibility was assigned was Information
Expert—placing it with the object that had the information needed to fulfill it.

Sale
date
time
:SalesLineltem I getTotal()
1.1: p := getPrice() SalesLineltem
quantity
:Product getSubtotal()
Specification
Product
Specification
description
price
itemID
New method 0| getPrice()

Figure 16.6 Calculating the Sale total.

Discussion Information Expert is frequently used in the assignment of responsibilities; it is a

224

basic guiding principle used continuously in object design. Expert is not meant to
be an obscure or fancy idea; it expresses the common "intuition" that objects do
things related to the information they have.

Notice that the fulfillment of a responsibility often requires information that is
spread across different classes of objects. This implics that there are many "partial"
information experts who will collaborate in the task. For example, the sales total
problem ultimately required the collaboration of three classes of objects.

INFORMATION EXPERT (OR EXPERT)

‘Whenever information is spread across different objects, they will need to interact
via messages to share the work.

Expert usually leads to designs where a software object does those operations
that are normally done to the inanimate real-world thing it represents; Peter
Goad calls this the "Do It Myself" strategy [Coad95]. For example, in the real
world, without the use of electro-mechanical aids, a sale does not tell you its
total; it is an inanimate thing. Someone calculates the total of the sale. But in
object-oriented software land, all software objects are "alive" or "animated," and
they can take on responsibilities and do things. Fundamentally, they do things
related to the information they know. I call this the "animation" principle in
object design; it is like being in a cartoon where everything is alive.

The Information Expert pattern—like many things in object technology—has a
real-world analogy. We commonly give responsibility to individuals who have
the information necessary to fulfill a task. For example, in a business, who
should be responsible for creating a profit-and-loss statement? The person who
has access to all the information necessary to create it—perhaps the chief finan-
cial officer. And just as software objects collaborate because the information is
spread around, so it is with people. The company's chief financial officer may
ask accountants to generate reports on credits and debits.

Contraindications There are situations where a solution suggested by Expert is undesirable, usually
because of problems in coupling and cohesion (these principles are discussed
later in this chapter).

For example, who should be responsible for saving a Sale in a database? Certainly,
much of the information to be saved is in the Sale object, and thus by Expert an
argument could be made to put the responsibility in the Sale class. And the
logical extension of this decision is that each class has its own services to save
itself in a database. But this leads to problems in cohesion, coupling, and
duplication. For example, the Sale class must now contain logic related to data-
base handling, such as related to SQL and JDBC (Java Database Connectivity).
The class is no longer focused on just the pure application logic of "being a sale;" it
now has other kinds of responsibilities, which lowers its cohesion. The class must
be coupled to the technical database services of another subsystem, such as
JDBC services, rather than just being coupled to other objects in the domain layer
of software objects, which raises its coupling. And it is likely that similar database
logic would be duplicated in many persistent classes.

All these problems indicate violation of a basic architectural principle: design
for a separation of major system concerns. Keep application logic in one place
(such as the domain software objects), keep database logic in another place
(such as a separate persistence services subsystem), and so forth, rather than
intermingling different system concerns in the same component.®

3. See Chapter 32 for a discussion of separation of concerns.

225

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Supporting a separation of major concerns improves coupling and cohesion in a
design. Thus, even though by Expert there could be some justification to put the
responsibility for database services in the Sale class, for other reasons (usually
cohesion and coupling), it is a poor design.

Benefits ¢ Information encapsulation is maintained, since objects use their own infor
mation to fulfill tasks. This usually supports low coupling, which leads to
more robust and maintainable systems. (Low Coupling is also a GRASP pat
tern that is discussed in a following section).

« Behavior is distributed across the classes that have the required informa
tion, thus encouraging more cohesive "lightweight" class definitions that are
casier to understand and maintain. High cohesion is usually supported
(another pattern discussed later).

.

Related Patterns Low Coupling
or Principles High Cohesion

Also Known As; "Place responsibilities with data," "That which knows, does," "Do It Myself," "Put
Similar To Services with the Attributes They Work On."

16.7 Creator

Solution Assign class B the responsibility to create an instance of class A if one or more of
the following is true:

* B aggregates A objects.

* B contains A objects.

¢ Brecords instances of A objects.
* B closely uses A objects.

* B has the initializing data that will be passed to A when it is created (thus B
is an Expert with respect to creating A).

B is a creator of A objects.
If more than one option applies, prefer a class B which aggregates or contains
class A.

Problem Who should be responsible for creating a new instance of some class?

The creation of objects is one of the most common activities in an object-oriented
system. Consequently, it is useful to have a general principle for the assignment
of creation responsibilities. Assigned well, the design can support low coupling,
increased clarity, encapsulation, and reusability.

226

CREATOR

Example In the POS application, who should be responsible for creating a SalesLineltem
instance? By Creator, we should look for a class that aggregates, contains, and so
on, SalesLineltem instances. Consider the partial domain model in Figure 16.7.

Sale
date
time
]
Contains
1
- Product
Sales % 1 Specification
Lineltem Described-by
description
quantity price
itemID

Figure 16.7 Partial domain model.

Since a Sate contains (in fact, aggregates) many SalesLineltem objects, the Cre-
ator pattern suggests that Sale is a good candidate to have the responsibility of
creating SalesLineltem instances.

This leads to a design of object interactions as shown in Figure 16.8.

makeLineltem(quantity) >

create(quantity) » _

Figure 16.8 Creating a SalesLineltem.

This assignment of responsibilities requires that a makeLineltem method be
defined in Sate.

Once again, the context in which these responsibilities were considered and
decided upon was while drawing an interaction diagram. The method section of

227

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

a class diagram can then summarize the responsibility assignment results, con-
cretely realized as methods.

Discussion Creator guides assigning responsibilities related to the creation of objects, a

very common task. The basic intent of the Creator pattern is to find a creator
that needs to be connected to the created object in any event. Choosing it as the
creator supports low coupling.

Aggregate aggregates Part, Container contains Content, and Recorder records
Recorded are all very common relationships between classes in a class diagram.
Creator suggests that the enclosing container or recorder class is a good candi-
date for the responsibility of creating the thing contained or recorded. Of course,
this is only a guideline.

Note that the concept of aggregation has been used in considering the Creator
pattern. Aggregation is discussed in Chapter 27; a brief definition is that aggre-
gation involves things that are in a strong Whole-Part or Assembly-Part rela-
tionship, such as Body aggregates Leg or Paragraph aggregates Sentence.

Sometimes a creator is found by looking for the class that has the initializing
data that will be passed in during creation. This is actually an example of the
Expert pattern. Initializing data is passed in during creation via some kind of
initialization method, such as a Java constructor that has parameters. For
example, assume that a Payment instance needs to be initialized, when created,
with the Sale total. Since Sale knows the total, Sale is a candidate creator of the
Payment.

Contraindications Often, creation requires significant complexity, such as using recycled instances

Benefits

Related Patterns
or Principles

228

for performance reasons, conditionally creating an instance from one of a family
of similar classes based upon some external property value, and so forth. In
these cases, it is advisable to delegate creation to a helper class called a Factory
[GHJV95] rather than use the class suggested by Creator. Factories are dis-
cussed in Chapter 23.

Low coupling (described next) is supported, which implies lower mainte-
nance dependencies and higher opportunities for reuse. Coupling is probably
not increased because the created class is likely already visible to the creator
class, due to the existing associations that motivated its choice as creator.

Low Coupling

Factory

Whole-Part [BMRSS96] describes a pattern to define aggregate objects that
support encapsulation of components.

Low COUPLING

16.8 Low Coupling

Solution

Problem

Example

Assign a responsibility so that coupling remains low.

How to support low dependency, low change impact, and increased reuse?

Coupling is a measure of how strongly one element is connected to, has knowl-
edge of, or relies on other elements. An element with low (or weak) coupling is
not dependent on too many other elements; "too many" is context-dependent,
but will be examined. These elements include classes, subsystems, systems, and
S0 on.

A class with high (or strong) coupling relies on many other classes. Such classes
may be undesirable; some suffer from the following problems:

* Changes in related classes force local changes.
« Harder to understand in isolation.

* Harder to reuse because its use requires the additional presence of the
classes on which it is dependent.

Consider the following partial class diagram from a NextGen case study:

— - -,
i Payment [Register l L Sale |

Assume we have a need to create a Payment instance and associate it with the
Sale. What class should be responsible for this? Since a Register "records" a Pay-
ment in the real-world domain, the Creator pattern suggests Register as a candi-
date for creating the Payment. The Register instance could then send an
addPayment message to the Sale, passing along the new Payment as a parameter.
A possible partial interaction diagram reflecting this is shown in Figure 16.9.

—

makePayment| 1: create

: Register

2: addPayment(p) —

Figure 16.9 Register creates Payment.

This assignment of responsibilities couples the Register class to knowledge of
the Payment class.

229

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

UML notation: Note that the Payment instance is explicitly named p so that in
message 2 it can be referenced as a parameter.

An alternative solution to creating the Payment and associating it with the Sale is
shown in Figure 16.10.

— —
makePayment 1: makePayment -Sale
1.1. create()
:Payment

Figure 16.10 Sale creates Payment.

Which design, based on assignment of responsibilities, supports Low Coupling?
In both cases we will assume the Sale must eventually be coupled to knowledge of
a Payment. Design 1, in which the Register creates the Payment, adds coupling of’
Register to Payment, while Design 2, in which the Sale does the creation of a
Payment, does not increase the coupling. Purely from the point of view of coupling,
Design Two is preferable because overall lower coupling is maintained. This an
example where two patterns—Low Coupling and Creator—may suggest different
solutions.

In practice, the level of coupling alone can’t be considered in isolation from
other principles such as Expert and High Cohesion. Nevertheless, it is one
factor to consider in improving a design.

Discussion Low Coupling is a principle to keep in mind during all design decisions; it is an
underlying goal to continually consider. It is an evaluative principle that a
designer applies while evaluating all design decisions.

In object-oriented languages such as C++, Java, and C#, common forms of coupling
from TypeX to TypeY include:

* TypeX has an attribute (data member or instance variable) that refers to a
TypeY instance, or TypeY itself.

* A TypeX object calls on services of a TypeY object.

* TypeX has a method that references an instance of TypeY, or TypeY itself, by
any means. These typically include a parameter or local variable of type
TypeY, or the object returned from a message being an instance of 7TypeY.

* TypeXis adirect or indirect subclass of TypeY.

Contraindications

Low COUPLING

« TypeYis an interface, and TypeX implements that interface.

Low Coupling encourages assigning a responsibility so that its placement does
not increase the coupling to such a level that it leads to the negative results that
high coupling can produce.

Low Coupling supports the design of classes that are more independent, which
reduces the impact of change. It can't be considered in isolation from other pat-
terns such as Expert and High Cohesion, but rather needs to be included as one of
several design principles that influence a choice in assigning a responsibility.

A subclass is strongly coupled to its superclass. The decision to derive from a
superclass needs to be carefully considered since it is such a strong form of coup-
ling. For example, suppose that objects need to be stored persistently in a rela-
tional or object database. In this case it is a relatively common design to create an
abstract superclass called PersistentObject from which other classes derive. The
disadvantage of this subclassing is that it highly couples domain objects to a
particular technical service and mixes different architectural concerns,
whereas the advantage is automatic inheritance of persistence behavior.

There is no absolute measure of when coupling is too high. What is important is
that a developer can gauge the current degree of coupling, and assess if increasing
it will lead to problems. In general, classes that are inherently very generic in
nature, and with a high probability for reuse, should have especially low
coupling.

The extreme case of Low Coupling is when there is no coupling between classes.
This is not desirable because a central metaphor of object technology is a system of
connected objects that communicate via messages. If Low Coupling is taken to
excess, it yields a poor design because it leads to a few incohesive, bloated, and
complex active objects that do all the work, with many very passive zero-coupled
objects that act as simple data repositories. Some moderate degree of coupling
between classes is normal and necessary to create an object-oriented system in
which tasks are fulfilled by a collaboration between connected objects.

High coupling to stable elements and to pervasive elements is seldom a problem.
For example, a Java J2EE application can safely couple itself to the Java libraries
(Java.util, and so on), because they are stable and widespread.

Pick Your Battles

It is not high coupling per se that is the problem; it is high coupling to elements
that are unstable in some dimension, such as their interface, implementation, or
mere presence.

This is an important point: As designers, we can add flexibility, encapsulate
details and implementations, and in general design for lower coupling in many
areas of the system. But, if we put effort into "future proofing" or lowering the
coupling at some point where in fact there is no realistic motivation, this is not
time well spent.

231

Benefits

Background

Related Patterns

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Designers have to pick their battles in lowering coupling and encapsulating
things. Focus on the points of realistic high instability or evolution. For example,
in the NextGen project, it is known that different third-party tax calculators
(with unique interfaces) need to be connected to the system. Therefore, designing
for low coupling at this variation point is practical.

» ot affected by changes in other components

» simple to understand in isolation

* convenient to reuse

Coupling and cohesion (described next) are truly fundamental principles in
design, and should be appreciated and applied as such by all software developers.
Larry Constantine, also a founder of structured design in the 1970s and a current
advocate of more attention to usability engineering [CL99], was primarily

responsible in the 1960s for identifying and communicating coupling and
cohesion as critical principles [ConstantineGS, CMS74].

m Protected Variation

16.9 High Cohesion

Solution

Problem

Example

Assign a responsibility so that cohesion remains high.

How to keep complexity manageable?

In terms of object design, cohesion (or more specifically, functional cohesion) is
a measure of how strongly related and focused the responsibilities of an element
are. An element with highly related responsibilities, and which does not do a
tremendous amount of work, has high cohesion. These clements include classes,
subsystems, and so on.

A class with low cohesion does many unrelated things, or does too much work.
Such classes are undesirable; they suffer from the following problems:

¢ hard to comprehend

« hard to reuse

* hard to maintain

* delicate; constantly effected by change

Low cohesion classes often represent a very "large grain" of abstraction, or have
taken on responsibilities that should have been delegated to other objects.

The same example problem used in the Low Coupling pattern can be analyzed
for High Cohesion.

HIGH COHESION

Assume we have a need to create a (cash) Payment instance and associate it
with the Sale. What class should be responsible for this? Since Register records a
Payment in the real-world domain, the Creator pattern suggests Register as a
candidate for creating the Payment. The Register instance could then send an
addPayrnent message to the Sale, passing along the new Payment as a parameter,
as shown in Figure 16.11.

Register

makePayment
create

Figure 16.11 Register creates Payment.

This assignment of responsibilities places the responsibility for making a pay-
ment in the Register. The Register is taking on part of the responsibility for ful-
filling the makePayment system operation.

In this isolated example, this is acceptable; but if we continue to make the
Register class responsible for doing some or most of the work related to more
and more system operations, it will become increasingly burdened with tasks
and become incohesive.

Imagine that there were fifty system operations, all received by Register. If it did
the work related to each, it would become a "bloated" incohesive object. The
point is not that this single Payment creation task in itself makes the Register
incohesive, but as part of a larger picture of overall responsibility assignment, it
may suggest a trend toward low cohesion.

And most important in terms of developing skills as an object designer, regardless
of the final design choice, the valuable thing is that at least a developer knows
to consider the impact on cohesion.

By contrast, as shown in Figure 16.12, the second design delegates the payment
creation responsibility to the Sale, which supports higher cohesion in the

Since the second design supports both high cohesion and low coupling, it is
desirable.

N
(2

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

‘ : Register

T T
|
|

makePayment |
I create : Payment
|
|
|
|
|
|
|
|
|
|

‘ : Sale ‘

makePayment !

Figure 16.12 Sale creates Payment

In practice, the level of cohesion alone can’t be considered in isolation from other responsibilities and other
principles such as Expert and Low Coupling.

Discussion Like Low Coupling, High Cohesion is a principle to keep in mind during all
design decisions; it is an underlying goal to continually consider. It is an evalua-
tive principle that a designer applies while evaluating all design decisions.

Grady Booch describes high functional cohesion as existing when the elements
of a component (such as a class) "all work together to provide some well-bounded
behavior" [Booch94].

Here are some scenarios that illustrate varying degrees of functional cohesion:

1. Very low cohesion—A class is solely responsible for many things in very dif
ferent functional areas.

o Assume a class exists called RDB-RPC-Interface which is com-
pletely responsible for interacting with relational databases and
for handling remote procedure calls. These are two vastly different
functional areas, and each requires lots of supporting code. The
responsibilities should be split into a family of classes related to
RDB access and a family related to RFC support.

2. Low cohesion—A class has sole responsibility for a complex task in one func
tional area.

o Assume a class exists called RDBInterface which is completely
responsible for interacting with relational databases. The methods
of the class are all related, but there are lots of them, and a tre-
mendous amount of supporting code; there may be hundreds or
thousands of methods. The class should split into a family of light-
weight classes sharing the work to provide RDB access.

234

HIGH COHESION

3. High cohesion—A class has moderate responsibilities in one functional area
and collaborates with other classes to fulfill tasks.

o Assume a class exists called RDBInterface which is only partially
responsible for interacting with relational databases. It interacts
with a dozen other classes related to RDB access in order to
retrieve and save objects.

4. Moderate cohesion—A class has lightweight and sole responsibilities in a
few different areas that are logically related to the class concept, but not to
each other.

o Assume a class exists called Company which is completely respon-
sible for (a) knowing its employees and (b) knowing its financial
information. These two areas are not strongly related to each
other, although both are logically related to the concept of a com-
pany. In addition, the total number of public methods is small, as is
the amount of supporting code.

As a rule of thumb, a class with high cohesion has a relatively small number of
methods, with highly related functionality, and does not do too much work. It
collaborates with other objects to share the effort if the task is large.

A class with high cohesion is advantageous because it is relatively easy to main-
tain, understand, and reuse. The high degree of related functionality, combined
with a small number of operations, also simplifies maintenance and enhance-
ments. The fine grain of highly related functionality also supports increased
reuse potential.

The High Cohesion pattern—like many things in object technology—has a
real-world analogy. It is a common observation that if a person takes on too many
unrelated responsibilities—especially ones that should properly be delegated to
others—then the person is not effective. This is observed in some managers who
have not learned how to delegate. These people suffer from low cohesion; they
are ready to become "unglued."

Another Classic Principle: Modular Design

Coupling and cohesion are old principles in software design; designing with
objects does not imply ignoring well-established fundamentals. Another of
these—which is strongly related to coupling and cohesion—is to promote modu-
lar design. To quote:

Modularity is the property of a system that has been decom-
posed into a set of cohesive and loosely coupled modules
[Booch94].

We promote a modular design by creating methods and classes with high cohe-
sion. At the basic object level, modularity is achieved by designing each method
with a clear, single purpose, and grouping a related set of concerns into a class.

N
o3
i

Contraindications

Benefits

236

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Cohesion and Coupling; Yin and Yang ‘ \
/

Bad cohesion usually begets bad coupling, and vice versa. 1 call

cohesion and coupling the yin and yang of software engineering

because of their interdependent influence. For example, consider a GUI widget
class that represents and paints a widget, saves data to a database, and invokes
remote object services. Not only is it profoundly incohesive, but it is coupled to
many (and disparate) elements.

There are a few cases in which accepting lower cohesion is justified.

One case is the grouping of responsibilities or code into one class or component to
simplify maintenance by one person—although be warned that such grouping may
also make maintenance worse. But for example, suppose an application contains
embedded SQL statements that by other good design principles should be
distributed across ten classes, such as ten "database mapper" classes. Now, it is
common that only one or two SQL experts know how to best define and maintain
this SQL, even if there are dozens of object-oriented (OO) programmers on the
project; few OO programmers may have strong SQL skills. Suppose the SQL
expert is not even a comfortable OO programmer. The software architect may
decide to group all the SQL statements into one class, RDBOperations, so that it is
casy for the SQL expert to work on the SQL in one location.

Another case for components with lower cohesion is with distributed server
objects. Because of overhead and performance implications associated with
remote objects and remote communication, it is sometimes desirable to create
fewer and larger, less cohesive server objects that provide an interface for many
operations. This is also related to the pattern called Coarse-Grained Remote
Interface, in which the remote operations are made more coarse-grained in
order to do or request more work in remote operation call, because of the perfor-
mance penalty of remote calls over a network. As a simple example, instead of a
remote object with three fine-grained operations setName, setSalary, and
setHi-reDate, there is one remote operation setData which receives a set of data.
This results in less remote calls, and better performance.

* Clarity and ease of comprehension of the design is increased.
* Maintenance and enhancements are simplified.

* Low coupling is often supported.

* The fine grain of highly related functionality supports increased reuse
because a cohesive class can be used for a very specific purpose.

CONTROLLER

16.10 Controller

Solution Assign the responsibility for receiving or handling a system event message to a
class representing one of the following choices:

+ Represents the overall system, device, or subsystem (facade controller).

* Represents a use case scenario within which the system event occurs, often
named <UseCaseName>Handler, <UseCaseName>Coordinator, or
<Use-CaseName>Session (use-case or session controller).

o Use the same controller class for all system events in the same use
case scenario.

o Informally, a session is an instance of a conversation with an actor.
Sessions can be of any length, but are often organized in terms of
use cases (use case sessions).

"o,

Corollary: Note that "window," "applet," "widget," "view," and "document" classes
are not on this list. Such classes should rot fulfill the tasks associated with system
events, they typically receive these events and delegate them to a controller.

Problem Who should be responsible for handling an input system event?

An input system event is an event generated by an external actor. They are
associated with system operations—operations of the system in response to
system events, just as messages and methods are related.

For example, when a cashier using a POS terminal presses the "End Sale" button,
he is generating a system event indicating "the sale has ended." Similarly, when a
writer using a word processor presses the "spell check" button, he is generating a
system event indicating "perform a spell check."

A Controller is a non-user interface object responsible for receiving or handling a
system event. A Controller defines the method for the system operation.

Example In the NextGen application, there are several system operations, as illustrated in
Figure 16.13, showing the system itself as a class or component (which is legal
in the UML).

System

endSale()
enterltem()
makeNewSale()
makePayment()

Figure 16.13 System operations associated with the system events.

237

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

During analysis, system operations may be assigned to the class System, to
indicate they are system operations. However, this does not mean that a soft-
ware class named System fulfills them during design. Rather, during design,
a Controller class is assigned the responsibility for system operations (see
Figure 16.14).

‘Who should be the controller for system events such as enterltem and endSalel

[23 The FOD Stosm - [o] =]
womm |
presses button
,,,,,,,,,,,,,,,,,,,,,,,, > [Eecnem | anasoan...

: Cashier

¢ actionPerformed(actionEvent)

Interface :SaleJFrame
Layer
system event message H
l enterltem(itemID, qty) ©

Which class of object should be responsible for receiving this

Domain oo system event message?
Layer — o) _ _
It is sometimes called the controller or coordinator. It does not

¢ ¢ L normally do the work, but delegates it to other objects.

The controller is a kind of "facade" onto the domain layer from
the interface layer.

Figure 16.14 Controller for enterltem?

By the Controller pattern, here are some choices:

represents the overall "system," device, or Register, POSSystem
subsystem

represents a receiver or handler of all system ProcessSaleHandler,
events of a use case scenario ProcessSaleSestsion

238

CONTROLLER

In terms of interaction diagrams, it means that one of the examples in Figure
16.15 may be useful.

—-
enterltem(id, quantity)

:Register

—-
enterltem(id, quantity) :ProcessSaleHandler

Figure 16.15 Controller choices.

The choice of which of these classes is the most appropriate controller is influ-
enced by other factors, which the following section explores.

During design, the system operations identified during system behavior analysis
are assigned to one or more controller classes, such as Register, as shown in Figure
16.16.

Discussion Systems receive external input events, typically involving a GUI operated by a
person. Other mediums of input include external messages such as in a call pro-
cessing telecommunications switch, or signals from sensors such as in process
control systems.

In all cases, if an object design is used, some handler for these events must be
chosen. The Controller pattern provides guidance for generally accepted, suitable
choices. As illustrated in Figure 16.14, the controller is a kind of facade into the
domain layer from the interface layer.

It is often desirable to use the same controller class for all the system events of
one use case so that it is possible to maintain information about the state of the use
case in the controller. Such information is useful, for example, to identify
out-of-sequence system events (for example, a makePayment operation before an
endSale operation). Different controllers may be used for different use cases.

A common defect in the design of controllers is to give them too much responsi-
bility.

Normally, a controller should delegate to other objects the work that needs to be
done; it coordinates or controls the activity. It does not do much work itself.

Please sce the "Issues and Solutions" section later for elaboration.

The first category of controller is a facade controller representing the overall
system, device, or a subsystem. The idea is to choose some class name that sug-
gests a cover, or facade, over the other layers of the application, and that provides
the main point of service calls from the UI layer down to other layers. It

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

could be an abstraction of the overall physical unit, such as a Register’,
TelecommSwitch, Phone, or Robot; a class representing the entire software sys-
tem, such as POSSystem, or any other concept which the designer chooses to
represent the overall system or a subsystem, even, for example, ChessGame if it
was game software.

Facade controllers are suitable when there are not "too many" system events, or it
is not possible for the user interface (UI) to redirect system event messages to
alternating controllers, such as in a message processing system.

If a use-case controller is chosen, then there is a different controller for each use
case. Note that this is not a domain object; it is an artificial construct to support
the system (a Pure Fabrication in terms of the GRASP patterns). For example, if
the NextGen application contains use cases such as Process Sale and Handle
Returns, then there may be a ProcessSaleHandler class and so forth.

When should you choose a use-case controller? It is an alternative to consider
when placing the responsibilities in a facade controller leads to designs with low
cohesion or high coupling, typically when the facade controller is becoming
"bloated" with excessive responsibilities. A use-case controller is a good choice
when there are many system events across different processes; it factors their
handling into manageable separate classes, and also provides a basis for knowing
and reasoning about the state of the current scenario in progress.

In the UP and Jacobson's older Objectory method [Jacobson92], there are the
(optional) concepts of boundary, control, and entity classes. Boundary objects
are abstractions of the interfaces, entity objects are the application-indepen-
dent (and typically persistent) domain software objects, and control objects
are use case handlers as described in this Controller pattern.

A important corollary of the Controller pattern is that interface objects (for
example, window objects or widgets) and the presentation layer should not have
responsibility for fulfilling system events. In other words, system operations
should be handled in the application logic or domain layers of objects rather
than in the interface layer of a system. See the "Issues and Solutions" section for
an example.

The Controller object is typically a client-side object within the same process as
the UI (for example, an application with a Java Swing GUI), and so is not
exactly applicable when the Ul is a Web client in a browser, and there is
server-side software involved. In the latter case, there are various common
patterns of handling the system events that are strongly influenced by the chosen
server-side technical framework, such as Java servlets. Nevertheless, it is a
common idiom to create server-side use-case controllers with either a servlet for
each use case or an Enterprise JavaBeans (EJB) session bean for each use
case. The

4. Various terms are used for a physical POS unit, including register, point-of-sale terminal
(POST), and so forth. Over time, "register" has come to embody the notion of both a
physical unit, and the logical abstraction of the thing that registers sales and payments.

CONTROLLER

server-side session object represents a "session" of interaction with an external
actor.

System Register

endSale()

enterltem() —_—

makeNewSale() endSale()

makePayment() enterltem()
makeNewSale()

makeNewReturn() makePayment()

enterReturnitem()

. makeNewReturn()
enterReturnltem()

system operations
discovered during system
behavior analysis

allocation of system
operations during design,
using one facade controller

ProcessSale HandleReturns
System Handler Handler

endSale()
enterltem() E—
makeNewSale() endSale() enterReturnitem()
makePayment() enterltem() makeNewReturn()

makeNewSale() e
enterReturnitem() makePayment()
makeNewReturn()

allocation of system k

operations during design,
using several use case
controllers

Figure 16.16 Allocation of system operations.

If the UI is not a web client (for example, it is a Swing or Windows GUI), but the
application calls on remote services, it is still common to use the Controller pattern.
The UI forwards the request to the local client-side Controller, and the Controller
may forward all or part of the request handling on to remote services. This design
lowers the coupling of the UI to remote services, and makes it easier, for example,
to provide the services either locally or remotely, through the indirection of the
client-side Controller.

To summarize, the Controller receives the service requests from the UI layer and
coordinates their fulfillment, usually by delegation to other objects.

241

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Benefits * Increased potential for reuse, and pluggable interfaces—It ensures that

application logic is not handled in the interface layer. The responsibilities of a
controller could technically be handled in an interface object, but the
implication of such a design is that program code and logic related the ful-
fillment of application logic would be embedded in interface or window
objects. An interface-as-controller design reduces the opportunity to reuse
logic in future applications, since it is bound to a particular interface (for
example, window-like objects) that is seldom applicable in other applications.
By contrast, delegating a system operation responsibility to a controller
supports the reuse of the logic in future applications. And since the
application logic is not bound to the interface layer, it can be replaced with a
different interface.

* Reason about the state of the use case—It is sometimes necessary to ensure that

system operations occur in a legal sequence, or to be able to reason about
the current state of activity and operations within the use case that is
underway. For example, it may be necessary to guarantee that the
makePay-ment operation can not occur until the endSale operation has
occurred. If so, this state information needs to be captured somewhere; the
controller is one reasonable choice, especially if the same controller is used
throughout the use case (which is recommended).

Issues and Bloated Controllers

Solutions

242

Poorly designed, a controller class will have low cohesion—unfocused and han-
dling too many areas of responsibility; this is called a bloated controller. Signs of
bloating include:

There is only a single controller class receiving a// system events in the sys
tem, and there are many of them. This sometimes happens if a facade con
troller is chosen.

The controller itself performs many of the tasks necessary to fulfill the sys
tem event, without delegating the work. This usually involves a violation of
Information Expert and High Cohesion.

A controller has many attributes, and maintains significant information
about the system or domain, which should have been distributed to other
objects, or duplicates information found elsewhere.

There are several cures to a bloated controller, including:

1. Add more controllers—a system does not have to have only one. Instead of

facade controllers, use use-case controllers. For example, consider an appli-
cation with many system events, such as an airline reservation system.

CONTROLLER

It may contain the following controllers:

Use-case controllers

MakeReservationHandler

ManageSchedulesHandler

ManageFaresHandler

2. Design the controller so that it primarily delegates the fulfillment of
each system operation responsibility on to other objects.

Interface Layer Does Not Handle System Events

To reiterate: an important corollary of the Controller pattern is that interface
objects (for example, window objects) and the interface layer should not have
responsibility for handling system events. As an example, consider a design in
Java that uses a JFrame to display the information.

Assume the NextGen application has a window that displays sale information
and captures cashier operations. Using the Controller pattern, Figure 16.17
illustrates an acceptable relationship between the JFrame and Controller and
other objects in a portion of the POS system (with simplifications).

Notice that the SaleJFrame class—part of the interface layer—passes the
enter-Item message to the Register object. It did not get involved in processing
the operation or deciding how to handle it; the window only delegated it to
another layer.

Assigning the responsibility for system operations to objects in the application
or domain layer—using the Controller pattern rather than the interface layer
supports increased reuse potential. If an interface layer object (like the SaleJ-
Frame) handles a system operation—which represents part of a business pro-
cess—then business process logic would be contained in an interface (for
example, window-like) object, which has low opportunity for reuse because of its
coupling to a particular interface and application.

Consequently, the design in Figure 16.18 is undesirable.

Placing system operation responsibility in a domain object controller makes it
easier to reuse the program logic supporting the associated business process in
future applications. It also makes it easier to unplug the interface layer and use

a different interface framework or technology, or to run the system in an offline
"batch" mode.

243

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Message Handling Systems and the Command Pattern

Some applications are message-handling systems or servers that receive
requests from other processes. A telecommunications switch is a common exam-
ple. In such systems, the design of the interface and controller is somewhat dif-
ferent. The details are explored in a later chapter, but in essence, a common
solution is to use the Command pattern [GHIV95] and Command Processor pat-
tern [BMRSS96], introduced in Chapter 34.

I he FOO Shore =[0]=]

pemin |

LTETHE
presses button
—————— > Entor Bom Andsoon...

: Cashier

actionPerformed(actionEvent)

'

Interface Layer :SaleJFrame

1: enterltem(itemID, qtyl o’

system event message 5

...+ controller

—-
Domain Layer -Register 1.1: makeLineltem(itemID, qty) -Sal

Figure 16.17 Desirable coupling of interface layer to domain layer.

Related Patterns <= Command—In a message-handling system, each message may be repre
sented and handled by a separate Command object [GHJV95].

« Facade—A facade controller is a kind of Facade [GHIV95].

= Layers—This is a POSA pattern [BMRSS96]. Placing domain logic in the
domain layer rather than the presentation layer is part of the Layers
pattern.

244

OBJECTDESIGN AND CRC CARDS

Pure Fabrication—This is another GRASP pattern. A Pure Fabrication is an
arbitrary creation of the designer, not a software class whose name is
inspired by the Domain Model. A use-case controller is a kind of Pure

Fabrication.
-1
wn |
[
presses button
—————— > Lifsm been Anel wmam. .
Cashier

actionPerformed(actionEvent)
¢ It is undesirable for an interface
layer object such as a window to get
Interface Layer :SaleJFrame involved in deciding how to handle
domain processes.

Business logic is embedded in the
presentation layer, which is not useful.

—

Domain Layer 1: makeLineltem(itemID, qty)

R

SaleJFrame should not
send this message.

Figure 16.18 Less desirable coupling of interface layer to domain layer.

16.11 Object Design and CRC Cards

Although not formally part of the UML, another device sometimes used to help
assign responsibilities and indicate collaboration with other objects are CRC
cards (Class-Responsibility-Collaborator cards) [BC89]. These were pioneered
by Kent Beck and Ward Cunningham, who are largely responsible for encourag-
ing objects designers to think more abstractly in terms of responsibility assign-
ment and collaborations, and also for the use of patterns.

245

16.12

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

CRC cards are index cards, one for each class, upon which the responsibilities of
the class are briefly written, and a list of collaborator objects to fulfill those
responsibilities. They are usually developed in a small group session. The
GRASP patterns may be applied when considering the design while using CRC
cards.

CRC cards are one approach to recording the results of responsibility assign-
ment and collaborations. The recording can be enhanced with the use of interac-
tion and class diagrams. The real value is not the cards or the diagrams, but the
consideration of responsibility assignment.

Further Readings

The metaphor of collaborating objects with responsibilities, or
Responsibility-Driven Design, especially emerged from the influential object
work in Smalltalk at Tektronix in Portland, from Kent Beck, Ward Cunningham,
Rebecca Wirfs-Brock, and others. Designing Object-Oriented Software [WWW90]
is the landmark text, and as relevant today as when it was written.

Two other recommended texts emphasizing fundamental object design princi-
ples are Object-Oriented Design Heuristics by Riel, and Object Models by Coad.

