

https://didawiki.di.unipi.it/doku.php/magistraleinformatica/mpp/start

MPP 2025/26 (0077A, 9CFU)

Models for Programming Paradigms

Roberto Bruni Filippo Bonchi http://www.di.unipi.it/~bruni/

19 - Hennessy-Milner Logic

Bisimilarity

graph isomorphism distinguishes too many processes trace equivalence identifies too many processes we need some notion of equivalence in between the two we introduce the notion of *strong bisimilarity*

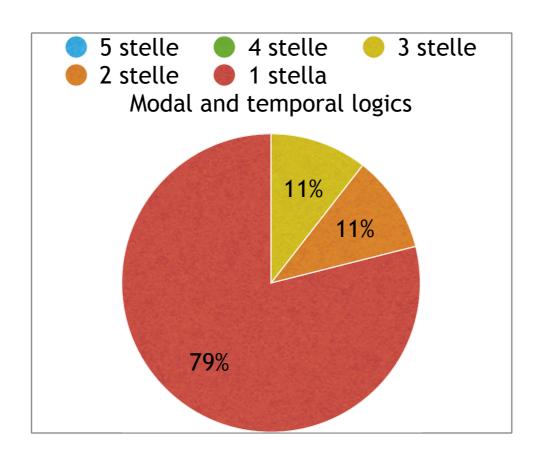
as a game as a fixpoint

as a logical equivalence

to keep in mind: two processes are equivalent unless we have some good reasons to distinguish them

HML Hennessy-Milner Logic

From your forms



(over 19 answers)

Logical equivalence

Let us take another approach to equivalence

we define some logic (set of formulas)

a process may or may not satisfy a formula

two processes are (logically) equivalent when they satisfy exactly the same formulas

formulas must describe behavioural properties of processes the ability / inability to perform transitions (modal logic: possibly, necessarily)

then, we can compose formulas with usual operators

Hennessy-Milner Logic

We present the core operators

multi-modal:

modal operators are parameterised by actions

no negation:

the converse of a formula can also be written as a formula

no recursion:

each formula express properties about finite steps ahead

denotational semantics of a formula (postponed): set of processes that satisfy the formula

HML: syntax

 \mathcal{L} set of all formulas

HML: semantics

$$p \models F$$
 reads " p satisfies F "

defined inductively on the structure of the formula

$$p \models \mathbf{tt}$$
 any process satisfies true (no process satisfies false)

$$p \models \bigwedge_{i \in I} F_i$$
 iff $\forall i \in I. \ p \models F_i$ p satisfies all F_i

$$p \models \bigvee_{i \in I} F_i$$
 iff $\exists i \in I. \ p \models F_i$ p satisfies one of the F_i

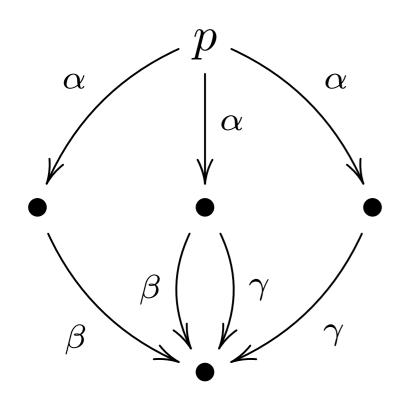
$$p\models \diamondsuit_{\mu}F$$
 iff $\exists p'.\ p\xrightarrow{\mu} p'\land p'\models F$ f and then satisfy F

$$p\models\Box_{\mu}F$$
 iff $\forall p'.\ p\xrightarrow{\mu}p'\Rightarrow p'\models F$ F is satisfied after any μ -step of p

Examples

- $\diamond_{lpha} \mathbf{tt}$ satisfied by any process that can make an a-step
- $\Box_{\beta}\mathbf{ff}$ satisfied by any process that cannot make a β -step
- \diamond_{α} ff same as **ff** if a process cannot do α the modality is missed if a process can do α its continuation cannot satisfy **ff**
- \Box_{β} tt same as **tt** if a process cannot do β the modality holds trivially if a process does β its continuation will satisfy **tt**
- $\Diamond_{\alpha}(\Diamond_{\beta}\mathbf{t}\mathbf{t}\wedge\Box_{\gamma}\mathbf{f}\mathbf{f})$ satisfied by any process the can do α and reach a process that can do β but not γ

Examples



$$p \models \Diamond_{\alpha} \mathbf{t} \mathbf{t}$$

$$p \models \Box_{\alpha} \Diamond_{\beta} \mathbf{t} \mathbf{t}$$

$$p \models \Diamond_{\alpha} \Box_{\beta} \mathbf{f} \mathbf{f} \wedge \Diamond_{\alpha} \Box_{\gamma} \mathbf{f} \mathbf{f}$$

$$p \models \Box_{\alpha} (\Diamond_{\beta} \mathbf{t} \mathbf{t} \vee \Diamond_{\gamma} \mathbf{t} \mathbf{t})$$

$$p \models \Box_{\alpha} (\Diamond_{\beta} \mathbf{t} \mathbf{t} \wedge \Diamond_{\gamma} \mathbf{t} \mathbf{t})$$

$$p \models \Box_{\alpha} (\Diamond_{\beta} \mathbf{t} \mathbf{t} \wedge \Diamond_{\gamma} \mathbf{t} \mathbf{t})$$

$$p \models \Diamond_{\alpha} (\Diamond_{\beta} \mathbf{t} \mathbf{t} \wedge \Diamond_{\gamma} \mathbf{t} \mathbf{t})$$

Box/diamond duality

$$\neg \diamondsuit_{\mu} F$$

$$\equiv \neg (\exists p'. p \xrightarrow{\mu} p' \land p' \models F)$$

$$\equiv \forall p'. \neg (p \xrightarrow{\mu} p' \land p' \models F)$$

$$\equiv \forall p'. \neg (p \xrightarrow{\mu} p') \lor \neg (p' \models F)$$

$$\equiv \forall p'. p \xrightarrow{\mu} p' \Rightarrow (p' \models \neg F)$$

$$\equiv \Box_{\mu} \neg F$$

Negation

not present in the syntax, but not needed

any formula F has a converse formula Fc such that

$$\forall p. \ p \models F \quad \text{iff} \quad p \not\models F^c$$

Fc can be defined by structural induction

$$\mathbf{tt}^{c} \triangleq \mathbf{ff}$$

$$(\bigwedge_{i \in I} F_{i})^{c} \triangleq \bigvee_{i \in I} F_{i}^{c}$$

$$(\bigvee_{i \in I} F_{i})^{c} \triangleq \bigwedge_{i \in I} F_{i}^{c}$$

$$(\diamondsuit_{\mu} F)^{c} \triangleq \Box_{\mu} F^{c}$$

$$(\Box_{\mu} F)^{c} \triangleq \diamondsuit_{\mu} F^{c}$$

$$(\diamondsuit_{\alpha}\mathbf{t}\mathbf{t})^{c} = \Box_{\alpha}\mathbf{t}\mathbf{t}^{c} = \Box_{\alpha}\mathbf{f}\mathbf{f}$$
 (can do α)^c = cannot do α

Extended syntax

$$A = \{\mu_1, ..., \mu_n\}$$

$$\diamondsuit_A F \triangleq \diamondsuit_{\mu_1} F \lor \dots \lor \diamondsuit_{\mu_n} F \qquad \Box_A F \triangleq \Box_{\mu_1} F \land \dots \land \Box_{\mu_n} F$$

$$= \bigvee_{i \in [1, n]} \diamondsuit_{\mu_i} F \qquad \qquad = \bigwedge_{i \in [1, n]} \Box_{\mu_i} F$$

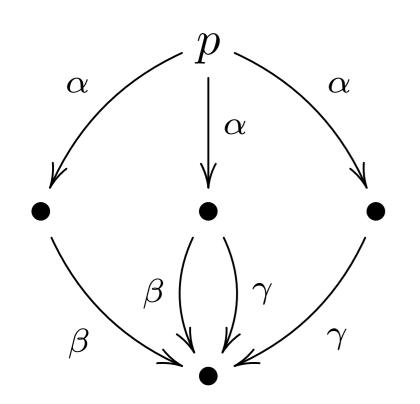
$$\Diamond_{\emptyset}F \triangleq \mathbf{ff}$$

$$\square_{\emptyset} F \triangleq \mathbf{tt}$$

HML: logical equivalence

two processes are equivalent iff they satisfy the same formulas

$$p \equiv_{\mathrm{HM}} q$$
 iff $\forall F \in \mathcal{L}. \ (p \models F \Leftrightarrow q \models F)$



$$p \equiv_{\mathrm{HM}}^? q$$

$$p \models F$$

$$p \models F \qquad F \triangleq \Diamond_{\alpha}(\Diamond_{\beta}\mathbf{tt} \wedge \Diamond_{\gamma}\mathbf{tt})$$

$$q \not\models F$$

$$p \not\models F^c$$

$$p \not\models F^c \qquad F^c \triangleq \Box_{\alpha}(\Box_{\beta}\mathbf{ff} \vee \Box_{\gamma}\mathbf{ff})$$

$$q \models F^c$$

Strong bis as logic equiv

TH. for any finitely branching processes *p*,*q*

$$p \simeq q \quad \text{iff} \quad p \equiv_{\text{HM}} q$$

(proof omitted)

consequences:

to show that two processes are strong bisimilar: exhibit a strong bisimulation relation that relates them

to show that two processes are not strong bisimilar: exhibit a HML formula that distinguishes between them

* Exercise

find a HML formula that distinguishes the two processes

$$F \triangleq \Diamond_{\alpha} \Diamond_{\alpha} \Diamond_{\alpha} \mathbf{tt} \qquad R_0 \not\models F$$

$$R_1$$
 β
 β
 α
 R_2

$$P_0 \models F$$

$$R_0 \not\models F$$

find a HML formula that distinguishes the two processes

a HML formula that distinguishes to
$$P_0 \xrightarrow{\beta} \mathbf{nil}$$
 $P_0 \not\simeq Q_0$ and P_1 and P_2

$$P_0 \not\simeq Q_0$$

$$P_0 \models F$$

$$F \triangleq \Diamond_{\alpha} \Box_{\alpha} \Diamond_{\alpha} \mathbf{tt} \qquad Q_0 \not\models F$$

$$Q_0 \not\models F$$

Non bisimilar processes

Prove that the CCS agents

$$p \stackrel{\text{def}}{=} \alpha.(\alpha.\beta.\text{nil} + \alpha.(\beta.\text{nil} + \gamma.\text{nil}))$$
 and $q \stackrel{\text{def}}{=} \alpha.(\alpha.\beta.\text{nil} + \alpha.\gamma.\text{nil})$ are not strong bisimilar.

Non bisimilar processes

$$p \triangleq \alpha.(\alpha.\beta + \alpha.(\beta + \gamma)) \qquad q \triangleq \alpha.(\alpha.\beta + \alpha.\gamma)$$

$$p \Rightarrow F_1 \triangleq \Diamond_{\alpha} \Diamond_{\alpha} (\Diamond_{\beta} \mathbf{t} \mathbf{t} \wedge \Diamond_{\gamma} \mathbf{t} \mathbf{t}) \qquad q \not\models F_1 \qquad q \not\models F_1 \qquad q \not\models F_1 \qquad q \not\models F_1 \qquad q \not\models F_2 \qquad q$$