

http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start

PSC 2023/24 (375AA, 9CFU)

Principles for Software Composition

Roberto Bruni http://www.di.unipi.it/~bruni/

20 - Weak semantics

CCS syntax

p,q	::=	\mathbf{nil}	inactive process
		\boldsymbol{x}	process variable (for recursion)
		$\mu.p$	action prefix
		p ackslash lpha	restricted channel
		$p[\phi]$	channel relabelling
		p+q	nondeterministic choice (sum)
		p q	parallel composition
		$\mathbf{rec} \ x. \ p$	recursion

(operators are listed in order of precedence)

CCS op. semantics

Act)
$$\frac{}{\mu.p \xrightarrow{\mu} p}$$

$$\operatorname{Act}) \frac{p \xrightarrow{\mu} q \quad \mu \not\in \{\alpha, \overline{\alpha}\}}{\mu.p \xrightarrow{\mu} p} \qquad \operatorname{Res}) \frac{p \xrightarrow{\mu} q \quad \mu \not\in \{\alpha, \overline{\alpha}\}}{p \backslash \alpha \xrightarrow{\mu} q \backslash \alpha} \qquad \operatorname{Rel}) \frac{p \xrightarrow{\mu} q}{p[\phi] \xrightarrow{\phi(\mu)} q[\phi]}$$

Rel)
$$\xrightarrow{p \xrightarrow{\mu} q} p[\phi] \xrightarrow{\phi(\mu)} q[\phi]$$

$$\begin{array}{ccc} \operatorname{SumL}) & \frac{p_1 \xrightarrow{\mu} q}{p_1 + p_2 \xrightarrow{\mu} q} & \operatorname{SumR}) & \frac{p_2 \xrightarrow{\mu} q}{p_1 + p_2 \xrightarrow{\mu} q} \end{array}$$

SumR)
$$\frac{p_2 \xrightarrow{\mu} q}{p_1 + p_2 \xrightarrow{\mu} q}$$

ParL)
$$\dfrac{p_1 \xrightarrow{\mu} q_1}{p_1 | p_2 \xrightarrow{\mu} q_1 | p_2}$$

$$\operatorname{ParL})\frac{p_1 \xrightarrow{\mu} q_1}{p_1 | p_2 \xrightarrow{\mu} q_1 | p_2} \quad \operatorname{Com}) \frac{p_1 \xrightarrow{\lambda} q_1 \quad p_2 \xrightarrow{\overline{\lambda}} q_2}{p_1 | p_2 \xrightarrow{\tau} q_1 | q_2} \quad \operatorname{ParR}) \frac{p_2 \xrightarrow{\mu} q_2}{p_1 | p_2 \xrightarrow{\mu} p_1 | q_2}$$

$$\frac{p_2 \xrightarrow{\mu} q_2}{p_1|p_2 \xrightarrow{\mu} p_1|q_2}$$

Rec)
$$\frac{p[\mathbf{rec}\ x.\ p/_x] \xrightarrow{\mu} q}{\mathbf{rec}\ x.\ p \xrightarrow{\mu} q}$$

CCS Weak transitions

Sequential buffer

$$B_0^2 \triangleq in.B_1^2$$

$$B_1^2 \triangleq in.B_2^2 + \overline{out}.B_0^2$$

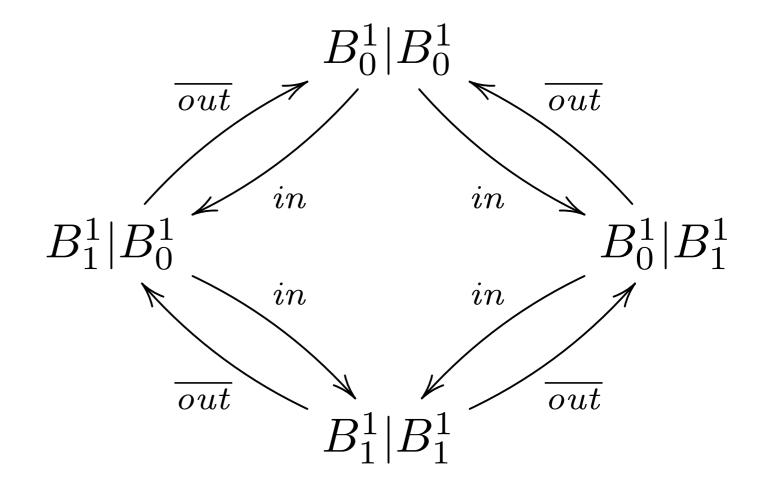
$$B_2^2 \triangleq \overline{out}.B_1^2$$

$$B_0^2$$
 $\overline{out} \left(\begin{array}{c} A \\ \downarrow \end{array} \right) in$
 B_1^2
 $\overline{out} \left(\begin{array}{c} A \\ \downarrow \end{array} \right) in$
 B_2^2

Parallel buffer

$$B_0^1 \triangleq in.B_1^1$$

$$B_1^1 \triangleq \overline{out}.B_0^1$$

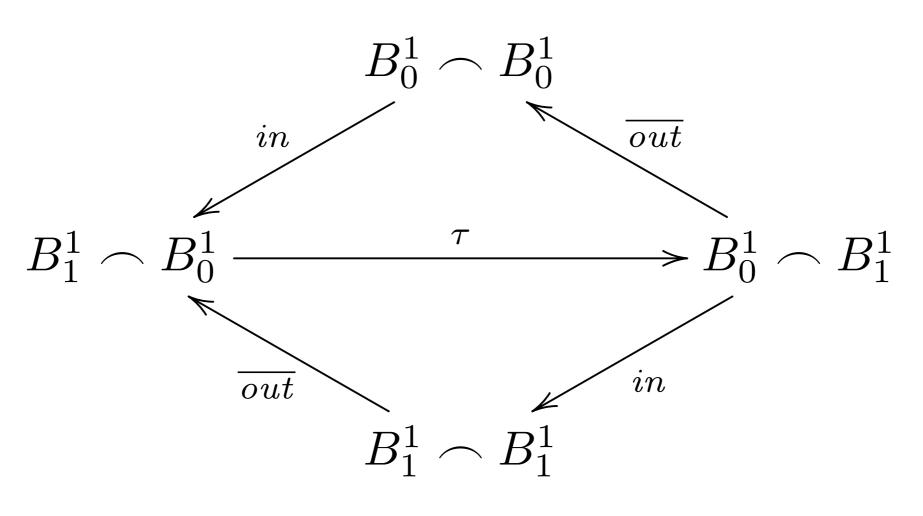


Linked buffer

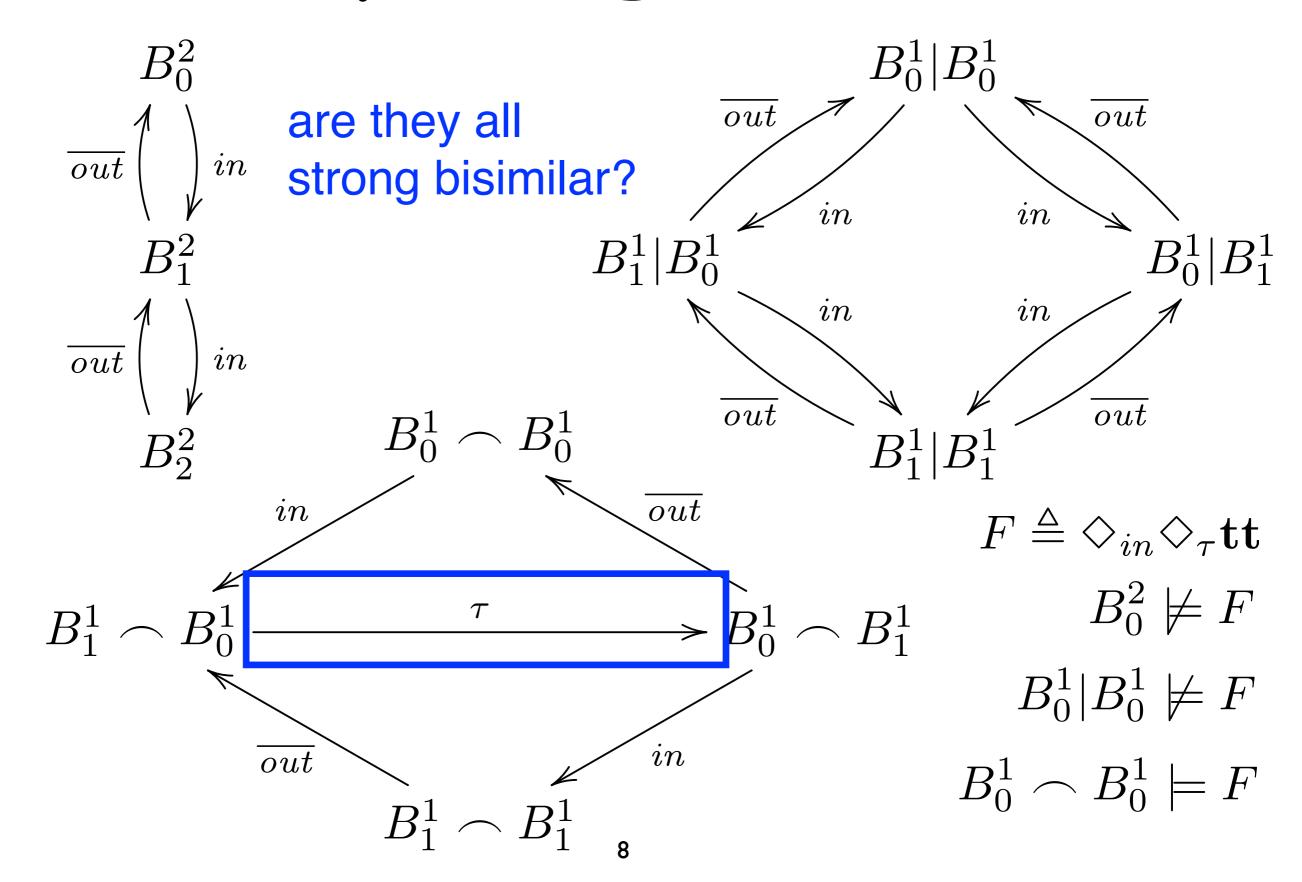
$$B_0^1 \triangleq in.B_1^1 \qquad \eta(out) = c$$

$$p \frown q \triangleq (p[\eta]|q[\phi]) \backslash c$$

$$B_1^1 \triangleq \overline{out}.B_0^1 \qquad \phi(in) = c$$



Comparing buffers



Silent transitions

τ-transitions are silent, non observable they represent internal steps of the system they can be used just for bookkeeping can we abstract away from them? can we find a broader equivalence?

necessary to relate an abstract specification (little use of τ) with a concrete implementation (lots/tons of τ)

Weak bisimulation game

coarser equivalence: more power to the defender!

Alice picks a process and an ordinary transition

Bob replies possibly using many additional silent transitions arbitrarily many, but finitely many such sequences are called *weak* transitions

$$p \stackrel{\mu}{\Rightarrow} q$$

what if Alice picks a silent transition?

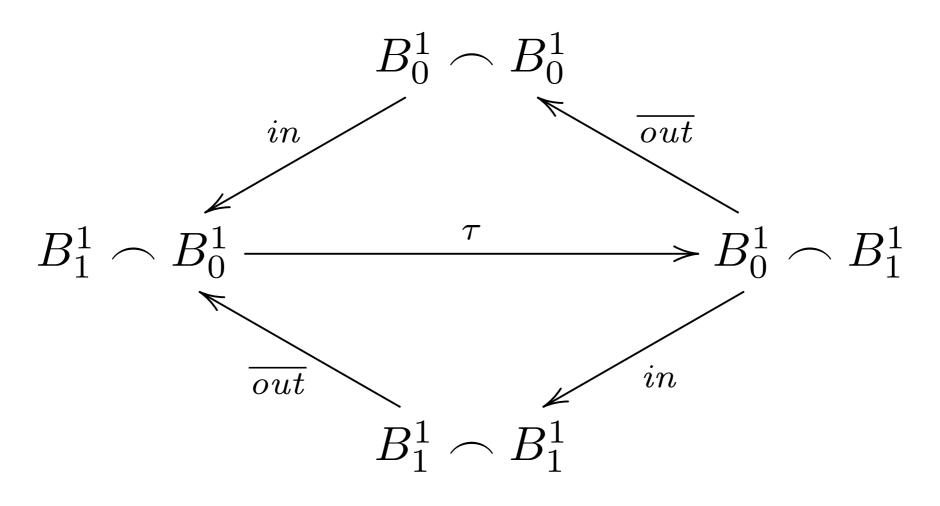
Bob can just leave the other process idle i.e. can choose not to move

Weak transitions

p can reach q via a (possibly empty) finite sequence of τ -transitions

$$p \stackrel{\lambda}{\Rightarrow} q \quad \text{iff} \quad \exists p', q'. \ p \stackrel{\tau}{\Rightarrow} p' \stackrel{\lambda}{\rightarrow} q' \stackrel{\tau}{\Rightarrow} q$$

p can reach q via a λ -transition possibly preceded and followed by empty/finite sequences of τ -transitions



$$B_0^1 \frown B_0^1 \stackrel{\tau}{\Rightarrow} B_0^1 \frown B_0^1$$

$$B_0^1 \frown B_0^1 \stackrel{in}{\Rightarrow} B_0^1 \frown B_1^1$$

$$B_1^1 \frown B_0^1 \stackrel{\overline{out}}{\Longrightarrow} B_0^1 \frown B_0^1$$

CCS weak bisimulation

Weak bisimulation

R. is a *weak* bisimulation if

$$\forall p,q.\;(p,q) \in \mathbf{R} \Rightarrow \begin{cases} \forall \mu,p'.\; p \xrightarrow{\mu} p' \; \Rightarrow \; \exists q'.\; q \xrightarrow{\mu} q' \land p' \; \mathbf{R} \; q' \\ \land \; \mathsf{Alice\;plays} \; \; \mathsf{Bob\;replies} \\ \forall \mu,q'.\; q \xrightarrow{\mu} q' \; \Rightarrow \; \exists p'.\; p \xrightarrow{\mu} p' \land p' \; \mathbf{R} \; q' \end{cases}$$

weak transitions

Weak bisimilariity

weak bisimilarity:

 $p \approx q$ iff $\exists \mathbf{R}$ a weak bisimulation with $(p,q) \in \mathbf{R}$

TH. weak bisimilarity is an equivalence relation

TH. any strong bisimulation is a weak bisimulation

Cor. strong bisimilarity implies weak bisimilarity

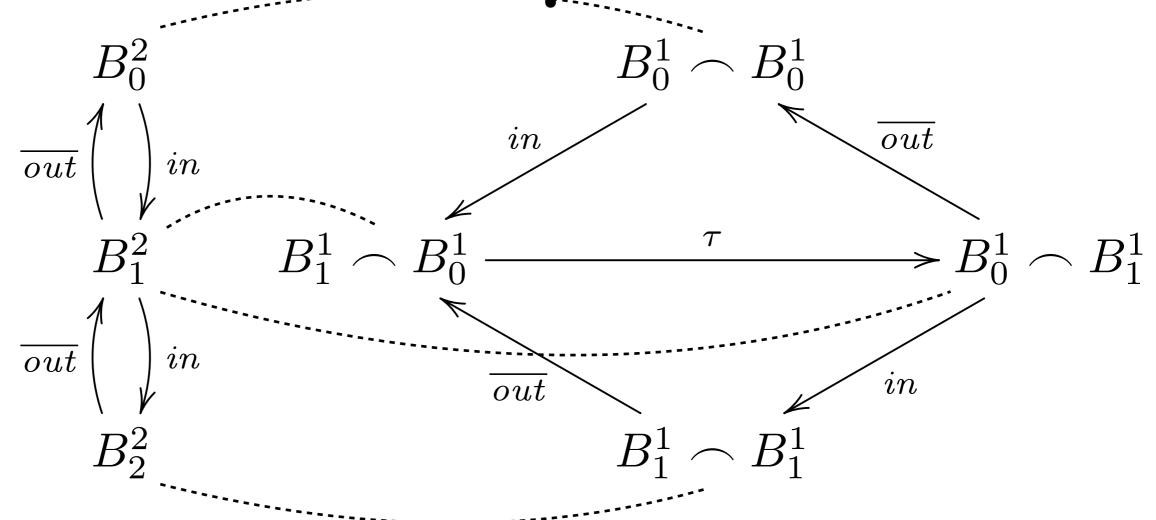
Weaker bisimilarity?

what if we give extra power to Alice as well?

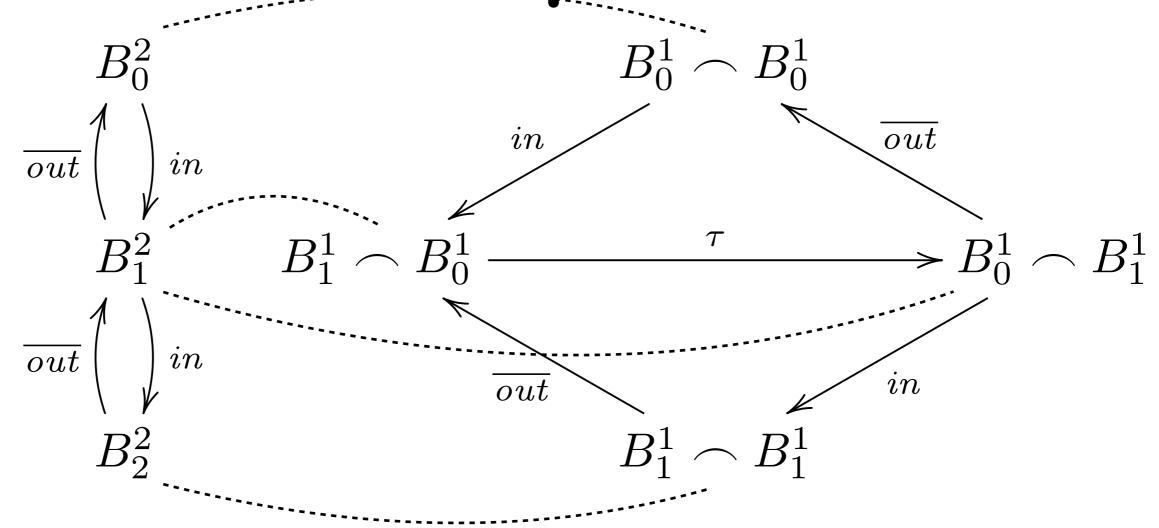
$$\forall p,q.\;(p,q)\in\mathbf{R}\Rightarrow\left\{\begin{array}{ll}\forall\mu,p'.\;p\overset{\mu}{\Rightarrow}p'\\ \wedge\;\mathsf{Alice\;plays}\;\;\mathsf{Bob\;replies}\\ \forall\mu,q'.\;q\overset{\mu}{\Rightarrow}q'\;\;\Rightarrow\;\;\exists p'.\;p\overset{\mu}{\Rightarrow}p'\wedge p'\;\mathbf{R}\;q'\\ \Rightarrow\;\exists p'.\;p\overset{\mu}{\Rightarrow}p'\wedge p'\;\mathbf{R}\;q'\end{array}\right.$$

weak transitions

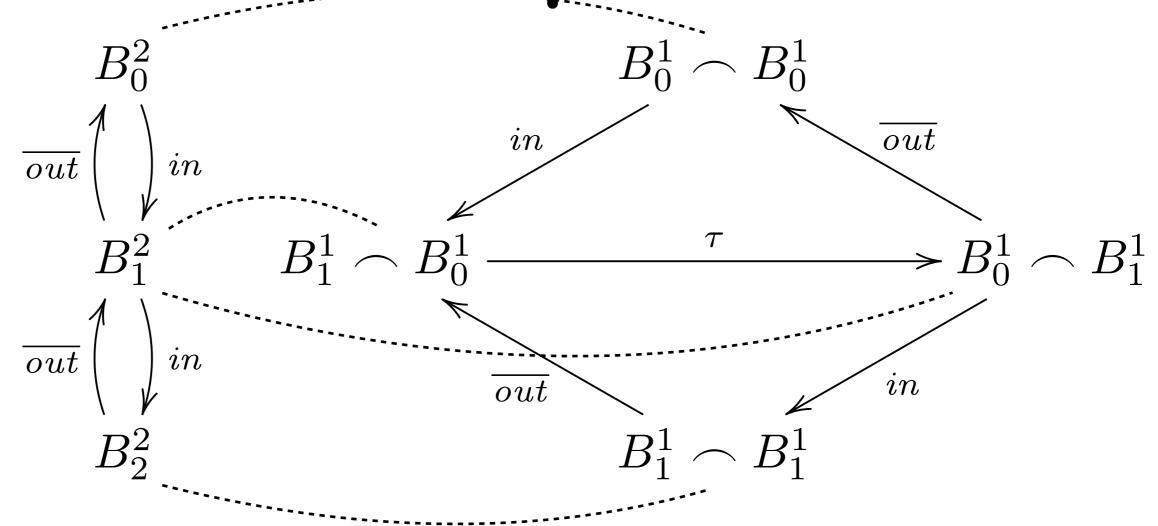
nothing changes: we still get the same weak bisimilarity



$$\mathbf{R} \triangleq \left\{ \begin{array}{l} (B_0^2, B_0^1 \frown B_0^1), \\ (B_1^2, B_1^1 \frown B_0^1), \\ (B_1^2, B_0^1 \frown B_1^1), \\ (B_2^2, B_1^1 \frown B_1^1) \end{array} \right\} \text{ is a weak bisimulation relation}$$



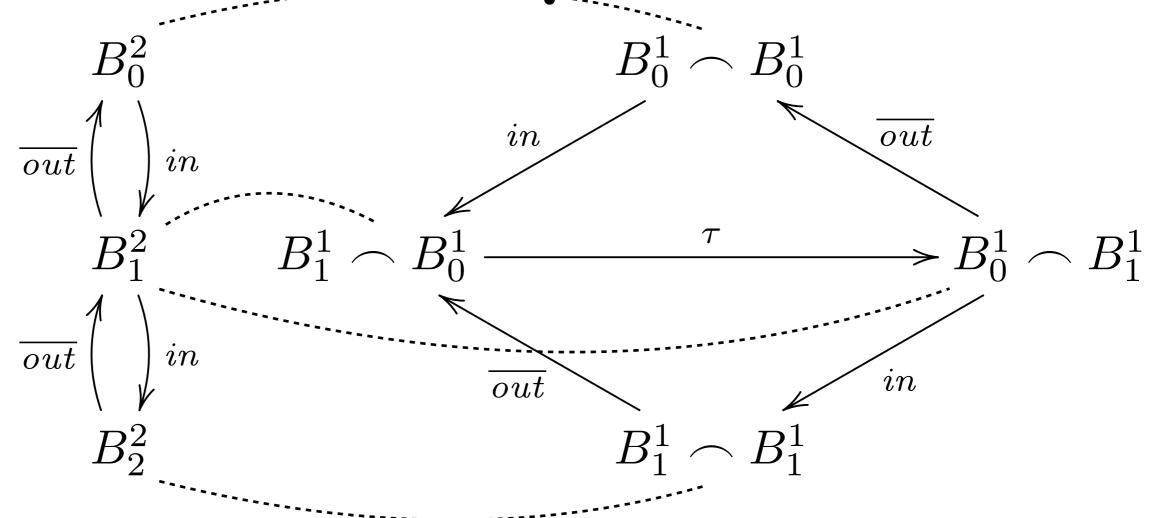
$$B_0^2$$
 \mathbf{R} $B_0^1 \cap B_0^1$ B_0^2 \mathbf{R} $B_0^1 \cap B_0^1$ $\Big|_{in}$ $\Big|$

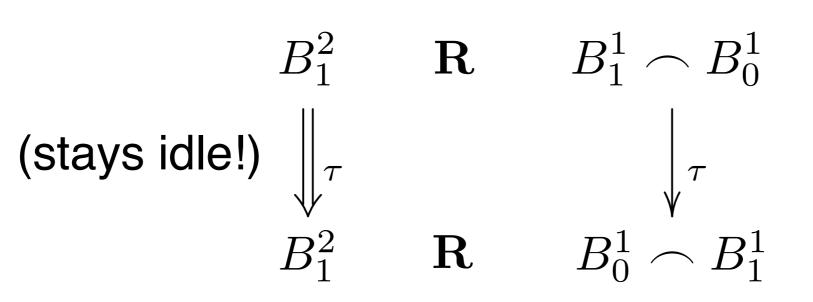


$$B_1^2 \qquad \mathbf{R} \qquad B_1^1 \frown B_0^1 \qquad \qquad B_1^2 \qquad \mathbf{R} \qquad B_1^1 \frown B_0^1$$

$$\downarrow^{in} \qquad \qquad \downarrow^{in} \qquad \qquad \downarrow^{out} \qquad \qquad \downarrow^{out}$$

$$B_2^2 \qquad \mathbf{R} \qquad B_1^1 \frown B_1^1 \qquad \qquad B_0^2 \qquad \mathbf{R} \qquad B_0^1 \frown B_0^1$$





(etc. for the other pairs)

Weak bis as a fixpoint

$$\Psi(\mathbf{R}) \triangleq \left\{ (p,q) \middle| \begin{array}{ccc} \forall \mu, p'. \ p \xrightarrow{\mu} p' & \Rightarrow & \exists q'. \ q \xrightarrow{\mu} q' \land p' \ \mathbf{R} \ q' \\ \land \mu, q'. \ q \xrightarrow{\mu} q' & \Rightarrow & \exists p'. \ p \xrightarrow{\mu} p' \land p' \ \mathbf{R} \ q' \end{array} \right\}$$

$$\Psi: \wp(\mathcal{P} \times \mathcal{P}) \to \wp(\mathcal{P} \times \mathcal{P})$$

maps relations to relations

$$\mathbf{R} \subseteq \Psi(\mathbf{R})$$

a weak bisimulation

$$\approx = \Psi(\approx)$$

weak bisimilarity is a fixpoint

CCS problems with weak semantics

Problems with weak bis

with respect to weak transitions, guarded processes can have infinitely branching LTS

Problems with weak bis

weak bisimilarity is not a congruence (w.r.t. +)

take
$$P \triangleq \alpha$$

$$Q \triangleq \tau.\alpha$$

if
$$P \xrightarrow{\alpha} \mathbf{nil}$$
 then $Q \xrightarrow{\alpha} \mathbf{nil}$

if
$$Q \xrightarrow{\tau} \alpha$$
 then $P \xrightarrow{\tau} P$

$$P \stackrel{\tau}{\Rightarrow} P$$

take the context
$$\mathbb{C}[\cdot] \triangleq [\cdot] + \beta$$

$$\mathbb{C}[\cdot] \triangleq [\cdot] + \beta$$

 $\mathbb{C}[Q] \xrightarrow{\tau} \alpha$

Bob can only reply
$$\mathbb{C}[P] \stackrel{\tau}{\Rightarrow} \mathbb{C}[P]$$

 $\mathbb{C}[P] \stackrel{eta}{ o} \mathbf{nil}$

Bob cannot reply $\alpha \not\Rightarrow$

$$\alpha \not\stackrel{\beta}{\Rightarrow}$$

Alice wins!

 $P \approx Q$ $\mathbb{C}[P] \not\approx \mathbb{C}[Q]$

 $\mathbb{C}[P] \triangleq \alpha + \beta$

 $\mathbb{C}[Q] \triangleq \tau \cdot \alpha + \beta$

Problems with weak bis

cannot distinguish between deadlock and silent divergence

rec
$$x. \tau.x \approx \text{nil}$$

$$\operatorname{\mathbf{rec}} x. \ \tau.x \xrightarrow{\tau} \operatorname{\mathbf{rec}} x. \ \tau.x \qquad \operatorname{\mathbf{nil}} \xrightarrow{\tau} \operatorname{\mathbf{nil}}$$

CCS weak observational congruence

Weak obs congruence

$$p \cong q$$
 iff $p \approx q \land \forall r. \ p + r \approx q + r$

Equivalently

$$p \approxeq q \quad \text{iff} \quad \left\{ \begin{array}{ll} \forall p'. \ p \xrightarrow{\tau} p' & \Rightarrow & \exists q', q''. \ q \xrightarrow{\tau} q'' \xrightarrow{\tau} q' \wedge p' \approx q' \\ \forall \lambda, p'. \ p \xrightarrow{\lambda} p' & \Rightarrow & \exists q'. \ q \xrightarrow{\lambda} q' \wedge p' \approx q' \\ \text{and vice versa} \end{array} \right.$$

not a recursive definition! (refers to weak bisimilarity)

at the level of bisimulation game:

Bob is not allowed to use an idle move at the very first turn (at the following turns, ordinary weak bisimulation game)

TH. \cong is the largest congruence contained in \approx

Weak obs congruence

Note: \approx is not a weak bisimulation!

$$P \triangleq \alpha$$
 $Q \triangleq \tau.\alpha$ $Q \triangleq \tau.\alpha$ $Q \triangleq \varphi.Q$ $Q \triangleq \varphi.Q$

 $\cong \not\subseteq \Psi(\cong)$

Weak obs congruence

All the laws for strong bisimilarity are still valid

Additionally: Milner's \tau-laws

$$p + \tau . p \approx \tau . p$$

$$\mu.(p+\tau.q) \approx \mu.(p+\tau.q) + \mu.q$$

$$\mu.\tau.p \cong \mu.p$$