MPP 2025/26 (0077A, 9CFU)
Models for Programming Paradigms

Roberto Bruni Filippo Bonchi
http://www.di.unipi.it/~bruni/

https://didawiki.di.unipi.it/doku.php/
magistraleinformatica/mpp/start

19 - Hennessy-Milner Logic

http://www.di.unipi.it/~bruni/
https://didawiki.di.unipi.it/doku.php/magistraleinformatica/mpp/start
https://didawiki.di.unipi.it/doku.php/magistraleinformatica/mpp/start

Bisimilarity
graph isomorphism distinguishes too many processes

trace equivalence identifies too many processes

we need some notion of equivalence in between the two

we introduce the notion of strong bisimilarity

as a game
as a fixpoint

as a logical equivalence

to keep in mind: two processes are equivalent unless we
have some good reasons to distinguish them

2

HML
Hennessy-Milner Logic

From your forms

® Sstelle @ 4stelle © 3stelle
® 2stelle @ 1stella
Modal and temporal logics

(over 19 answers)

Logical equivalence

Let us take another approach to equivalence

we define some logic (set of formulas)
a process may or may not satisfy a formula
two processes are (logically) equivalent
when they satisfy exactly the same formulas

formulas must describe behavioural properties of processes

the ability / inability to perform transitions
(modal logic: possibly, necessarily)

then, we can compose formulas with usual operators

Hennessy-Milner Logic

We present the core operators

multi-modal:
modal operators are parameterised by actions

no negation:
the converse of a formula can also be written as a formula

NO recursion:
each formula express properties about finite steps ahead

denotational semantics of a formula (postponed):
set of processes that satisfy the formula

F,G

HML: syntax

tt true

ff false

N;,e; Fi conjunction

Vier Fi disjunction

O F diamond operator (i
W F box operator L

L set of all formulas

)
|

F
F

HML: semantics

p=F reads“p satisfies I “

defined inductively on the structure of the formula

p =tt any process satisfies true
(no process satisfies false)

pE \F iff Viel pEF p satisfies all F;

el
p = \/ F; it diel . pEF p satisfies one of the F/
el

p can make one u-step
and then satisfy F

pECOF it I .p LAY EF

pEOF iff Vp.pp =p EF Fissatisfied after any
u-step of p

8

Examples

Ottt satisfied by any process that can make an a-step

gff satisfied by any process that cannot make a -step

& same as ff
if a process cannot do a the modality is missed
If a process can do a its continuation cannot satisfy ff

Btt same as tt
if a process cannot do B the modality holds trivially
If a process does f its continuation will satisfy tt

Ca(Cptt A O) satisfied by any process the can do a
and reach a process that can do G but not y

9

Examples

Oatt

2O ptt

o (Cptt Vv O tt)

A (Optt A O tt)

?
I¢
7
p = <4 Bff AN g
7
7
7

Ou(Optt A O tt)

|0

2
=R

QOO0

Box/diamond duality
—.QMF

= —I(Ep’.pip’ AN p'EF)

= Vp'. —l(pip’ AN p'FF)
=Vp'. ~(p5p) vV “(p'EF)
E‘v'p’.pip’ = (p'F F)

= _M_IF

Negation

not present in the syntax, but not needed

any formula F has a converse formula Fc such that

F

Vp. p

iff p

£

Fc can be defined by structural induction

tt¢ = ff
(N\F) &\ Ff
1€1 1€1
(O F)°=0,F°

(Oatt)® = O, tt°

ffc = tt
(\/ F) & N\ Ff
1€1 el
(O,F) & O, F°

example

ot

12

(can do q)¢ = cannot do a

Extended syntax

A= {:uh ey :un}

OopF 2 fF o F = tt

HML: logical equivalence

two processes are equivalent iff they satisfy the same formulas

P =HM (¢

7N

ifft VF eL. (p

F 2 30,(0ptt A, tt

p

Al

?
—HM (¢

Q

SV

| 4

— " & ¢

:F)

7N

+fE)

N A
) q = F

q

_ [c

Strong bis as logic equiv

TH. for any finitely branching processes p,q
p~q it p=npmg

(proof omitted)

consequences.

to show that two processes are strong bisimilar:
exhibit a strong bisimulation relation that relates them

to show that two processes are not strong bisimilar:
exhibit a HML formula that distinguishes between them

+ Exercise

find a HML formula that distinguishes the two processes

Py — > nil Py # Ry Ry —" > il
i {7

P R,
o) ()

O .

Py=F F£30,0,0,tt Ry £ F

k Exercise

find a HML formula that distinguishes the two processes
p .
Py > nil Py % Qo Qo —-— nil

Py EF Féoa aatt QO#F

Non bisimilar processes

Prove that the CCS agents

D e a.(a.f.nil + a.(5.nil + ~v.nil)) and q o a.(a.f.nil + a.v.nil)

are not strong bisimilar.

Non bisimilar processes

p=o(a.B+a(B+7))

p

84

@0 <

p

N
/p

7~ by

g = o.(a.B+ay)

F1 = 0u,04(Optt A O tt)

= 0,0,0stt
— F,

FS = 0,001
£ Fy
Ff = 0,0,(0pfFf Vv

q

£ P

q

84

@ <

