

https://didawiki.di.unipi.it/doku.php/magistraleinformatica/mpp/start

MPP 2025/26 (0077A, 9CFU)

Models for Programming Paradigms

Roberto Bruni Filippo Bonchi http://www.di.unipi.it/~bruni/

20 - Weak semantics

CCS Weak transitions

Sequential buffer

$$B_0^2 \triangleq in.B_1^2$$

$$B_1^2 \triangleq in.B_2^2 + \overline{out}.B_0^2$$

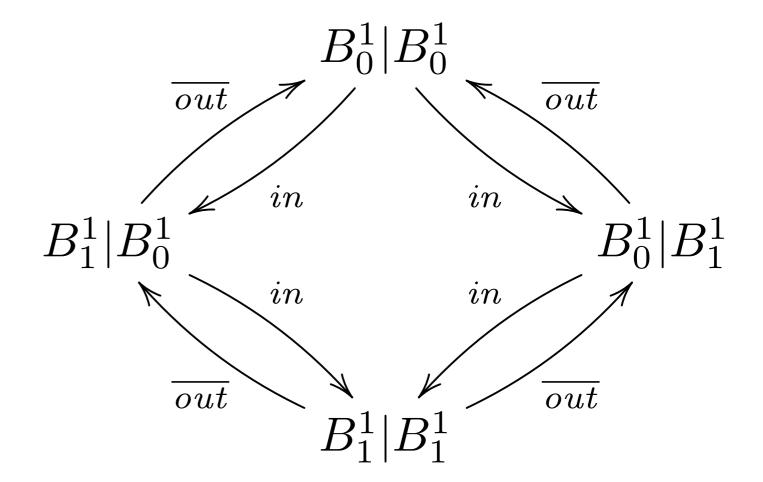
$$B_2^2 \triangleq \overline{out}.B_1^2$$

$$B_0^2$$
 $\overline{out} \left(\begin{array}{c} A \\ \downarrow \end{array} \right) in$
 B_1^2
 $\overline{out} \left(\begin{array}{c} A \\ \downarrow \end{array} \right) in$
 B_2^2

Parallel buffer

$$B_0^1 \triangleq in.B_1^1$$

$$B_1^1 \triangleq \overline{out}.B_0^1$$

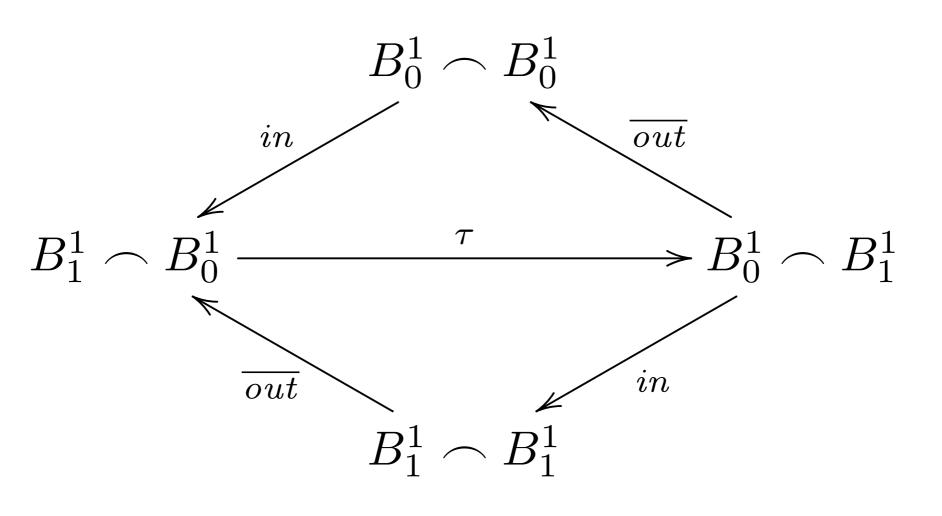


Linked buffer

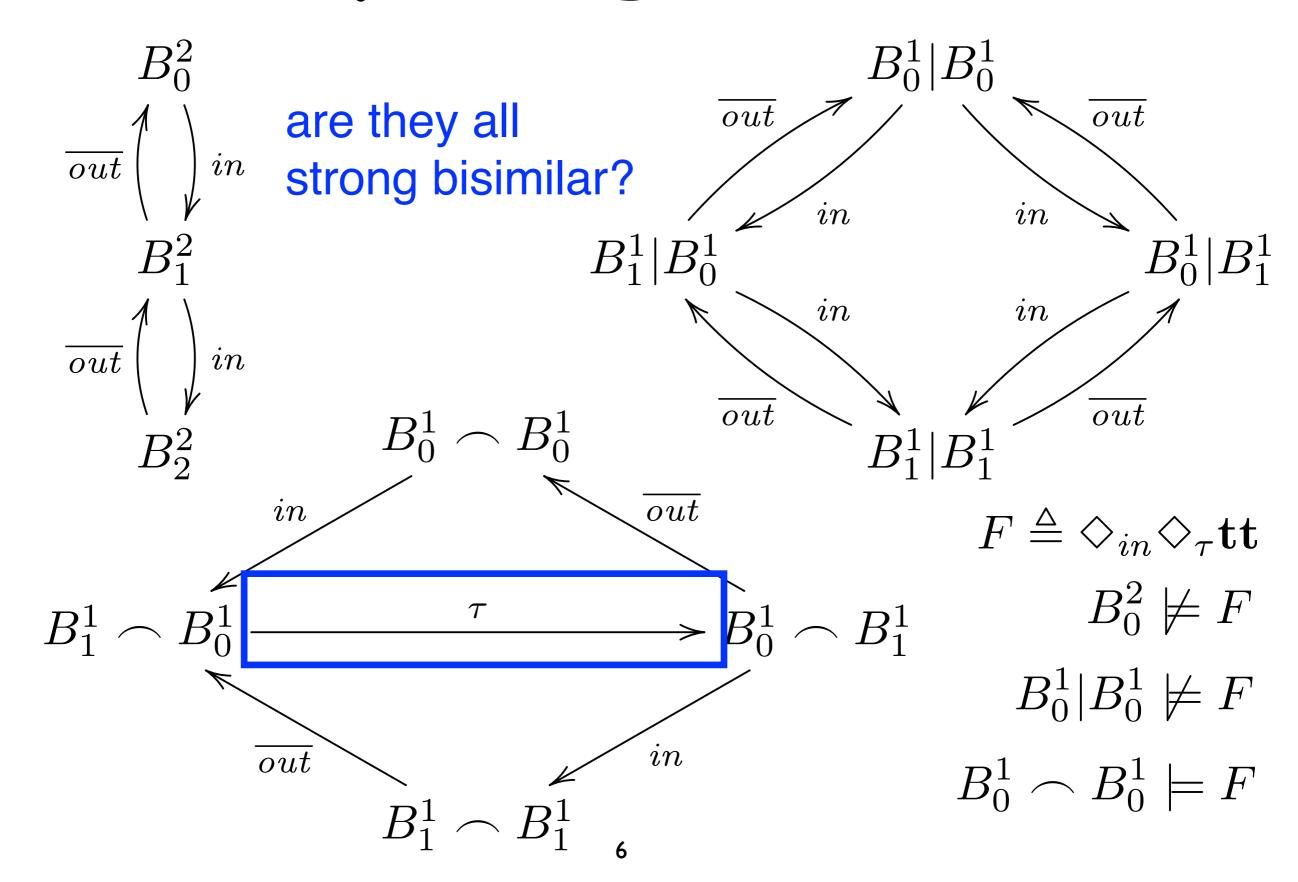
$$B_0^1 \triangleq in.B_1^1 \qquad \eta(out) = c$$

$$p \frown q \triangleq (p[\eta]|q[\phi]) \backslash c$$

$$B_1^1 \triangleq \overline{out}.B_0^1 \qquad \phi(in) = c$$



Comparing buffers



Silent transitions

τ-transitions are silent, non observable they represent internal steps of the system they can be used just for bookkeeping can we abstract away from them? can we find a broader equivalence?

necessary to relate an abstract specification (little use of τ) with a concrete implementation (lots/tons of τ)

Weak bisimulation game

coarser equivalence: more power to the defender!

Alice picks a process and an ordinary transition

Bob replies possibly using many additional silent transitions arbitrarily many, but finitely many such sequences are called *weak* transitions

$$p \stackrel{\mu}{\Rightarrow} q$$

what if Alice picks a silent transition?

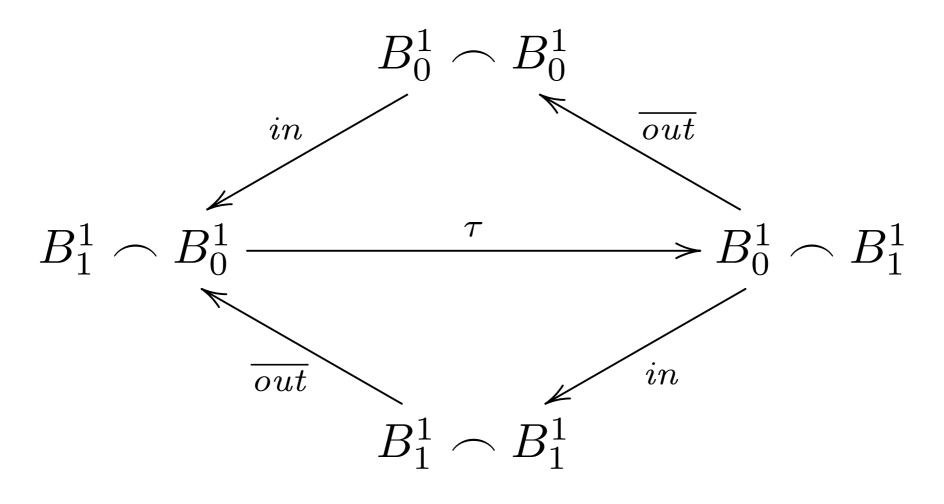
Bob can just leave the other process idle i.e. can choose not to move

Weak transitions

p can reach q via a (possibly empty) finite sequence of τ -transitions

$$p \stackrel{\lambda}{\Rightarrow} q \quad \text{iff} \quad \exists p', q'. \ p \stackrel{\tau}{\Rightarrow} p' \stackrel{\lambda}{\Rightarrow} q' \stackrel{\tau}{\Rightarrow} q$$

p can reach q via a λ -transition possibly preceded and followed by empty/finite sequences of τ -transitions



$$B_0^1 \frown B_0^1 \stackrel{\tau}{\Rightarrow} B_0^1 \frown B_0^1$$

$$B_0^1 \frown B_0^1 \stackrel{in}{\Rightarrow} B_0^1 \frown B_1^1$$

$$B_1^1 \frown B_0^1 \stackrel{\overline{out}}{\Longrightarrow} B_0^1 \frown B_0^1$$

CCS weak bisimulation

Weak bisimulation

R is a *weak* bisimulation if

$$\forall p,q.\;(p,q) \in \mathbf{R} \Rightarrow \begin{cases} \forall \mu,p'.\; p \xrightarrow{\mu} p' \; \Rightarrow \; \exists q'.\; q \xrightarrow{\mu} q' \land p' \; \mathbf{R} \; q' \\ \land \; \mathsf{Alice\;plays} \; \; \mathsf{Bob\;reples} \\ \forall \mu,q'.\; q \xrightarrow{\mu} q' \; \Rightarrow \; \exists p'.\; p \xrightarrow{\mu} p' \land p' \; \mathbf{R} \; q' \end{cases}$$

weak transitions

Weak bisimilariity

weak bisimilarity:

 $p \approx q$ iff $\exists \mathbf{R}$ a weak bisimulation with $(p,q) \in \mathbf{R}$

TH. weak bisimilarity is an equivalence relation

TH. any strong bisimulation is a weak bisimulation

Cor. strong bisimilarity implies weak bisimilarity

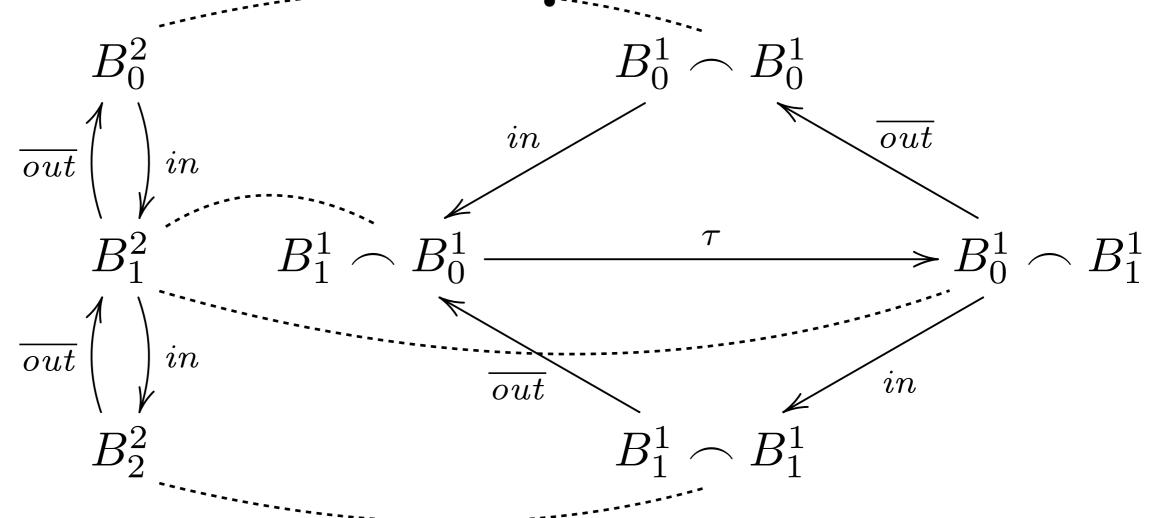
Weaker bisimilarity?

what if we give extra power to Alice as well?

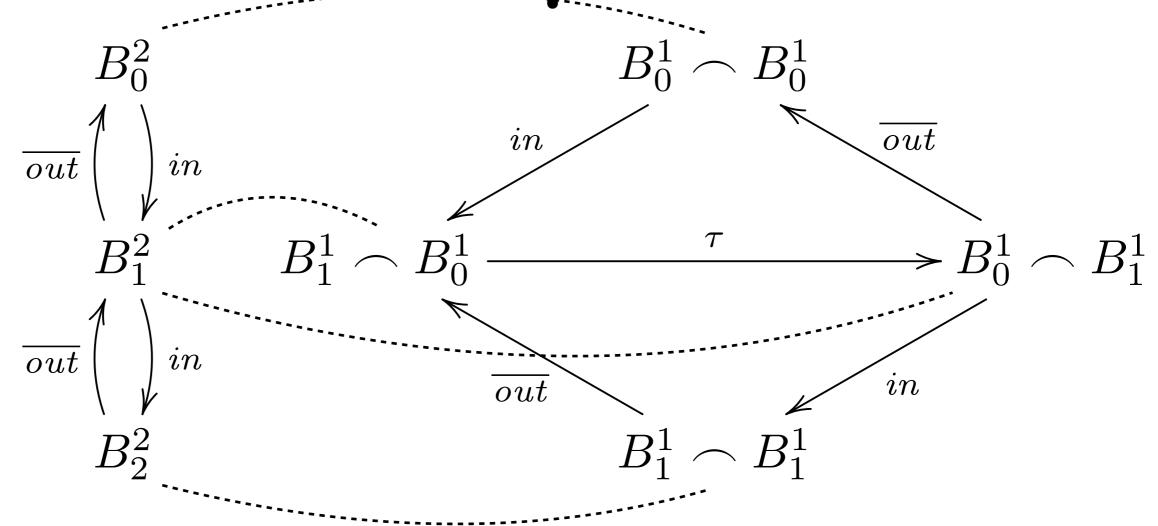
$$\forall p,q.\;(p,q)\in\mathbf{R}\Rightarrow\left\{\begin{array}{ll}\forall\mu,p'.\;p\overset{\mu}{\Rightarrow}p'\\ \wedge\;\mathsf{Alice\;plays}\;\;\mathsf{Bob\;replies}\\ \forall\mu,q'.\;q\overset{\mu}{\Rightarrow}q'\;\;\Rightarrow\;\;\exists p'.\;p\overset{\mu}{\Rightarrow}p'\wedge p'\;\mathbf{R}\;q'\\ \Rightarrow\;\exists p'.\;p\overset{\mu}{\Rightarrow}p'\wedge p'\;\mathbf{R}\;q'\end{array}\right.$$

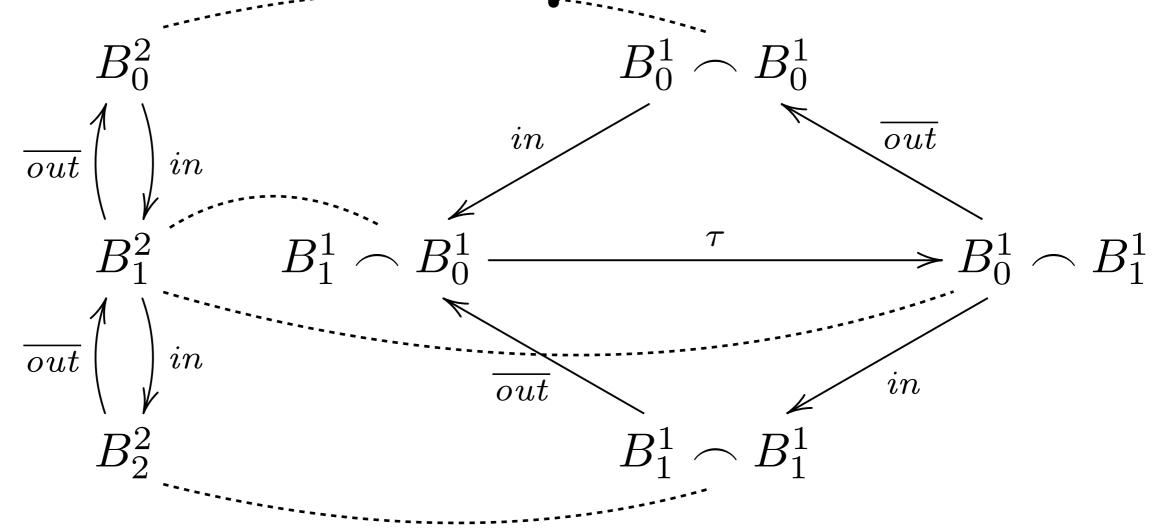
weak transitions

nothing changes: we still get the same weak bisimilarity



$$\mathbf{R} \triangleq \left\{ \begin{array}{l} (B_0^2, B_0^1 \frown B_0^1), \\ (B_1^2, B_1^1 \frown B_0^1), \\ (B_1^2, B_0^1 \frown B_1^1), \\ (B_2^2, B_1^1 \frown B_1^1) \end{array} \right\} \text{ is a weak bisimulation relation}$$

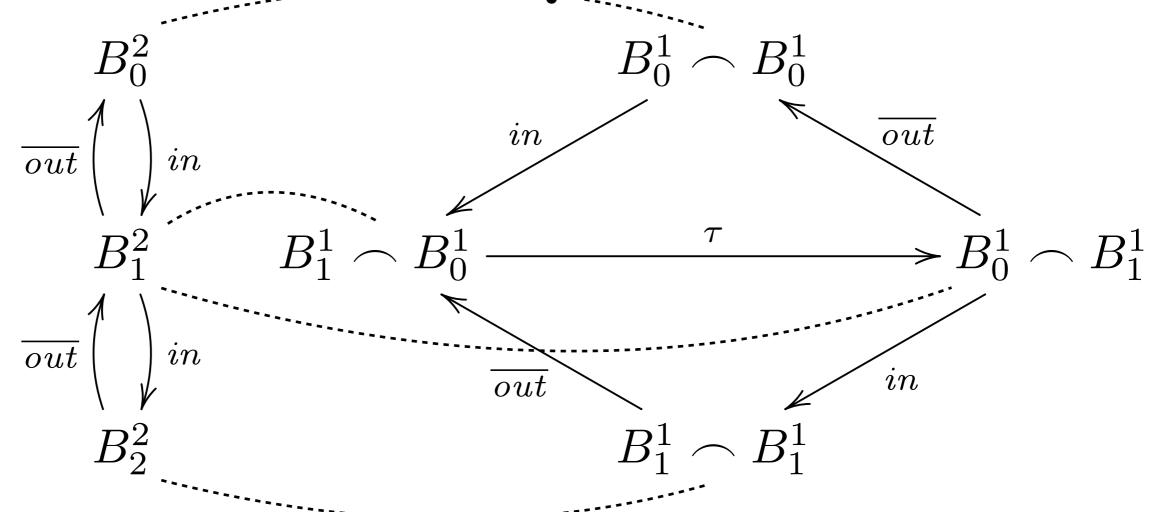




$$B_1^2 \qquad \mathbf{R} \qquad B_1^1 \frown B_0^1 \qquad \qquad B_1^2 \qquad \mathbf{R} \qquad B_1^1 \frown B_0^1$$

$$\downarrow^{in} \qquad \qquad \downarrow^{in} \qquad \qquad \downarrow^{out} \qquad \qquad \downarrow^{out}$$

$$B_2^2 \qquad \mathbf{R} \qquad B_1^1 \frown B_1^1 \qquad \qquad B_0^2 \qquad \mathbf{R} \qquad B_0^1 \frown B_0^1$$



$$B_1^2$$
 ${f R}$ $B_1^1 \frown B_0^1$ (stays idle!) $igg|_{ au}$ ${f R}$ $B_1^1 \frown B_1^1$

(etc. for the other pairs)

Weak bis as a fixpoint

$$\Psi(\mathbf{R}) \triangleq \left\{ (p,q) \middle| \begin{array}{ccc} \forall \mu, p'. \ p \xrightarrow{\mu} p' & \Rightarrow & \exists q'. \ q \xrightarrow{\mu} q' \land p' \ \mathbf{R} \ q' \\ \land \mu, q'. \ q \xrightarrow{\mu} q' & \Rightarrow & \exists p'. \ p \xrightarrow{\mu} p' \land p' \ \mathbf{R} \ q' \end{array} \right\}$$

$$\Psi: \wp(\mathcal{P} \times \mathcal{P}) \to \wp(\mathcal{P} \times \mathcal{P})$$

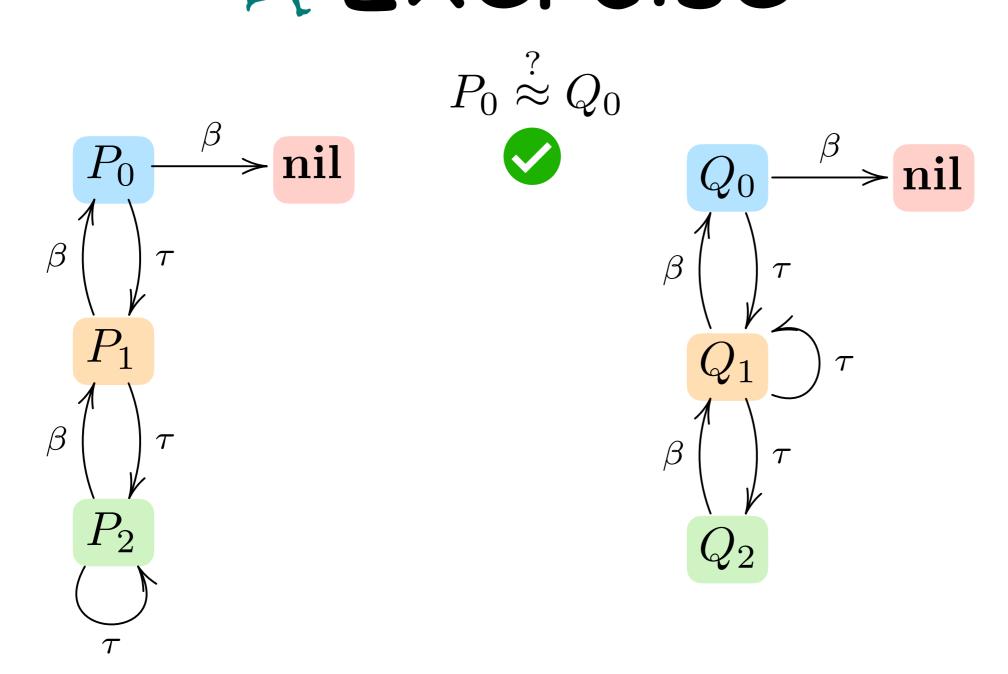
maps relations to relations

$$\mathbf{R} \subseteq \Psi(\mathbf{R})$$

a weak bisimulation

$$\approx = \Psi(\approx)$$

weak bisimilarity is a fixpoint



is a weak bisimulation!

$$\mathbf{R} = \{ \{P_0, Q_0\}, \{P_1, Q_1\}, \{P_2, Q_2\}, \{\mathbf{nil}\} \}$$

$$P \triangleq \tau . (\beta . P + \gamma . P)$$

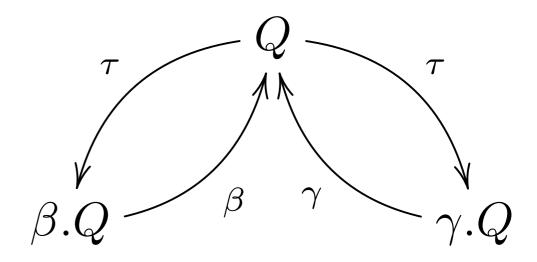
$$P \stackrel{?}{\approx} Q$$

$$Q \triangleq \tau.\beta.Q + \tau.\gamma.Q$$

$$P$$

$$\beta \left(\begin{array}{c} P \\ \downarrow \tau \end{array} \right) \gamma$$

$$\beta . P + \gamma . P$$



$$Q \xrightarrow{\tau} \beta.Q$$

$$P \stackrel{\tau}{\Longrightarrow} P$$

$$P \xrightarrow{\tau} \beta.P + \gamma.P$$

$$\beta.Q \xrightarrow{\tau} \beta.Q$$

$$\beta.P + \gamma.P \xrightarrow{\gamma} P$$

$$\beta.Q \not\Longrightarrow$$

Alice wins!

$$P \triangleq \tau . (\tau . P + \gamma . P)$$

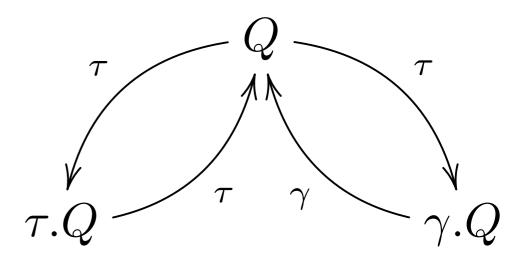
$$P\overset{?}{pprox}Q$$

$$Q \triangleq \tau.\tau.Q + \tau.\gamma.Q$$

$$P$$

$$\tau \left(\begin{array}{c} P \\ \downarrow \tau \end{array} \right) \gamma$$

$$\tau \cdot P + \gamma \cdot P$$



$$\mathbf{R}_0 = \{ \{ P , Q , \tau . P + \gamma . P , \tau . Q , \gamma . Q \} \}$$

is a weak bisimulation!

$$P \triangleq \alpha.(\tau.P + \gamma.P)$$

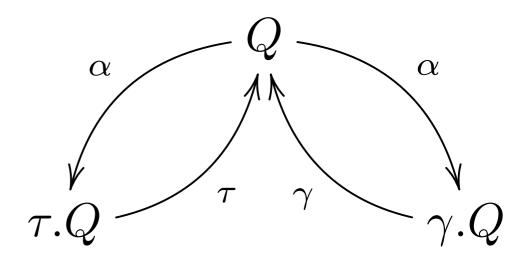
$$P \stackrel{?}{\approx} Q$$

$$Q \triangleq \alpha.\tau.Q + \alpha.\gamma.Q$$

$$P$$

$$\tau \left(\begin{array}{c} P \\ \downarrow \alpha \end{array} \right) \gamma$$

$$\tau \cdot P + \gamma \cdot P$$



$$Q \xrightarrow{\alpha} \gamma.Q$$

$$P \stackrel{\alpha}{\Longrightarrow} \tau.P + \gamma.P$$

$$\tau.P + \gamma.P \xrightarrow{\tau} P$$

$$\gamma.Q \stackrel{\tau}{\Longrightarrow} \gamma.Q$$

$$P \xrightarrow{\alpha} \tau . P + \gamma . P$$

$$\gamma.Q \stackrel{\alpha}{\Rightarrow}$$

Alice wins!

CCS problems with weak semantics

Problems with weak bis

with respect to weak transitions, guarded processes can have infinitely branching LTS

$$P \stackrel{\tau}{\Longrightarrow} P | \beta \stackrel{\tau}{\Longrightarrow} P | \beta | \beta \stackrel{\tau}{\Longrightarrow} \cdots$$

$$\beta \downarrow \qquad \qquad \beta \downarrow \qquad \qquad \text{many arrows omitted}$$

$$\tau.P \qquad \tau.P | \beta \qquad \qquad \tau.P | \beta | \beta \qquad \qquad \text{assume} \quad p | \mathbf{nil} = p$$

$$P \stackrel{\tau}{\Longrightarrow} P | \beta \stackrel{\tau}{\Longrightarrow} P | \beta | \beta \stackrel{\tau}{\Longrightarrow} \cdots$$

$$\beta \downarrow \qquad \qquad \qquad \beta \downarrow \qquad \qquad \text{avoid τ-prefixes?}$$

$$\tau.P \qquad \tau.P | \beta \qquad \qquad \tau.P | \beta | \beta \qquad \qquad P \triangleq \mathbf{rec} \ x. \ (\alpha.x | \overline{\alpha} | \beta) \backslash \alpha$$

Problems with weak bis

weak bisimilarity is not a congruence (w.r.t. +)

take
$$P \triangleq \alpha$$

$$Q \triangleq \tau.\alpha$$

if
$$P \xrightarrow{\alpha} \mathbf{nil}$$
 then $Q \xrightarrow{\alpha} \mathbf{nil}$

if
$$Q \xrightarrow{\tau} \alpha$$
 then $P \xrightarrow{\tau} P$

$$P \stackrel{\tau}{\Rightarrow} P$$

take the context
$$\mathbb{C}[\cdot] \triangleq [\cdot] + \beta$$

Alice plays

$$\mathbb{C}[Q] \xrightarrow{\tau} \alpha$$

Bob can only reply $\mathbb{C}[P] \stackrel{\tau}{\Rightarrow} \mathbb{C}[P]$

Alice plays

$$\mathbb{C}[P] \xrightarrow{\beta} \mathbf{nil}$$

Bob cannot reply $\alpha \not\Rightarrow$

$$\alpha \not\Rightarrow \beta$$

Alice wins!

$$P \approx Q$$
 $\mathbb{C}[P] \not\approx \mathbb{C}[Q]$

$$\mathbb{C}[P] \triangleq \alpha + \beta$$

$$\mathbb{C}[Q] \triangleq \tau . \alpha + \beta$$

Problems with weak bis

cannot distinguish between deadlock and silent divergence

rec
$$x. \tau.x \approx \text{nil}$$

$$\operatorname{\mathbf{rec}} x. \ \tau.x \xrightarrow{\tau} \operatorname{\mathbf{rec}} x. \ \tau.x \qquad \operatorname{\mathbf{nil}} \xrightarrow{\tau} \operatorname{\mathbf{nil}}$$

CCS weak observational congruence

Weak obs congruence

$$p \cong q$$
 iff $p \approx q \land \forall r. \ p + r \approx q + r$

Equivalently

$$p \approxeq q \quad \text{iff} \quad \left\{ \begin{array}{ll} \forall p'. \ p \xrightarrow{\tau} p' & \Rightarrow & \exists q', q''. \ q \xrightarrow{\tau} q'' \xrightarrow{\tau} q' \wedge p' \approx q' \\ \forall \lambda, p'. \ p \xrightarrow{\lambda} p' & \Rightarrow & \exists q'. \ q \xrightarrow{\lambda} q' \wedge p' \approx q' \\ \text{and vice versa} \end{array} \right.$$

not a recursive definition! (refers to weak bisimilarity)

at the level of bisimulation game:

Bob is not allowed to use an idle move at the very first turn (at the following turns, ordinary weak bisimulation game)

TH. \cong is the largest congruence contained in \approx

Weak obs congruence

Note: \approx is not a weak bisimulation!

$$P \triangleq \alpha$$
 $Q \triangleq \tau.\alpha$ $Q \triangleq \tau.\alpha$ $Q \triangleq \varphi.Q$ $Q \triangleq \varphi.Q$

$$\cong \not\subseteq \Psi(\cong)$$

Weak obs congruence

All the laws for strong bisimilarity are still valid

Additionally: Milner's \tau-laws

$$p + \tau . p \approx \tau . p$$

$$\mu.(p+\tau.q) \approx \mu.(p+\tau.q) + \mu.q$$

$$\mu.\tau.p \cong \mu.p$$

Weak bisimilar processes

Prove that the following property is valid for any agent p, where \approx is the weak bisimilarity:

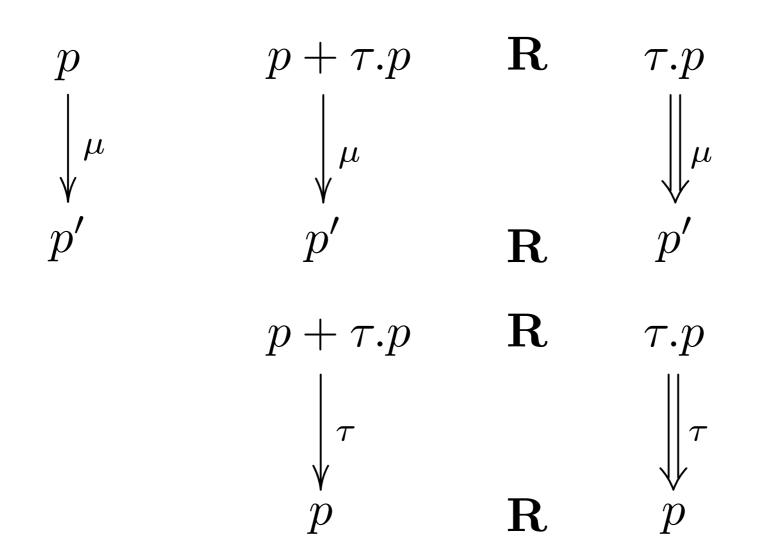
$$p + \tau . p \approx \tau . p$$

Weak bisimilar processes

$$\mathbf{R} \triangleq \{(p + \tau.p, \tau.p) \mid p \in \mathcal{P}\} \cup Id$$

we check that R is a weak bisimulation

no need to check pairs in Id



Weak bisimilar processes

$$\mathbf{R} \triangleq \{(p + \tau.p, \tau.p) \mid p \in \mathcal{P}\} \cup Id$$

we check that **R** is a weak bisimulation

no need to check pairs in Id

$$p + \tau.p$$
 \mathbf{R} $\tau.p$ $\downarrow \tau$ $\downarrow \tau$ p \mathbf{R} p