

http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start

PSC 2023/24 (375AA, 9CFU)

Principles for Software Composition

Roberto Bruni

http://www.di.unipi.it/~bruni/

08a - Complete Partial Orders

Partial orders

Partially ordered set (Poset or just PO) - a binary relation $\sqsubseteq \subseteq P \times P$

reflexive

$$\forall p \in P$$
.

$$p \sqsubseteq p$$

$$\forall p, q \in P$$
.

antisymmetric
$$\forall p, q \in P$$
. $p \sqsubseteq q \land q \sqsubseteq p \Rightarrow p = q$

transitive

$$\forall p,q,r \in P. \ p \sqsubseteq q \land q \sqsubseteq r \Rightarrow p \sqsubseteq r$$

$$p \sqsubseteq q$$

means that p and q are comparable and that p is less than (or equal to) q

$$p \sqsubset q$$

means $p \sqsubseteq q \land p \neq q$

Total orders

$$(P,\sqsubseteq)$$
 PO

total

$$\forall p, q \in P.$$
 $p \sqsubseteq q \lor q \sqsubseteq p$

a PO where any two elements are comparable

Hasse diagram notation (omit: reflexive arcs, transitive arcs)

Discrete orders

$$(P,\sqsubseteq)$$
 PO

discrete

$$\forall p, q \in P. \quad p \sqsubseteq q \Leftrightarrow p = q$$

each element is comparable only to itself

• • • • ...

Flat orders

$$(P,\sqsubseteq)$$
 PO

flat

$$\forall p, q \in P.$$
 $p \sqsubseteq q \Leftrightarrow p = q \lor p = \bot$

each element is **comparable** only to itself and with a distinguished (smaller) element \perp

& Exercise

$$(\wp(S),\subseteq)$$

PO?

Total?

Discrete?

Flat?

|S| < 2

 $S = \emptyset$

|S| < 2

example: $S = \{a, b, c\}$

$$\{a,b\} \quad \not\subseteq \\ \not\supseteq \quad \{b,c\}$$

$$\{a\} \quad \not\subseteq \qquad \{b\}$$

 $(\mathbb{N},=)$ PO? Total? Discrete? Flat?

0 1 2 3 ...

$$(\mathbb{N} \cup \{\bot\}, \{(\bot, n) \mid n \in \mathbb{N}\}^*)$$

PO? Total? Discrete?

Flat?

& Exercise

 $(\mathbb{N} \cup \{\infty\}, \leq)$

PO? Total?

X

 $(\mathbb{N},<)$

 (\mathbb{Z},\leq)

 (T_{Σ}, \prec)

PO? Total? Discrete? Flat?

X

 $(\mathbb{Z} \cup \{-\infty, \infty\}, \leq)$

 (\mathbb{N},\neq)

Subset of a PO

$$(P,\sqsubseteq_P)$$
 PO $Q\subseteq P$ let $\sqsubseteq_Q \triangleq \sqsubseteq_P \cap (Q\times Q)$

TH. (Q, \sqsubseteq_Q) is a PO

TH. if (P, \sqsubseteq_P) is total, then (Q, \sqsubseteq_Q) is total

PO _

w.f.

reflexive

not reflexive (otherwise cycle!)

antisymmetric

antisymmetric (otherwise cycle!) $p \prec q \land q \prec p$ is always false

transitive

can be transitive (\prec ⁺ w.f.)

has infinite descending chains (if nonempty)

no infinite descending chain

□ can be w.f.

√* is always a PO

Element properties (least, minimal, ...)

Least element

 (P,\sqsubseteq) PO $Q\subseteq P$ $\ell\in Q$

 ℓ is a least element of Q if $\forall q \in Q$. $\ell \sqsubseteq q$

TH. (uniqueness of least element)

 $(P,\sqsubseteq)\,\mathsf{PO}\ \ Q\subseteq P\ \ \ell_1,\ell_2$ least elements of Q implies $\ \ell_1=\ell_2$

by antisymmetry

Bottom

 (P,\sqsubseteq) PO

the least element of P (if it exists) is called bottom and denoted \bot

sometimes written \perp_P

Examples

PO

$$(\mathbb{N} \cup \{\infty\}, \leq)$$

$$(\wp(S),\subseteq)$$

$$(\mathbb{Z},\leq)$$

$$(\mathbb{Z} \cup \{-\infty, \infty\}, \leq)$$

bottom?

0

 \varnothing

$$-\infty$$

Minimal element

$$(P,\sqsubseteq)$$
 PO $Q\subseteq P$ $m\in Q$

m is a minimal element of Q if $\forall q \in Q$. $q \sqsubseteq m \Rightarrow q = m$

(no smaller element can be found in Q)

Least vs minimal

$\textbf{least} \forall q \in Q. \ell \sqsubseteq q$	
unique	not necessarily unique
minimal	
	not necessarily least can be least
	Call De least

Reverse order

TH. (P,\sqsubseteq) PO implies (P,\sqsupseteq) PO

proof. it is immediate to check that ∃
is reflexive

is reflexive is antisymmetric is transitive

 (P,\sqsubseteq) PO $Q\subseteq P$

greatest element: least element of Q w.r.t. (P, \supseteq)

top element: \top greatest element of P (if it exists)

maximal element: minimal element of Q w.r.t. (P, \supseteq)

Reversed powerset

Upper bound

$$(P,\sqsubseteq)$$
 PO $Q\subseteq P$ $u\in P$

u is an upper bound of Q if $\forall q \in Q$. $q \sqsubseteq u$ (all the elements of Q are smaller than u)

Q may have many upper bounds

Least upper bound

- (P,\sqsubseteq) PO $Q\subseteq P$ $p\in P$
- p is the least upper bound (lub) of Q if
- 1. it is an upper bound of Q $\forall q \in Q$. $q \sqsubseteq p$
- 2. it is smaller than any other upper bound of Q

$$\forall u \in P. \quad (\forall q \in Q. q \sqsubseteq u) \Rightarrow p \sqsubseteq u$$

we write p = lub Q

intuitively, it is the least element that represents all of ${\cal Q}$

 ${\it p}$ not necessarily an element of ${\it Q}$

& Exercise

Upper bounds of $\{a,b\}$? $\{f,h,i,\top\}$

lub? f

Upper bounds of $\{b,c\}$? $\{h,i,\top\}$

lub? no lub!

$$(\mathbb{N}, \leq)$$

$$Q \subseteq \mathbb{N}$$

 (\mathbb{N}, \leq) $Q \subseteq \mathbb{N}$ lub? if Q finite $lub \ Q = \max Q$ otherwise no lub

$$(\wp(S),\subseteq) \quad Q\subseteq \wp(S) \quad \text{lub?}$$

$$lub \ Q = \bigcup_{T \in Q} T$$

$$\{a,b,c\}$$

$$\{a,b\}$$

$$\{a,c\}$$

$$\{b,c\}$$

$$\{a\}$$

$$\{b\}$$

$$\{c\}$$

$$lub \{\{a\}, \{b\}\} = \{a, b\}$$

Complete partial orders (CPO)

Completeness: the idea

```
a domain
    a way to compare element
x \sqsubseteq y  x is a (less precise) approximation of y
           x and y are consistent,
                        but y is more accurate than x
          x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots \sqsubseteq x_n \sqsubseteq \cdots
                                      (n+1)th approximation
                       third approximation
                 second approximation
          first approximation
```

does any sequence of approximations tend to some limit?

Chain

$$(P,\sqsubseteq)$$
 PO

 (P,\sqsubseteq) PO $\{d_i\}_{i\in\mathbb{N}}$ is a chain if $\forall i\in\mathbb{N}.\ d_i\sqsubseteq d_{i+1}$

$$d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \cdots \sqsubseteq d_n \sqsubseteq \cdots$$

any chain is an infinite list

finite chain: there are only finitely many distinct elements

$$\exists k \in \mathbb{N}. \ \forall i \geq k. \ d_i = d_{i+1}$$

or equivalently

$$\exists k \in \mathbb{N}. \ \forall i \geq k. \ d_i = d_k$$

Example

 (\mathbb{N}, \leq)

$$0 \le 2 \le 4 \le \dots \le 2n \le \dots$$

is an infinite chain

$$0 \le 1 \le 3 \le 3 \le 5 \le \cdots \le 5 \le \cdots$$
 is a finite chain

any chain has infinite length

Limit of a chain

 (P,\sqsubseteq) PO $\{d_i\}_{i\in\mathbb{N}}$ a chain

we denote by $\bigsqcup_{i\in\mathbb{N}}d_i$ the lub of $\{d_i\}_{i\in\mathbb{N}}$ if it exists

and call it the limit of the chain

Limit illustrated

Example

 (\mathbb{N}, \leq)

$$0 \le 2 \le 4 \le \cdots \le 2n \le \cdots$$
 has no lub (empty set of upper bounds)

$$0 \le 1 \le 3 \le 3 \le 5 \le \dots \le 5 \le \dots$$
 has lub 5 (which upper bounds?)

Lemma on finite chains

Lemma (any finite chain has a limit)

$$(P,\sqsubseteq)$$
 PO $\{d_i\}_{i\in\mathbb{N}}$ a finite chain $\Rightarrow \bigsqcup_{i\in\mathbb{N}} d_i$ exists

proof.

$$\{d_i\}_{i\in\mathbb{N}}$$
 finite $\Rightarrow \exists k. \ \forall i. \ d_{i+k} = d_k$

the elements of the chain are totally ordered

 d_k is the greatest element of the chain

$$d_k$$
 is an upper bound $\forall i. \ d_i \sqsubseteq d_k$

 d_k is the least upper bound

take u such that $\forall i. d_i \sqsubseteq u$ then $d_k \sqsubseteq u$

Prefix independence

Lemma (prefix independence) (P,\sqsubseteq) PO $\{d_i\}_{i\in\mathbb{N}}$ a chain if $\bigsqcup_{i\in\mathbb{N}}d_i$ exists $\Rightarrow \forall k.$ $\bigsqcup_{i\in\mathbb{N}}d_{i+k}=\bigsqcup_{i\in\mathbb{N}}d_i$

$$d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \cdots \sqsubseteq d_k \sqsubseteq d_{k+1} \sqsubseteq \cdots \qquad \bigsqcup_{i \in \mathbb{N}} d_i$$

$$=$$

$$d_k \sqsubseteq d_{k+1} \sqsubseteq \cdots \qquad \bigsqcup_{i \in \mathbb{N}} d_{i+k}$$

Prefix independence

Lemma (prefix independence) (P,\sqsubseteq) PO $\{d_i\}_{i\in\mathbb{N}}$ a chain if $\bigsqcup_{i\in\mathbb{N}}d_i$ exists $\Rightarrow \forall k.$ $\bigsqcup_{i\in\mathbb{N}}d_{i+k}=\bigsqcup_{i\in\mathbb{N}}d_i$

proof.

- take a generic k we prove that $\{d_i\}_{i\in\mathbb{N}}$ and $\{d_{i+k}\}_{i\in\mathbb{N}}$ have the same u.b. (and thus the same lub)
- 1. if u is an u.b. of $\{d_i\}_{i\in\mathbb{N}}$ then is an u.b. of $\{d_{i+k}\}_{i\in\mathbb{N}}$ because $\{d_{i+k}\}_{i\in\mathbb{N}}\subseteq\{d_i\}_{i\in\mathbb{N}}$
- 2. if u is an u.b. of $\{d_{i+k}\}_{i\in\mathbb{N}}$ we need to show $\forall j.\ d_j \sqsubseteq u$ for $j \geq k$ it is obvious if j < k then $d_j \sqsubseteq d_k \sqsubseteq u$ because $d_k \in \{d_{i+k}\}_{i\in\mathbb{N}}$

Complete partial order

 (P,\sqsubseteq) PO P is complete if each chain has a limit (lub)

TH. Any finite chain has a limit (the last element in the sequence)

If P has only finite chains it is complete

If P is finite it is complete

Any discrete order is complete

Any flat order is complete

Example

 (\mathbb{N}, \leq) is not complete (it is enough to exhibit a chain with no limit)

$$0 \le 2 \le 4 \le \dots \le 2n \le \dots$$

has no lub (empty set of u.b.)

$$(\mathbb{N} \cup \{\infty\}, \leq)$$

any infinite chain has limit ∞ (set of u.b. $\{\infty\}$)

$$(\wp(S),\subseteq)$$

complete?

$$\{S_i\}_{i\in\mathbb{N}}$$

$$\bigsqcup_{i\in\mathbb{N}} S_i = \bigcup_{i\in\mathbb{N}} S_i = \{x \mid \exists k \in \mathbb{N}. x \in S_k\}$$

$$(\mathbb{N} \cup \{\infty_1, \infty_2\}, \leq)$$
 complete?

any infinite chain has no limit (set of u.b. $\{\infty_1,\infty_2\}$)