

THE BIOROBOTICS INSTITUTE

Robot Sensors

Cecilia Laschi The BioRobotics Institute Scuola Superiore Sant'Anna, Pisa

cecilia.laschi@santannapisa.it

http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start

A *robot* is an autonomous system which exists in the physical world, can sense its environment, and can act on it to achieve some goals

Maja J Mataric, The Robotics Primer, The MIT Press, 2007

Maja J Mataric, The Robotics Primer, The MIT Press, 2007

Outline of the lesson

- Definitions of sensor and transducer and sensor properties
- Position sensors: switches, encoders, potentiometers, Hall-effect sensors
- Range/Distance sensors: triangulation, ultrasound sensors and laser range finders
- Proximity sensors: Hall-effect and infrared sensors
- Force sensors: strain gauges and force/torque sensors
- Inertial sensors

<u>Bibliographical references:</u> AA.VV., *Handbook of Mechatronics*, CRC Press LLC, 2002, Cap.19

Outline of the lesson

- Definitions of sensor and transducer and sensor properties
- Position sensors: switches, encoders, potentiometers, Hall-effect sensors
- Range/Distance sensors: triangulation, ultrasound sensors and laser range finders
- Proximity sensors: Hall-effect and infrared sensors
- Force sensors: strain gauges and force/torque sensors
- Inertial sensors

<u>Bibliographical references:</u> AA.VV., *Handbook of Mechatronics*, CRC Press LLC, 2002, Cap.19

Definitions of sensor and transducer

• TRANSDUCER:

device transforming a kind of energy in energy of a different kind

For ex.: pressure-voltage, force-displacement, current-voltage, velocity-voltage

It can work both as sensor and as actuator

• SENSOR:

device sensitive to a physical quantity and able to transform it in a measurable and transferable signal (usually, electrical), by using a transducer.

Fundamental properties of a sensor

- TRANSFER FUNCTION
- CALIBRATION
- LINEARITY
- HYSTERESIS
- ACCURACY
- REPEATABILITY
- RESOLUTION
- SENSITIVENESS
- SENSITIVENESS TO NOISE
- LIFETIME
- STABILITY

Transfer function

The *transfer function* (or *characteristic function*) is the relation between the quantity to measure (input to the sensor) and the output of the sensor

The *calibration* procedure consists of measuring the output of the sensor for known quantities

Calibration cycle means a trial that covers the whole working range of the sensor; the trial is divided in two parts, one with increasing values and the other with decreasing values

Linearity

If the transfer function of a sensor is represented in a linear plot, *linearity* is a measure of the deviation of the transfer function from a line.

The line can be chosen in two ways:

- 1) the line between the output of the sensor for the input values corresponding to 0% and 100% of its working range
- 2) the line that best fits the sensor transfer function, with the minimum squares method

Linearity is measured as the maximum difference, expressed in % of the maximum value of the transfer function, between the transfer function and the reference line

Hysteresis

If a sensor has *hysteresis*, for a same input value, the output may vary, depending on the fact that the input values are increasing or decreasing.

Hysteresis is measured as the maximum difference between the two output curves of the sensor during the calibration cycle.

It is expressed as a % of the maximum value for the transfer function

Example of hysteresis

Accuracy represents the maximum error between the actual value and the value measured by the sensor.

Repeatability

When a same input value is applies to a sensor, *repeatability* is a measure of the variability of the output of the sensor.

Accuracy and Repeatability

- accuracy
 - 100 (x_m-x_v) / x_v
 - x_m = average value
 - $x_v = actual value$
- repeatability
 - dispersion of measures

Resolution

Resolution is the mimimum variation of the input which gives a variation of the output of the sensor.

Sensitiveness

A small variation of the input causes a corresponding small variation of the output values.

Sensitiveness is the ratio between the output variation and the input variation.

Noise is the amount of signal in the sensor output which is not given by the input.

Stability

Stability is the capability of the sensor to keep its working characteristics for a given time (short, medium, long).

Role of sensors in a robot

- Perception of the <u>external state</u>: measurement of variables characterizing the working environment.
 - Ex.: distance, proximity, force.

Role of sensors in a robot

- Perception of the <u>internal state</u>: measurement of variables internal to the system that are used to control the robot.
 - Ex.: joint position.

Role of sensors in a robot

- Sensing the <u>external state</u>
 (exteroception): measurement
 of variables characterizing the
 working environment.
- Examples:

Physical Property	\rightarrow	Sensing Technology
Contact	\rightarrow	bump, switch
Distance	\rightarrow	ultrasound, radar, infra red
Light level	\rightarrow	photocells, cameras
Sound level	\rightarrow	microphones
Strain	\rightarrow	strain gauges
Rotation	\rightarrow	encoders and potentiometers
Acceleration	\rightarrow	accelerometers and gyroscopes
Magnetism	\rightarrow	compasses
Smell	\rightarrow	chemical sensors
Temperature	\rightarrow	thermal, infra red
Inclination	\rightarrow	inclinometers, gyroscopes
Pressure	\rightarrow	pressure gauges
Altitude	\rightarrow	altimeters

- Sensing the <u>internal state</u> (proprioception): measurement of variables internal to the system that are used to control the robot.
- Examples:
 - Joint position / encoders
 - Battery level

Outline of the lesson

- Definitions of sensor and transducer and sensor properties
- Position sensors: switches, encoders, potentiometers, Hall-effect sensors
- Range/Distance sensors: triangulation, ultrasound sensors and laser range finders
- Proximity sensors: Hall-effect and infrared sensors
- Force sensors: strain gauges and force/torque sensors
- Inertial sensors

<u>Bibliographical references:</u> AA.VV., *Handbook of Mechatronics*, CRC Press LLC, 2002, Cap.19

Position sensors

- Switches
- Optical encoders
- Potentiometers
- Hall-effect sensors

Mechanical switches

- Simplest contact sensors
- Provide binary data: contact / NO contact

MECHANICAL CONTACT CLOSING AN ELECTRIC CIRCUIT

ELECTRICAL CIRCUIT

Mechanical switches

- Applications in robotics:
 - impact sensors on mobile robots
 - contact sensors for grippers
 - endstop sensors for manipulator joints

Optical encoders

Measurement of angular rotation of a shaft or an axle

Placement of position sensors

After motor+reducer

Before motor+reducer

 $\begin{array}{l} \theta \text{: joint angular position} \\ \theta_{m} \text{: motor angular position} \\ \text{k: motor reduction ratio} \end{array}$

$$\theta = \frac{m}{k}$$
$$\frac{d\theta}{d\theta_m} = \frac{1}{k} \Longrightarrow d\theta = \frac{1}{k} d\theta_m$$

=> The sensor error is reduced of a factor k

Optical encoders

Rotation is measured by counting the **pulses** and by knowing the number of the disk **steps**

$$q = \frac{\theta \times 360^{\circ}}{R \times k}$$

q: joint angular position (in degrees)
θ: joint position in encoder steps
k: motor reduction ratio
R: encoder resolution (number of steps per turn)

The **frequency** of the pulse train is proportional to **angular velocity**

Incremental encoders

By using 2 photo-switches it is possible to detect the rotation direction, by means of the relation between the phases of their pulse trains

A and B are out of phase of ¼ of cycle An increase of A with B=0 corresponds to a clockwise rotation An increase of A with B=1 corresponds to a counterclockwise rotation

Absolute encoder

k photo-switches k code tracks Binary word of k bits, representing 2^k different disk orientations Angular resolution of 360 /2^k

- It gives the absolute rotation angle
- Each position is uniquely determined

Absolute encoder

Absolute encoder

Fig 3 4-Bit binary code absolute encoder disk track patterns

Absolute encoder - Gray Code

Single transition

Optical encoder in an electric motor

Ohm's law

- *v*: voltage (Volts V)
- *R*: resistance (Ohms Ω)
- *i*: current (Amperes A)

v = Ri

https://www.youtube.com/watch?v=_rSHqvjDksg
Potentiometers

Variable resistor

$$\frac{L_{1}}{R_{1}} = \frac{L_{T}}{R_{T}}$$

$$v_{ref} = R_{T}i$$

$$v_{out} = R_{1}i$$
Ohm's law

$$L_1 = L_T \frac{R_1}{R_T} = L_T \frac{v_{out}}{v_{ref}}$$

 v_{out} measured between endpoints 2 and 3

Hall-effect sensors

In a conductor where a current I flows, immersed in a magnetic field of intensity B, a voltage V originates in the direction normal both to the current and to the magnetic field.

- V_h = Hall voltage,
- R_h = material-dependent Hall coefficient,
- I = current in amps,
- = magnetic flux density (perpendicular to *I*) in Gauss,
- = element thickness in centimeters.

Voltage V is proportional to:

- intensity of the current I
- intensity of the magnetic field B, ٠ while it is inversely proportional to:
- material thickness t

Hall-effect sensors

A permanent magnet generates a magnetic field.

The contact with a ferromagnetic object modifies the magnetic field.

The Hall effect measures this variation as a voltage

Hall-effect sensors as position sensors in robotics

15 Embedded Joint Angle Sensors (Hall effect)

(Operational range: 0 – 90 degrees, Resolution: <5 degrees).

HUMANGLOVE MOTION Studia la postura della mano

Humanglove è un guanto sensorizzato a 22 gradi di libertà in grado di rilevare in tempo reale i movimenti della mano durante qualsiasi attività. Può essere utilizzato per applicazioni in Medicina. Neuro-Riabilitazione. Telerobotica e Realtà Virtuale.

HumanGlove è compatibile con lo standard di trasmissione dati Bluetooth. In guesto modo, do-

po averlo indossato è possibile muoversi liberamente, anche in ambienti esterni.

Il quanto è realizzato in materiale elastico e può essere indossato da utenti con mani di

Modulo sensore (brevettato)

taglia diversa. Grazie ad una rapida operazione di calibrazione è possibile adattare le letture dei sensori per un nuovo utente ed i parametri di calibrazione possono essere salvati e riutilizzati successivamente.

Il software mostra i dati in formato numerico, analogico e grafico.

INDOSSABILITÀ

- Il dispositivo offre un elevato comfort grazie all'impiego di tessuti sintetici leggeri ed elastici e all'ingombro molto ridotto dei componenti.
- Il peso complessivo è ca. 290g
- Il sistema può anche lavorare in un ambiente non dedicato (ad es. all'aperto) perchè non necessita di collegamento via cavo.

web: www.hmwit-mail: info@hmwit

Patent IT/PI1997A000026

HumanGlove fa uso di ventidue sensori:

- tre sensori di flessione-estensione ed un sensore di abduzione-adduzione per ciascun dito (pollice compreso)
- un sensore di flessione-estensione ed un sensore di abduzione-adduzione per il polso

L'utilizzo di sensori ad effetto Hall garantisce una risposta lineare ed un elevato grado di robustezza e affidabilità.

CARATTERISTICHE DEL SISTEMA

- Accuratezza dei sensori: 0.1V / 2.5V
- Linearità dei sensori: < 2.0% > 110°
- Range dei sensori: Converter:
- 12 bit A/D Alimentazione:
 - 4 batterie AAA Bluetooth
- Trasmissione dati:
- Freq. campionamento: max 100 Hz

La connessione Bluetooth concede all'utente ampia libertà di movimento. La connessione alla periferica avviene attraverso una porta seriale virtuale RS-232 su USB; in questo modo essa può essere collegata a gualsiasi tipo di workstation

Humanware è una società costituita da specialisti in varie discipline, dall'ingegneria meccanica all'informatica ed è una spin off della Scuola Superiore Sant'Anna di Pisa.

Example of application LINE of Hall-effect sensors

Sensorized glove for detecting finger movements

Outline of the lesson

- Definitions of sensor and transducer and sensor properties
- Position sensors: switches, encoders, potentiometers, Hall-effect sensors
- Range/Distance sensors: triangulation, ultrasound sensors and laser range finders
- Proximity sensors: Hall-effect and infrared sensors
- Force sensors: strain gauges and force/torque sensors
- Inertial sensors

<u>Bibliographical references:</u> AA.VV., *Handbook of Mechatronics*, CRC Press LLC, 2002, Cap.19

Distance measurement: triangulation

Law of Sines: given the length of a side and two angles of a triangle, it is possible to determine the length of the other sides and the remaining angle.

The basic Law of Sines can be rearranged to represent the length of side B as a function of side A and the angles θ and ϕ

Range*/distance measurement by triangulation

If two imaging devices at a known distance (b) can focus on the same point of an object, then the range of the object (d) can be measured, by knowing the vergence angles θ and α .

PASSIVE TRIANGULATION: uses two imaging devices

ACTIVE TRIANGULATION : uses one imaging device and a controlled light source

*Range: distance between sensor and object detected

Passive triangulation

A: known sensor separation baseline

Active triangulation

A: known sensor separation baseline

Stereo vision / stereopsis

When a 3D object is viewed from two locations (on a plane normal to the direction of vision), the image as observed from one position is shifted laterally when viewed from the other.

- This displacement of the image, known as *disparity*, is inversely proportional to the distance to the object.
- The effort to match the two images of the point is called *correspondence*

A: known sensor separation baseline

Outline of the lesson

- Definitions of sensor and transducer and sensor properties
- Position sensors: switches, encoders, potentiometers, Hall-effect sensors
- Range/Distance sensors: triangulation, ultrasound sensors and laser range finders
- Proximity sensors: Hall-effect and infrared sensors
- Force sensors: strain gauges and force/torque sensors
- Inertial sensors

<u>Bibliographical references:</u> AA.VV., *Handbook of Mechatronics*, CRC Press LLC, 2002, Cap.19

Time-of-flight distance measurement

Time-of-flight distance measurement

Ultrasound sensors

Measurement of **range** based on **time of flight**

Range: 0.3m to 10.5m Beam amplitude: 30 Accuracy: ca. 25mm

$$d = \frac{t_e v}{2} \qquad v: \text{ sound speed}$$

Examples of application of ultrasound sensors on mobile robots

Scan moving from left to right extr

Laser range finders

Measurement of **range** based on **time of flight**

https://www.youtube.com/watch?v=EYbhNSUnIdU

Laser range finders

Measurement of **range** based on **triangulation**

Outline of the lesson

- Definitions of sensor and transducer and sensor properties
- Position sensors: switches, encoders, potentiometers, Hall-effect sensors
- Range/Distance sensors: triangulation, ultrasound sensors and laser range finders
- Proximity sensors: Hall-effect and infrared sensors
- Force sensors: strain gauges and force/torque sensors
- Inertial sensors

<u>Bibliographical references:</u> AA.VV., *Handbook of Mechatronics*, CRC Press LLC, 2002, Cap.19

Proximity sensors

Sensing the presence of an object in a **spatial neighborhood** (no measurement of distance)

Passive proximity sensors detect perturbations of the environment, like for instance modifications of the magnetic or the electric field Ex: magnetic passive sensors: Hall-effect sensors

Active proximity sensors emit a signal and detect it back, detecting variations or interruptions of the signal received Ex: active optical sensors: emitter and receiver of light signals

Active proximity sensors: optical sensors

Optical sensors based on infrared light

Photodiode

Example of application of infrared optical sensor on mobile robots

Sharp GP2D02 IR Distance Measuring Sensor

Outline of the lesson

- Definitions of sensor and transducer and sensor properties
- Position sensors: switches, encoders, potentiometers, Hall-effect sensors
- Range/Distance sensors: triangulation, ultrasound sensors and laser range finders
- Proximity sensors: Hall-effect and infrared sensors
- Force sensors: strain gauges and force/torque sensors
- Inertial sensors

<u>Bibliographical references:</u> AA.VV., *Handbook of Mechatronics*, CRC Press LLC, 2002, Cap.19

Piezoresistive effect

Every material changes its electrical resistance with strain

Basics of mechanical behavior of materials

Stress applied to a material causes strain. The material has an elastic behavior until a stress threshold (elastic limit), beyond which the material deformation is plastic

Piezoresistive effect

Every material changes its electrical resistance with strain

Strain gauge

v = Poisson's ratio of the material

Cable tension sensors

and the second second

Three-axial force/torque sensors

- Mechanical structure with preferred strain directions, along 3 axes
- Strain gauges arranged accordingly

Three-axial force/torque sensors

- Forces and torques are measured from measures of the resistance variations of the strain gauges, multiplied by a coefficient array, typical for each sensor
- The coefficient array is built by a calibration procedure in which known forces are applied

$$\begin{bmatrix} f_x^s \\ f_y^s \\ f_z^s \\ \mu_x^s \\ \mu_z^s \end{bmatrix} = \begin{bmatrix} 0 & 0 & c_{13} & 0 & 0 & 0 & c_{17} & 0 \\ c_{21} & 0 & 0 & 0 & c_{25} & 0 & 0 & 0 \\ 0 & c_{32} & 0 & c_{34} & 0 & c_{36} & 0 & c_{38} \\ 0 & 0 & 0 & c_{44} & 0 & 0 & 0 & c_{48} \\ 0 & c_{52} & 0 & 0 & 0 & c_{56} & 0 & 0 \\ c_{61} & 0 & c_{63} & 0 & c_{65} & 0 & c_{67} & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \\ w_5 \\ w_6 \\ w_7 \\ w_8 \end{bmatrix}$$

Outline of the lesson

- Definitions of sensor and transducer and sensor properties
- Position sensors: switches, encoders, potentiometers, Hall-effect sensors
- Range/Distance sensors: triangulation, ultrasound sensors and laser range finders
- Proximity sensors: Hall-effect and infrared sensors
- Force sensors: strain gauges and force/torque sensors
- Inertial sensors

<u>Bibliographical references:</u> AA.VV., *Handbook of Mechatronics*, CRC Press LLC, 2002, Cap.19

Kinematic quantities

- Position

 x(t); θ(t)

 Velocity

 v(t); ω(t)

 Acceleration
 - □a(t); α(t)
- Jerk

 \Box ...

Types of motion

Acceleration measure

- DIRECT: through accelerometers
- INDIRECT: by deriving velocity
- In linear or angular motion, direct measurement is preferable
- In curve motion, acceleration is measured with indirect methods

Working principle of accelerometers

- Accelerometers measure the acceleration of a *proof mass* moving inside a rigid frame or suspended by a compliant structure
- Measuring the displacement of the proof mass allows estimating the acceleration

Potentiometer accelerometers

A potentiometer is used to measure the relative displacement between the seismic mass and the base

A viscous fluid continuously interact with the base and the mass to provide damping

- Dynamic range: $\pm 1g$ to $\pm 50g$ fs.
- Natural frequencies: 12 89 Hz,
- Damping ratio ζ: 0.5 0.8
- Potentiometer resistence: 1000–10000 Ω
 - Corresponding resolution: 0.45–0.25% fs.
- Cross-axial sensibility: < \pm 1%.
- Accuracy: \pm 1% fs at environmental temperature.
- Dimension: 50mm³ (<0.1 gr.)

Piezoelectric accelerometers

A mass in direct contact with the piezoelectric component or crystal

When a varying motion is applied to the accelerometer, the crystal experiences a varying force excitation (F = ma), causing a proportional electric charge q to be developed across it.

- They are basically motion transducers with large output signals and comparatively small sizes
- widely used for general-purpose acceleration, shock, and vibration measurements, useful for high-frequency applications
- These accelerometers
- available in a wide range of specifications: as small as 3 x 3 mm in dimension with about 0.5 g in mass, including cables
- excellent temperature ranges and some of them are designed to survive the intensive radiation environment of nuclear reactors
- piezoelectric accelerometers tend to have larger cross-axis sensitivity than other types, about 2–4%.

Strain gauge accelerometers

- Electric resistance strain gauges are used for displacement sensing of the seismic mass
 - the seismic mass is mounted on a cantilever beam rather than on springs.

- Resistance strain gages are bonded on each side of the beam to sense the strain in the beam resulting from the vibrational displacement of the mass.
- Damping for the system is provided by a viscous liquid filling the housing.
- The output of the strain gages is connected to an appropriate bridge circuit.
- The natural frequency of such a system is about 300 Hz.
 - The low natural frequency is due to the need for a sufficiently large cantilever beam to accommodate the mounting of the strain gages.

Piezoresistive accelerometers

- Piezoresistive accelerometers are essentially semiconductor strain gauges with large gauge factors. The sensitivity of a piezoresistive sensor comes from the elastic response of its structure and resistivity of the material.
- Piezoresistive accelerometers are useful for acquiring vibration information at low frequencies. They are suitable to measure shocks well above 100,000g.

Characteristics

- Frequency: Less than 1Hz-20kHz
- Limited temperature range: Calibration
- Light weight: Less than 1 to 10g
- AC/DC response
- Less than .01g to 200,000g

pressure changes the resistance by mechanically deforming the sensor

