
Neural Networks and

Neurocontrollers

04/01/2020

Outline

✓ Introduction to Neural Network
✓ Biological Neuron
✓ Artificial Neural Network

✓ Supervised Learning
✓ Perceptron
✓ Multilayer Perceptron
✓ Back Propagation
✓ Recurrent Neural Network

✓ Unsupervised Learning

✓ Competitive Learning
✓ Kohonen Networks

✓ Reinforcement Learning

✓ Neurocontrollers

History

• Artificial Neural Networks (ANNs) are an abstract

simulation of the nervous system, which contains a set

of neurons exchanging information through

connections (axons)

• The ANN model try to mimic axons and dendrites of

the nervous system.

• The first neural model was proposed by McCulloch

and Pitts (1943). The model was presented as a

computational model of the nervous activity. After

this, other models were proposed John von Neumann,

Marvin Minsky, Frank Rosenblatt, etc.

Two types of neuron models…

• Biological model. It has the objective of replicating

biological neural systems, i.e. visual and auditive

functionalities. These models are used to validate and

verify hypothesis about biological systems.

• The second type is focused on the applications. The

models are strongly influenced by application needs.

They are called connectionist architectures.

We will focus on the second one!

Biological neuron

soma

dendrites

synapse

Biological neuron

• Human brain contain 100 million neurons. Neuroscientific

evidences show each neuron can have 10000 sinapses in input

or output

• Switching time of a neuron is few milliseconds. It is slower

than a logic gate, but it has a greater connectivity

• A neuron receives from synapses information which are

summed

• If the excitatory signal is leading, the neuroni s activated and it

generates information through the synapse

Neural Network structure

A neural network is composed by:

• A set of nodes (neurons), which is the basic unit

• A set of weights linked to connections.

• A set of thresholds or activation levels

The network design requires:

1. Number of basic unit.

2. Morphological structure.

3. Learning example encoding (input and output of the

net)

4. Initialization and training of the weights linked to

the connections, through a learning example set.

Neural network applications

Main features:

• The objective function can have discrete/continuos values

• Learning data can be noisy

• Learning time is NOT real-time

• Fast evaluation of the learning rate of the neural network

• It is not crucial to get the semantics of the learned function

Robotics, Image Understanding, Biological Systems

Learning strategies

• Supervised Learning
-MLP and recurrent NN

• Unsupervised Learning
- Clustering

• Competitive Learning
- Kohonen networks

• Reinforcement Learning

The perceptron

• The perceptron is the neural network basic unit
• It was defined by Rosenblatt (1962)
• Try to replicate the single neuron function

x1

x2

xn
. . .

SUM Threshold

w1

w2

wn

The perceptron

• Output values are boolean: 0 – 1

• Inputs xi and weights wi are real (positive or negative)

• Learning consists in selecting value for weights and
threshold

x1

x2

xn
. . .

SUM Thr

w1

w2

wn

Sum and activation functions

a) Input funtion, linear (SUM)

ini = wijx j
j
 = wixi

b) Activation function, non linear (THRESHOLD)

oi = g(ini) = g wij x j
j

x0
x1

xn g∑
ni

w0i

wni
oi

Activation functions

=
else ,0

 if ,1
)(

tx
xstept

−

+
=

else ,1

0 if ,1
)(

x
xsign

xe
xsigmoid

−+
=

1

1
)(

Objective function

• If the threshold function is sign() and x1..xn are the input
values:

• Vector notation:

elsexo

xwxwxwwifxo nn

1)(

0...1)(22110

−=

++++=

)()(xwsignxo

=

The Perceptron (classification

generalization)

• Learning problem:
• Set of points in a n-dimensional space
1 classify into two groups (positives and negatives)
2 Then, given a new point P, associate P with one group

1 Classification problem
2 generalizzation problem (learning concepts)

Perceptron – Training algorithm

• Initialize weights randomly
• Gives an example from the dataset<x,c(x)>
• Compute o(x)
• IF o(x)c(x) then update:
• is the learning rate
• xi is the ith feature value of x
• The perceptron error (E) is equal to (c-o)

wi wi + wi

wi = (c(x) − o(x))xi

Example test

• Suppose that o(x)=-1 (if the threshold function is sign(x)) and
c(x)=1

• It is needed to modify weights
• Example:

• The wi. value increases in order to reduce the error
• IF c(x)=-1 e o(x)=1

xi = 0, 8, = 0,1, c = 1, o = −1

wi = (c − o)xi = 0,1(1− (−1))0, 8 = 0,16

wi = (c− o)xi = 0,1(−1− (+1))0,8 = −0,16

The perceptron

• Convergence theorem of percepton (Rosemblatt, 1962)
• The perceptron is a linear classifier, therefore it will never get

to the state with all the input vectors classified correctly if the
training set is not linearly separable

• In other words.. No local minima!
• The way to solve nonlinear problems is using multiple layers

• Solution: Feed forward neural network and recurrent
neural network

http://en.wikipedia.org/wiki/Linear_classifier
http://en.wikipedia.org/wiki/Linearly_separable

Supervised learning

MLP networks

• All the neurons of a layer are connected to all the neurons of the next layer
• There are no connections between neurons in the same layer and between
non adjacent layers

Feed forward neural network: back

propagation algorithm

• Objectives:

• Perceptron weights initialized randomly

• Fast learning

• Generalization capability

Backpropagation (2)

Threshold function: sigmoid

Error function is as follow:

o(

r
x) = (

r
w

r
x) =

1

1+ e
r
w

r
x

E(
r
w)

1

2
(t(x) − o(x))2

xD
 =

1

2
(tk (x) − ok (x))

2

kNout

xD

Ii Input units

Hj Hidden units

Ok Output units

Backpropagation (3)

Gola: minimize error between
expected and real output

Update weights rule:

wji wji + wji

Weights wij (from nj to ni)

NNs produce m output values

w ji = jx ji

 j = o j (1− o j)(t j − o j)

Backpropagation (4)

• While unreached termination condition, execute:
• For each value vD: (x, t(x)) (x=(x1,x2..xn), t(x)=(t1,t2,..tm):
• I set of the input nodes (1,2,,n), O set of output nodes(1,2..m), N set of the

net nodes
• Compute the output of the net generated by the input v and the output of

each node of the net nu N (xi input of the input node iiI, oj output
yielded by the node nj N)

• Compute error of the output node ok O as follows:

• Compute the error for the hidden units hh H= (N-OI) connected the the
output nodes, as follows:

• Compute the error for the other nodes
• Updates the net weights as follow:

h = oh (1− oh) wkhk
nk O

w ji w ji + w ji

w ji = j x ji

k = ok (1− ok)(tk − ok)

Gradient computation

w1 = −
E(w1x1 + w2x2)

w1

= −
E

net1

net1

w1

= −
E

net1
x1

net1 = w1x1 + w2x2

E =
1

2
(t − o)

2

E

net1
=

E

o

o

net1

E

o
=

1

2
2(t − o)

 (t − o)

o
= − (t − o)

o

net1
=

 (net1)

net1
= o(1− o)

((x)) = (x)(1− (x))

w1 = o(1− o)(t − o)x1

What we used in the BP
algorithm!!

w1
w2

Termination condition

• The process continues until all the examples

(<x,t(x)>) have been processed

• When does the process stop? Minimize errors on

the train set is not the best solution (overfitting)

• Minimize errors on a test set (T), this means to

split D in D’T, training using D’ and using T to

verify the termination condition

Error in the training set

Does the algorithm converge?

• Gradient algorithm issues:
• Can stop on local minima
• A local minimum can give solutions which are far from the

global minimum
• Sometimes there are a lot of local minima…

• A possible solution: training with changing initial weight
values

Weights Updating Rule

• Considering the n-th valueof di D, updating rule becomes:

• Pros:
• Overcoming local minima
• Keeping stable value for the weights in the «flat zones»
• Increase velocity when gradient does not change

• Cons:
• If momentum value is too high can stop on local MAXIMA
• One more tuning value

wij(n) j xij +wij (n −1) Momentum

A few considerations…

• Initializing weight values is basic to reach convergence

• BP depends on the learning rate . This can make the net
diverging.

• It can be useful to use different values of for the network
layers

Recurrent neural networks

They are networks that learn to associate an input
pattern with a sequence of output patterns

Xk ⇒ Yk1, Yk2, …, YkL

A recurrent neural network (RNN) is a class of neural networks where connections
between units form a directed cycle. This creates an internal state of the network
which allows it to exhibit dynamic temporal behavior.

Learning strategies

• Supervised Learning
-MLP and Recurrent NN

Unsupervised Learning
- Clustering

• Competitive Learning
- Kohonen networks

• Reinforcement Learning

Unsupervised learning

• Split non labeled input values in subsets(cluster)
• Similar input values are in the same subset
• Different input values are in different subsets

• Find new in an subsets in an unsupervised way (no labels
provided)

Learning strategies

• Supervised Learning
-MLP e reti neurali ricorrenti

- RBF

• Unsupervised Learning
- Clustering

• Competitive Learning
- Reti di Kohonen

• Reinforcement Learning

Competitive Learning

• In some cases, the network output can be ambiguous
• Thanks to the lateral inhibition, neurons start competing to

respond to a stimulus.
• The neuron having the greatest output wins the competition

and specializes itself to recognize that stimulus.
• Thanks to the excitatory connections, neurons near the winner

are also sensitive to similar inputs

An isomorphism is created between input and output space

Competitive Learning - Implementation

• The winning neuron is selected using a global strategy just by
comparing the outputs of the other neurons.

• Two techniques can be used:
1. Select the neuron with the maximum output;
2. Select the neuron whose weight vector is more similar to the
current input

METHOD 1 - The winner on an input X is
the one with the greatest output

METHOD 2 -The winner neuron on input X
is that having its weight vector more similar
to X

Kohonen networks

The Kohonen network (or "self-
organizing map", or SOM, for short) has
been developed by Teuvo Kohonen.
The basic idea behind the Kohonen
network is to setup a structure of
interconnected processing units
(neurons) which compete for the signal.

The SOM defines a mapping from the input data space spanned by x1..xn

onto a one- or two-dimensional array of nodes. The mapping is performed
in a way that the topological relationships in the n-dimensional input
space are maintained when mapped to the SOM. In addition, the local
density of data is also reflected by the map: areas of the input data space
which are represented by more data are mapped to a larger area of the
SOM.

Learning strategies

• Supervised Learning
-MLP e reti neurali ricorrenti

- RBF

• Unsupervised Learning
- Clustering

• Competitive Learning
- Reti di Kohonen

• Reinforcement Learning

Reinforcement learning

Several actions are executed.
Successful actions are stored
(by weight variations).

Punishments and rewards

An agent operates in the
environment and modify
actions based on the produced
consequences.

Robot control and neurocontrollers

Robot control

Computing IK using a NN

q1 q2 q3

NN

Px Py Pz

How do you make the network learning?

✓ Creating a dataset of
<joint_posistions, end
effector_positions> using
the direct kinematics

Learning the Inverse Static Solution

• It is not always possible to compute the inverse kinematic
solution using the joint positions

• For soft continuum robots actuated by cables it is possible to
exploit the relation between the cable tendion and the end
effector position, in order to control the tip

Learning the Inverse Static Solution (II)

• Control of the soft arm through the
learning of the inverse model that
allows to control the end effector
position through the cable tension

• The inverse problem can be learned
collecting points and exploiting the
approximation capability of the NN
as for the rigid robots

Cable Tension End effector position

Learning the Inverse Static Solution: an

adaptive approach (I)

A Neural Network can be used to solve the inverse solution
generating an adaptive approach :

The direct model relation is :
𝒙 = 𝑓 𝒒 (1)

where, 𝒙 ∈ ℜ𝑚 is the position and orientation vector of the end
effector; 𝒒 ∈ ℜ𝑛 is the joint vector 𝑓 is a surjective function

This particular
representation is not
invertible when m<n
(redundant)

Learning the Inverse Static Solution: an

adaptive approach (II)

We can develop local representations by linearizing the function at a
point (𝒒𝒐) thereby obtaining :

𝛿𝒙 = 𝐽 𝒒𝒐 𝛿𝒒 (I)
Here 𝐽(𝒒𝒐) is the Jacobian matrix at the point 𝒒𝒐; 𝛿𝒙 and 𝛿𝒒 are
infinitesimally small changes in 𝒙 e 𝒒. The differential IK method
involves generating of (𝛿𝒙, 𝛿𝒒,𝒒) and learning the mapping (𝛿𝒙,𝒒𝒐)
→𝛿𝒒

The learning is feasible since the differential IK solutions form a
convex set and therefore averaging multiple solutions still results in
a valid solution

Learning the Inverse Static Solution: an

adaptive approach (III)

The method we have proposed involves expanding Eq. I
and expressing it in terms of absolute positions, as shown
below:

𝐽 𝒒𝒊 𝒒𝑖+1 = 𝒙𝑖+1 − 𝑓 𝒒𝒊 + 𝐽(𝒒𝒊)𝒒𝒊 (II)
𝒒𝑖+1 is the next actuator configuration for reaching
a point 𝒙𝑖+1 from the present configuration 𝒒𝒊. Note
that Eq. II is only valid when the configurations are
infinitesimally close. However, for practical purposes this
can be a good approximation for larger regions.

Learning the Inverse Static Solution: an

adaptive approach (IV)

The analytical solution for the equation II can be written as:
𝒒𝑖+1 = 𝐺(𝒙𝑖+1−𝑓 𝒒𝒊 + 𝐽𝒒𝒊) + (𝐼𝑛 − 𝐺𝐽)𝒛

where 𝐺 is a generalized inverse of 𝐽(𝒒𝒊) and 𝐼𝑛 is the identity matrix, and 𝒛 is an
arbitrary n-dimensional vector. The first component represents the particular
solution to the non-homogenous problem prescribed in Eq. II and the second
component represents the infinite homogenous solutions. It can be proved that
the solution space still forms a convex set. Therefore, a universal function
approximator (i.e. NN) can be used for learning the mapping

(𝒒𝒊, 𝒙𝑖+1)→ (𝒒𝑖+1)
The samples (𝑞𝑖,𝑞𝑖+1, 𝑥𝑖+1) genereted are such that

∣ 𝑞𝑖+1 − 𝑞𝑖 ∣ < ϵ

An appropriate value of ϵ is between 10%-5% of the maximum actuator range

Learning the Inverse Static Solution: an

adaptive approach (V)

• We use a feed-forward NN to learn the relation:
• (𝒒𝒊, 𝒙𝑖 , 𝒙𝑖+1)→ (𝒒𝑖+1)

• The values of 𝒙𝑖 , 𝒙𝑖+1 are genereted using the direct model as
showed for the learning of the IK of a rigid manipulator

TRAINING PHASE TEST PHASE

(𝒒𝒊−𝟏, 𝒙𝑖 , 𝒙𝑖−1) (𝒒𝒊, 𝒙𝑖 , 𝒙𝑖+1)

(𝒒𝑖) (𝒒𝑖+1)

INPUT

Desired
OUTPUT

INPUT

Network
OUTPUT

Learning the Inverse Static Solution: an

adaptive approach (V): real robot

implementation

I-Support Prototype

Six DoF Hybrid System (Pneumatic and Tendon)

Mean Error Standard Deviation

Position (mm) 5.58 3.08

X- axis rotation (degrees) 2.76 5.42

Y- axis rotation (degrees) 1.84 1.83

Z- axis rotation (degrees) 3.85 7.02

Twenty Five random points selected from workspace

• 2000 sample points divided in the ratio 70:30 for training
and testing respectively

• 2 hours for data collection, training and setting-up

LEARNING

TESTS

External Disturbance (Only Position)

Unlike the case of rigid robots external disturbances modify the kinematics of the soft manipulator

This is the first experimental implementation of soft robots tracking under external disturbances

Offline signal prediction

• Using a NN to foresee the signal in the future
• Training the NN using past values

Learning and prediction

• Learning phase

• The NN learns the relation between y(t) and y(t-)

y(t-)

y(t)

yNN(t)

Learning and prediction

• Test phase

• The NN yields an estimation of the y(t+)

y(t)

yNN(t+)

Learning and prediction
Inconsistent training set

Prediction with delays

y(t-)

y(t)

yNN(t)

y(t-2)

y(t-n)

ONLINE prediction

• Generate a prediction with any a-priori knowledge of the signal
• Fast convergence with less input seen
• Simple model based on a single neuron (PERCEPTRON) receiving

as input current and past values (x(t)-x (t-d))

Es. Ten steps ahead prediction d=10

training set (<input, desired
output>) :

<X1-X10, X20>,<X2-X11, X21>, …
<Xn-Xn+10, Xn+20>

Network output: y10,y11… yn+10

Dynamic Controller

Chamber Pressures
Tendon Forces

Complete system states

𝝉 = 𝐹−1(ሷ𝒙𝑑 , 𝒙, ሶ𝒙)

ሷ𝒙 → 𝐹(𝝉, 𝒙, ሶ𝒙)

Discretized dynamic model

•General Dynamic Model :
•Mapping from the manipulator states and inputs to the next
states

Discretized Dynamic Model :

Allows for a recursive mapping by removing the first order and
second order derivatives

Allows to represent the dynamic model using a recurrent neural
network

Recurrent Neural Networks are powerful for long-term time
series predictions[1,2]

[1]Menezes J, Barreto G. Long-term time series prediction with the NARX network: An empirical evaluation. Neurocomputing 2008;
71: 3335-3343.
[2]Eugen Diaconescu. 2008. The use of NARX neural networks to predict chaotic time series. WSEAS Trans. Comp. Res. 3, 3 (March
2008), 182-191

Discretized dynamic model

Developing a controller

With the new learned forward model, traditional trajectory
optimization techniques can be used for developing open loop
optimal control policies

We employ single shooting trajectory optimization with
sequential quadratic programming method

Minimize Objective Function

Subject to Dynamic Model and Constraints

Thuruthel, T. G., Falotico, E., Renda, F., & Laschi, C. (2017). Learning dynamic models for open loop
predictive control of soft robotic manipulators. Bioinspiration & biomimetics, 12(6), 066003.

Experimental Results

Workspace obtaining by random exploration

Learned dynamic model prediction

Thuruthel, T. G., Falotico, E., Renda, F., & Laschi, C. (2017). Learning dynamic models for open loop
predictive control of soft robotic manipulators. Bioinspiration & biomimetics, 12(6), 066003.

Experimental Results

Single point reaching

Circular path tracking

Thuruthel, T. G., Falotico, E., Renda, F., & Laschi, C. (2017). Learning dynamic models for open loop
predictive control of soft robotic manipulators. Bioinspiration & biomimetics, 12(6), 066003.

• Closed loop control policies can be generated using model-based reinforcement learning.
• However they are task specific (reaching in this case)
• Learned policies are very robust to model changes

Dynamic Controllers:

Closed-loop control

What do we do if we want higher accuracy and if manipulator dynamics changes (For eg. By adding
load) ?

Thomas George Thuruthel, E. Falotico, F. Renda, and C. Laschi. Model-based reinforcement learning for closed-loop dynamic control of soft robotic
manipulators. IEEE Transactions on Robotics, pages 1–11, 2018.

Head stabilization in biped locomotion

P
o
z
z
o

T
.

e
t

a
l.

(
1

9
9

0
)

Berthoz A., 2002, The sense of movement. Harvard University Press

The brain uses the information coming from vestibular system to generate a

unified inertial reference frame, centred in the head, that allows whole-body

coordinated movements and head-oriented locomotion.

Adaptive head stabilization model

✓The controller is based on a feed feedback error learning
(FEL) model. This model estimates the orientation of the head
, which allow following a reference orientation .

✓The output of this model is sent as input to a Neural Network
which computes the joint positions relative to the estimated
orientation

Head stabilization model based on a feedback error learning

Neural

Network

 ,,

FEL

model
System

+
-

321 ,,

ttt ˆ,ˆ,ˆ

eee ,,
rrr ,, ˆ,ˆ,ˆ

Adaptive head stabilization model
Neural Network

Head stabilization model based on a feedback error learning

✓Artificial Neural Network capable of solving the inverse
kinematics problem without using the closed form solution.

✓The network has one hidden layer of 20 units. It takes as input
the head orientation (,,) and as output the neck joints angles
(q1, q2, q3).

Adaptive head stabilization model

– results on the Sabian robot

✓ The pitch and the roll
rotation error are less than
2 degrees, while the trunk
peak-to-peak amplitude was
almost 15 degrees for the
pitch and 8 for the roll

EXTERNAL PERTURBATION TEST

E.Falotico, N. Cauli, K. Hashimoto, P. Kryczka, A. Takanishi, P. Dario, A.Berthoz, C.Laschi, (2012). “Head stabilization based on a feedback
error learning in a humanoid robot”. Proceedings of the 21st IEEE International Symposium on Robot and Human Interactive
Communication, Paris, France, September 9-13, 2012.

WALKING TEST

1. The scenario with the robot in the
starting position and the red ball
indicating the end of the path.
2. The scenario from the robot viewpoint.
3 & 4. The robot performing the walking
pattern with head stabilization.

✓ This experiment started with the
network weights and the regressor
parameters of the FEL set to the values
reached at the end of a training phase

✓The peak to peak amplitude of the
head is less than 2 degrees during the
whole pattern execution.

Adaptive head stabilization model –

results on the Sabian robot

Anticipatory Visual perception as a bio-

inspired mechanism underlying robot

locomotion

Traditional Perception-Action cycle for the AVP

architecture

• Visual Processing module takes as input current images from both robot cameras to
reconstruct the environment producing the relevant feature position.

•The poses of relevant features are sent to a Trajectory Planning module to generate the
walking path

•The Controller module then takes the first robot pose from the sequence of poses
planned by the Trajectory Planning module and produces the corresponding motor
commands

•This cycle continues until the robot reaches the target.

AVP based perception action cycle (I)

• Internal Models of
the environment
and of the task to be
performed are
necessary to predict
future visual
perceptions.

•Images of different
features relevant to
the locomotion task
are captured and
memorized.

AVP based perception action cycle (II)

•At every step, the Visual Comparator module compares the current image
of the environment with a synthetic image predicted by the AVP Generator
module.

•To produce the synthetic image, AVP Generator computes the current
robot pose taking into account the initial pose of the robot and the motor
commands executed at the immediately previous time step.

•The current robot pose is sent to the Learning sub-module of Internal
Models, where the neural network predicts the corresponding poses of the
relevant features.

•The AVP Generator then takes as input the memorized images of the
relevant features, and creates a synthetic image by pasting them on the
environmental background at poses predicted by the neural net.

Implementation of internal models for EP

generation

⚫ OF GENERATOR: generates the
Optical Flow from the camera image
with Lucas-Kanade algorithm.

⚫ OF SIMPLIFIER: generates a Simple
OF dividing in zones the Optical Flow
and calculating the mean flow
vector for each zone.

⚫ OF PREDICTOR: predicts the next
step OF using an ESN. Learning is
performed off-line.

⚫ SYNTHETIC IMAGE CREATOR:
generates a sinthetic image
rapresenting the next step camera
image.

⚫ IMAGE COMPARATOR: generates
the error between the synthetic
image and the corresponding
camera image.Internal model

ESN GENERAL SETTINGS

⚫ Off-line learning that minimizes the MSE.
⚫ No feedback connections.

⚫ Input signal composed by motor commands and simple Optic
Flow

⚫ Output signal composed by next step simple Optic Flow.

Implementation of internal models for EP

generation

EXPERIMENTS

⚫ Background and floor were
replaced by a white screen.
⚫ A matrix of coloured

spheres was placed in front
of the robot.

Implementation of internal models for EP

generation

EXPERIMENTS

A) Motor command: sinusoid of
amplitude 15 and frequency 0.1.
Dataset of 1500 elements (1200

training, 300 test).

B) Motor command: sequence of
sinusoids of amplitude 15 and

frequencies between 0.1 and 0.5.
Dataset of 1500 elements (1200

training, 300 test).

C) Training set composed by the
sum of 3 sinusoids with amplitude
5 and frequency 0.1 0.25 and 0.4

(1200 elements). Test set
composed by a sinusoid with

amplitude 15 and frequency 0.2
(300 elements).

D) Motor command: same sinusoid
as A. Environment: the matrix of

spheres has columns more
distants than before. Dataset of
1500 elements (1200 training,

300 test).

Implementation of internal models for EP

generation

Trial 1 - SINUSOID

⚫ Input dim: 5, Spectral radius: 0.7, Reservoir dim: 75
⚫ Train Error (pixels MSE): 0.16558 0.15946 0.15664 0.16499
⚫ Test Error (pixels MSE): 0.17732 0.18431 0.15675 0.16521

Implementation of internal
models for EP generation

⚫ Input dim: 5, Spectral radius: 0.7, Reservoir dim: 75
⚫ Train Error (pixels MSE): 0.23676 0.23667 0.23405 0.25608
⚫ Test Error (pixels MSE): 0.28956 0.31899 0.31899 0.32285

Trial 2 – SINUSOID SEQUENCE

Implementation of internal models for EP

generation

⚫ Input dim: 5, Spectral radius: 0.7, Reservoir dim: 75
⚫ Train Error (pixels MSE): 0.21956 0.2316 0.2188 0.23137
⚫ Test Error (pixels MSE): 0.31305 0.28552 0.28264 0.30684

Trial 3 – SINUSOID SUM

Implementation of internal models for EP

generation

⚫ Input dim: 5, Spectral radius: 0.7, Reservoir dim: 75
⚫ Train Error (pixels MSE): 0.50885 0.33475 0.3148 0.44656
⚫ Test Error (pixels MSE): 0.63688 0.6102 0.61788 0.62655

Trial 4 – DISTANT SPHERES

Implementation of internal models for EP

generation

