
Neural Networks and

Neurocontrollers

04/01/2020

Outline

V Introduction to Neural Network
V Biological Neuron
V Artificial Neural Network

V Supervised Learning
V Perceptron
V Multilayer Perceptron
V Back Propagation
V Recurrent Neural Network

V Unsupervised Learning

V Competitive Learning
V KohonenNetworks

V Reinforcement Learning

V Neurocontrollers

History

¶ Artificial Neural Networks (ANNs) are an abstract

simulation of the nervous system, which contains a set

of neurons exchanging information through

connections (axons)

¶ The ANN model try to mimic axons and dendrites of

the nervous system.

¶ The first neural model was proposed by McCulloch

and Pitts (1943). The model was presented as a

computational model of the nervous activity. After

this, other models were proposed John von Neumann,

Marvin Minsky, Frank Rosenblatt, etc.

Two types of neuron modelsé

¶ Biological model. It has the objective of replicating

biological neural systems, i.e. visual and auditive

functionalities. These models are used to validate and

verify hypothesis about biological systems.

¶ The second type is focused on the applications. The

models are strongly influenced by application needs.

They are called connectionist architectures.

We will focus on the second one!

Biological neuron

soma

dendrites

synapse

Biological neuron

¶ Human brain contain 100 million neurons. Neuroscientific

evidences show each neuron can have 10000 sinapses in input

or output

¶ Switching time of a neuron is few milliseconds. It is slower

than a logic gate, but it has a greater connectivity

¶ A neuron receives from synapses information which are

summed

¶ If the excitatory signal is leading, the neuroni s activated and it

generates information through the synapse

Neural Network structure

A neural network is composed by:

¶ A set of nodes (neurons), which is the basic unit

¶ A set of weights linked to connections.

¶ A set of thresholds or activation levels

The network design requires:

1. Number of basic unit.

2. Morphological structure.

3. Learning example encoding (input and output of the

net)

4. Initialization and training of the weights linked to

the connections, through a learning example set.

Neural network applications

Main features:

¶ The objective function can have discrete/continuos values

¶ Learning data can be noisy

¶ Learning time is NOT real-time

¶ Fast evaluation of the learning rate of the neural network

¶ It is not crucial to get the semantics of the learned function

Robotics, Image Understanding, Biological Systems

Learning strategies

ÅSupervised Learning
-MLP and recurrentNN

ÅUnsupervisedLearning
- Clustering

ÅCompetitive Learning
- Kohonennetworks

ÅReinforcement Learning

The perceptron

ÅThe perceptronis the neuralnetwork basicunit
ÅIt wasdefinedby Rosenblatt (1962)
ÅTryto replicate the single neuronfunction

x1

x2

xn
. . .

SUM Threshold

w1

w2

wn

The perceptron

ÅOutput valuesare boolean: 0 ς1

ÅInputsxi and weightswi are real (positive or negative)

ÅLearning consistsin selectingvaluefor weightsand
threshold

x1

x2

xn
. . .

SUM Thr

w1

w2

wn

Sum and activation functions

a) Input funtion , linear (SUM)

ini = wij x j
j
ä =wi xi

b) Activation function, non linear (THRESHOLD)

oi =g(ini)=g wij x j
j
ä

å

ç

æ
æ

õ

÷

ö
ö

x0
x1

xn gң
ni

w0i

wni
oi

Activation functions

í
ì
ë >
=

else ,0

 if ,1
)(

tx
xstept

í
ì
ë

-

²+
=

else ,1

0 if ,1
)(

x
xsign

xe
xsigmoid

-+
=

1

1
)(

Objective function

ÅIf the threshold function is sign()and x1..xn are the input
values:

ÅVector notation:

elsexo

xwxwxwwifxo nn

1)(

0...1)(22110

-=

>++++=

)()(xwsignxo
CCC
Ö=

The Perceptron (classification

generalization)

ÅLearning problem:
ÅSet of pointsin a n-dimensionalspace
1 classifyinto two groups(positivesand negatives)
2 Then, givena new point P, associate P with onegroup

1 Classificationproblem
2 generalizzationproblem(learningconcepts)

Perceptron ïTraining algorithm

ÅInitialize weights randomly
ÅGives an example from the dataset<x,c(x)>
ÅCompute o(x)
ÅIF o(x)̧ c(x) then update:
Åhis the learning rate
Åxi is the ith feature value of x
ÅThe perceptron error (E) is equal to (c-o)

wi « wi +Dwi

Dwi =h(c(x)-o(x))xi

Example test

ÅSuppose that o(x)=-1 (if the threshold function is sign(x)) and
c(x)=1
ÅIt is needed to modify weights
ÅExample:

ÅThe wi. value increases in order to reduce the error
ÅIF c(x)=-1 e o(x)=1

xi =0,8, h=0,1, c=1, o=-1

Dwi =h(c-o)xi =0,1(1-(-1))0,8=0,16

Dwi =h(c-o)xi =0,1(-1-(+1))0,8=-0,16

The perceptron

ÅConvergencetheoremof percepton(Rosemblatt, 1962)
ÅThe perceptron is alinear classifier, therefore it will never get

to the state with all the input vectors classified correctly if the
training set is notlinearly separable

ÅIn other words.. No localminima!
ÅThe way to solve nonlinear problems is using multiple layers

ÅSolution: Feedforward neuralnetwork and recurrent
neuralnetwork

http://en.wikipedia.org/wiki/Linear_classifier
http://en.wikipedia.org/wiki/Linearly_separable

Supervised learning

MLP networks

ÅAll the neurons of a layer are connected to all the neurons of the next layer
ÅThere are no connections between neurons in the same layer and between
non adjacent layers

Feed forward neural network: back

propagation algorithm

ÅObjectives:

ÅPerceptron weights initialized randomly

ÅFast learning

ÅGeneralization capability

Backpropagation (2)

Threshold function: sigmoid

Error function is as follow:

o(

r
x)=s(

r
w Ö

r
x)=

1

1+e
r
w Ö

r
x

E(
r
w)¹

1

2
(t(x)-o(x))2

xÍD
ä =

1

2
(tk(x)-ok(x))

2

kÍNout

ä
xÍD
ä

Ii Input units

Hj Hidden units

Ok Output units

Backpropagation (3)

Gola: minimize errorbetween
expected and real output

Update weights rule:

wji«wji+Dwji

Weightswij (from nj to ni)

NNsproduce m output values

Dwji =hdj x ji

dj =oj (1-oj)(t j -oj)

Backpropagation (4)

ÅWhile unreachedterminationcondition, execute:
ÅFor eachvaluevÍD: (x, t(x)) (x=(x1,x2..xn), t(x)=(t1,t2,..tm):
ÅI set of the input nodes(1,2,,n), O set of output nodes(1,2..m), N set of the

net nodes
ÅCompute the output of the net generatedby the input v and the output of

eachnodeof the net nuÍN (xi input of the input nodeiiÍI, oj output
yieldedby the nodenjÍN)

ÅCompute error of the output nodeok ÍOasfollows:

ÅCompute the error for the hiddenunitshhÍH=(N-OÇI) connectedthe the
output nodes, asfollows:

ÅCompute the error for the other nodes
ÅUpdatesthe net weightsasfollow:

dh=oh (1-oh) wkhdk
nkÍO
ä

wji «wji +Dwji

Dwji =hdj x ji

dk =ok(1-ok)(tk-ok)

Gradient computation

Dw1=-h
µE(w1x1+w2x2)

µw1

=-h
µE

µnet1

µnet1

µw1

=-h
µE

µnet1
x1

net1=w1x1+w2x2

E=
1

2
(t-o)

2

µE

µnet1
=
µE

µo

µo

µnet1

µE

µo
=

1

2
2(t-o)

µ(t-o)

µo
=-(t-o)

µo

µnet1
=
µs(net1)

µnet1
=o(1-o)

µ(s(x))=s(x)(1-s(x))

Dw1=ho(1-o)(t-o)x1

What we used in the BP
algorithm!!

w1
w2

Termination condition

ÅThe process continues until all the examples

(<x,t(x)>) have been processed

ÅWhen does the process stop? Minimize errors on

the train set is not the best solution (overfitting)

ÅMinimize errors on a test set (T), this means to

split D in DôÇT, training usingDô and using T to

verify the termination condition

Error in the training set

Does the algorithm converge?

ÅGradientalgorithmissues:
ÅCan stop on localminima
ÅA localminimum can givesolutionswhichare far from the

global minimum
ÅSometimesthere are a lot of localƳƛƴƛƳŀΧ
ÅA possiblesolution: training with changinginitial weight

values

Weights Updating Rule

ÅConsideringthe n-th valueofdi D, updatingrule becomes:

ÅPros:
ÅOvercominglocalminima
ÅKeepingstablevaluefor the weightsin the «flat zones»
ÅIncreasevelocitywhengradientdoesnot change

ÅCons:
ÅIf momentumvalueis too high can stop on localMAXIMA
ÅOnemore tuningvalue

Dwij(n)«hdj xij +aDwij (n-1) Momentum

A few considerations é

ÅInitializingweightvaluesisbasicto reachconvergence

ÅBP dependson the learningrate h. Thiscan makethe net
diverging.

ÅIt can be usefulto use different valuesof hfor the network
layers

Recurrent neural networks

They are networks that learn to associatean input
pattern with a sequenceof output patterns

Xk ᵼ¸ƪмΣ ¸ƪнΣ ΧΣ ¸ƪ[

A recurrent neural network (RNN) is a class of neural networks where connections
between units form a directed cycle. This creates an internal state of the network
which allows it to exhibit dynamic temporal behavior.

Learning strategies

ÅSupervised Learning
-MLP and RecurrentNN

UnsupervisedLearning
- Clustering

ÅCompetitive Learning
- Kohonen networks

ÅReinforcement Learning

Unsupervised learning

ÅSplit non labeledinput valuesin subsets(cluster)
ÅSimilarinput valuesare in the samesubset
ÅDifferent input valuesare in different subsets
ÅFindnew in an subsetsin an unsupervisedway (no labels

provided)

Learning strategies

ÅSupervised Learning
-MLP e reti neurali ricorrenti

- RBF

ÅUnsupervised Learning
- Clustering

ÅCompetitive Learning
- Reti di Kohonen

ÅReinforcement Learning

Competitive Learning

ÅIn some cases, the network output can be ambiguous
ÅThanks to the lateral inhibition, neurons start competing to

respond to a stimulus.
ÅThe neuron having the greatest output wins the competition

and specializes itself to recognize that stimulus.
ÅThanks to the excitatory connections, neurons near the winner

are also sensitive to similar inputs

An isomorphism is created between input and output space

Competitive Learning - Implementation

ÅThe winning neuron is selected using a global strategy just by
comparing the outputs of the other neurons.
ÅTwo techniques can be used:

1. Select the neuron with the maximum output;
2. Select the neuron whose weight vector is more similar to the
current input

METHOD 1 - The winner on an input X is
the one with the greatest output

METHOD 2 -The winner neuron on input X
is that having its weight vector more similar
to X

Kohonen networks

The Kohonen network (or "self-
organizingmap", or SOM,for short) has
beendevelopedbyTeuvoKohonen.
The basic idea behind the Kohonen
network is to setup a structure of
interconnected processing units
(neurons)whichcompetefor the signal.

TheSOMdefinesa mapping from the input data spacespannedby x1..xn

onto a one- or two-dimensionalarrayof nodes. Themappingisperformed
in a way that the topological relationshipsin the n-dimensionalinput
spaceare maintainedwhen mapped to the SOM. In addition, the local
densityof data is alsoreflectedby the map: areasof the input dataspace
which are representedby more data are mappedto a larger areaof the
SOM.

Learning strategies

ÅSupervised Learning
-MLP e reti neurali ricorrenti

- RBF

ÅUnsupervised Learning
- Clustering

ÅCompetitive Learning
- Reti di Kohonen

ÅReinforcement Learning

Reinforcement learning

Several actions are executed.
Successful actions are stored
(by weight variations).

Punishments and rewards

An agent operates in the
environment and modify
actions based on the produced
consequences.

Robot control and neurocontrollers

Robot control

Computing IK using a NN

q1 q2 q3

NN

Px Py Pz

How do you make the network learning?

V Creating a dataset of
<joint_posistions, end
effector_positions> using
the direct kinematics

Learning the Inverse Static Solution

ÅIt isnot alwayspossibleto compute the inverse kinematic
solutionusingthe joint positions

ÅFor soft continuum robotsactuatedby cablesit ispossibleto
exploit the relation betweenthe cabletendion and the end
effectorposition, in order to control the tip

Learning the Inverse Static Solution (II)

ÅControl of the soft arm through the
learningof the inverse model that
allowsto control the end effector
position through the cabletension

ÅThe inverse problemcan be learned
collectingpoints and exploiting the
approximationcapabilityof the NN
asfor the rigid robots

Cable Tension End effector position

Learning the Inverse Static Solution: an

adaptive approach (I)

A NeuralNetwork can be usedto solve the inverse solution
generatingan adaptiveapproach:

The directmodel relation is :
● Ὢ▲ ρ

where, ●ᶰᴘ is the position and orientation vector of the end
effector; ▲ᶰᴘ is the joint vector Ὢis a surjective function

Thisparticular
representationisnot
invertiblewhenm<n
(redundant)

Learning the Inverse Static Solution: an

adaptive approach (II)

We can developlocalrepresentationsby linearizingthe functionat a
point (▲▫) thereby obtaining:

● ὐ▲▫▲ (I)
(ÅÒÅὐ▲▫ is the Jacobian matrix at the point ▲▫; ●and▲are
infinitesimally small changes in ●e ▲. The differential IK method
involves generating of (●ȟ▲,▲) and learning the mapping (●,▲▫)
Ҧ▲

The learning is feasible since the differential IK solutions form a
convex set and therefore averaging multiple solutions still results in
a valid solution

Learning the Inverse Static Solution: an

adaptive approach (III)

The method we have proposed involves expanding Eq. I
and expressing it in terms of absolute positions, as shown
below:

ὐ▲░▲ ● Ὢ▲░ ὐ▲░▲░(II)
▲ ÉÓÔÈÅÎÅØÔÁÃÔÕÁÔÏÒÃÏÎÆÉÇÕÒÁÔÉÏÎÆÏÒÒÅÁÃÈÉÎÇ
ÁÐÏÉÎÔ● from the present configuration ▲░. Note
that Eq. II is only valid when the configurations are
infinitesimally close. However, for practical purposes this
can be a good approximation for larger regions.

Learning the Inverse Static Solution: an

adaptive approach (IV)

The analyticalsolutionfor the equationII can be written as:
▲ Ὃ● Ὢ▲░ ὐ▲░ Ὅ Ὃὐ◑

where Ὃ is a generalized inverse of ὐ▲░ and Ὅ is the identity matrix, and ◑is an
arbitrary n-dimensional vector. The first component represents the particular
solution to the non-homogenous problem prescribed in Eq. II and the second
component represents the infinite homogenous solutions. It can be proved that
the solution space still forms a convex set. Therefore, a universal function
approximator(i.e. NN)can be used for learning the mapping

(▲░ȟ●)ᴼ ▲
The samples (ή,ή ȟὼ) generetedare such that

ή᷄ ή᷄ צ

AÎÁÐÐÒÏÐÒÉÁÔÅÖÁÌÕÅÏÆצis between 10%-5% of the maximum actuator range

Learning the Inverse Static Solution: an

adaptive approach (V)

ÅWe use a feed-forward NN to learnthe relation:
Å (▲░ȟ●ȟ●)ᴼ ▲

ÅThe values of ●ȟ● are generetedusing the direct model as
showed for the learning of the IK of a rigid manipulator

TRAINING PHASE TEST PHASE

(▲░ ȟ●ȟ●) (▲░ȟ●ȟ●)

▲ ▲

INPUT

Desired
OUTPUT

INPUT

Network
OUTPUT

Learning the Inverse Static Solution: an

adaptive approach (V): real robot

implementation

I-Support Prototype

Six DoFHybrid System (Pneumatic and Tendon)

Mean Error Standard Deviation

Position (mm) 5.58 3.08

X- axis rotation (degrees) 2.76 5.42

Y- axis rotation (degrees) 1.84 1.83

Z- axis rotation (degrees) 3.85 7.02

TwentyFiverandompointsselectedfrom workspace

Å 2000 sample points divided in the ratio 70:30 for training
and testing respectively

Å 2 hours for data collection, training and setting-up

LEARNING

TESTS

External Disturbance (Only Position)

Unlike the case of rigid robots external disturbances modify the kinematics of the soft manipulator

This is the first experimental implementation of soft robots tracking under external disturbances

Offline signal prediction

ÅUsing a NN to foreseethe signalin the future
ÅTraining the NN usingpastvalues

Learning and prediction

ÅLearning phase

ÅThe NN learnsthe relation betweeny(t) and y(t-D)

y(t-D)

y(t)

yNN(t)

Learning and prediction

ÅTest phase

ÅThe NN yieldsan estimationof the y(t+D)

y(t)

yNN(t+D)

Learning and prediction
Inconsistent training set

Prediction with delays

y(t-D)

y(t)

yNN(t)

y(t-2D)

y(t-nD)

ONLINE prediction

ÅGenerate a predictionwith anya-priori knowledgeof the signal
ÅFast convergencewith lessinput seen
ÅSimple model basedon a single neuron(PERCEPTRON) receiving

asinput currentand pastvalues(x(t)-x (t-d))

Es. Tenstepsaheadpredictiond=10

training set (<input, desired
output>) :

<X1-X10, X20>,<X2-X11, X21ҔΣ Χ
<Xn-Xn+10, Xn+20>

Network output: y10,y11Χ ȅn+10

Dynamic Controller

Chamber Pressures
Tendon Forces

Complete system states

Ⱳ Ὂ ●ȟ●ȟ●

●ᴼὊⱲȟ●ȟ●

Discretized dynamic model

ÅGeneral Dynamic Model :
ÅMapping from the manipulator states and inputs to the next
states

Discretized Dynamic Model :

Allows for a recursive mapping by removing the first order and
second order derivatives

Allows to represent the dynamic model using a recurrent neural
network

Recurrent Neural Networks are powerful for long-term time
series predictions[1,2]

[1]Menezes J, Barreto G. Long-term time series prediction with the NARX network: An empirical evaluation. Neurocomputing 2008;
71: 3335-3343.
[2]Eugen Diaconescu. 2008. The use of NARX neural networks to predict chaotic time series. WSEAS Trans. Comp. Res. 3, 3 (March
2008), 182-191

Discretized dynamic model

Developing a controller

With the new learned forward model, traditional trajectory
optimization techniques can be used for developing open loop
optimal control policies

We employ single shooting trajectory optimization with
sequential quadratic programming method

Minimize Objective Function

Subject to Dynamic Model and Constraints

Thuruthel, T. G., Falotico, E., Renda, F., & Laschi, C. (2017). Learning dynamic models for open loop
predictive control of soft robotic manipulators. Bioinspiration & biomimetics, 12(6), 066003.

Experimental Results

Workspace obtaining by random exploration

Learned dynamic model prediction

Thuruthel, T. G., Falotico, E., Renda, F., & Laschi, C. (2017). Learning dynamic models for open loop
predictive control of soft robotic manipulators. Bioinspiration & biomimetics, 12(6), 066003.

