MPP 2025/26 (0077A, 9CFU)
Models for Programming Paradigms

Roberto Bruni Filippo Bonchi
http://www.di.unipi.it/~bruni/

https://didawiki.di.unipi.it/doku.php/
magistraleinformatica/mpp/start

|8b - CCS strong bisimulaton

http://www.di.unipi.it/~bruni/
https://didawiki.di.unipi.it/doku.php/magistraleinformatica/mpp/start
https://didawiki.di.unipi.it/doku.php/magistraleinformatica/mpp/start

CCS
Strong bisimulation

P, q

CCS syntax

;= nil iInactive process
x process variable (for recursion)
p-p action prefix
p\& restricted channel
p|9] channel relabelling
p+q nondeterministic choice (sum)
plq parallel composition
rec x. p recursion

(operators are listed in order of precedence)

CCS op. semantics

pq g {a,al P q
P\a = g\a plg] 2 qlg)

Act) Res)

7
p.p—p

A A v
1 P1—>41 P2 — QG2 P2 — g2

q Com) - ParR) 7
q1|p2 p1lpe — q1lqe p1lpe — p1lge

p[rec x. p/a:] ﬁ q

recx.pﬁq

4

Rec)

Strong bisimulation

the notion of bisimulation is not restricted to CCS processes
it applies to any LTS

in the following we recall Milner’s original definition of
strong bisimulation relation

to keep in mind

there are many strong bisimulation relations

we are interested in the largest such relation,
called strong bisimilarity

to prove that two processes are strong bisimilar
it Is enough to show they are related by a strong bisimulation

Strong bisimulation

P set of processes

R C P x P abinary relation

we write p R ¢ when (p,q) € R
R is a strong bisimulation if

Vu,p'.p 5 p = 3. q5 ¢ Ap R
Vp,q. (p,q) € R A
V. q = q = Fp.pLHpAp Ry

/

intuitively: if two processes are related, then for any move
of Alice, Bob can find a move that leads to related processes

l.e., Bob has a winning strategy

6

Example

) is a strong bisimulation
Id = {(p,p) | p € P} is a strong bisimulation

any graph isomorphism defines a strong bisimulation

R = {(p,f(p)}

——————
- o~
- -
-
- ~ o
- S a
- ~

rec r. o.xr rec r. a.o.x

O Q QL
QL

a.reC r. x.c.x

Sa
s

\

R 2 (rec x. a.x,rec x. a.a.x),
(rec x. a.x,a.rec T. a.q.x)

/

unlike graph isomorphisms,
the same process can be related to many processes

8

0, B8

A e e WA

9

AN

-

Union

Lemma I|f R; and R, are strong bisimulations,
then R; U R, Is a strong bisimulation

proof. take (p,q) € R1URz

take p 2 p/ wewanttofind ¢ = ¢ with (p’,¢') € R{ URy
since (p,q) € R1 URy we have p R; ¢ for some i € {1,2}
since R, is a strong bisimulation and p = p’

we have ¢ & ¢’ with p’ R; ¢ and hence (¢’,¢') € R1 URy

take ¢ 2 ¢ we wanttofind p & p’ with (p’,¢") € R;i URs
analogous to the previous case

|0

Inverse

Lemma If R is a strong bisimulation,
then R™ 2 {(¢,p) | p R ¢}is a strong bisimulation
proof. take (¢,p) € R™!

take ¢ 2 ¢ wewanttofind p 2 p’ with (¢,p) e R™!
since (¢,p) € R™' we have p R ¢
since R is a strong bisimulation and ¢ & ¢’

we have p & p’ with p’ R ¢ and hence (¢,p') e R™*

take p 2 p’ wewanttofind ¢ = ¢ with (¢/,p) e R
analogous to the previous case

Composition

Lemma If R; and Rs are strong bisimulations,
then Ry oR1 = {(p,q) | Ir. p Ry 7 AT Ry ¢}
IS a strong bisimulation

proof. take (p,q) € R2oRy
take p 2 p’ we wanttofind ¢ & ¢ with (p',¢') € RaoRy

since (p,q) € RooRy we have p R1 » Ar R2 g for some r

since R, is a strong bisimulation and p 5 p’

we have r & ¢ with p’ Ry o/

since R, is a strong bisimulation and r % 7

we have g % ¢ with " Ry ¢’ and hence (p',q') € Ra o R
take ¢ 2 ¢ we wantto find p = p’ with (p’,¢') € Ry o Ry
analogous to the previous case

12

Notation

RgoRlé{(p,q) dr.p Ry r Ar Rs q}

sometimes written

RiR>

CCS
Strong bisimilarity

Strong bisimilarity

often denoted ~ in the literature

M\
— we use ~ toremark it is a congruence relation

p~q iff dR a strong bisimulation with (p,q) € R

l.e. Bob has a winning strategy

i.e.:éUR

R S.b.

a strong bisimulation is not necessarily an equivalence
IS strong bisimilarity an equivalence relation?

|5

Equivalence relation

Reflexive Vp € P bp=Pp
Symmetric Vp,q € P P=q=q=Dp

Transitive Vp,q, 7 € P DEQAG=r=p=r

Induced equivalence

Any relation R induces an equivalence relation =r

=R Is the smallest equivalence that contains R

p R gq D =R q P=RYq ¢=RT
P =R (¢ P=RDP d=RDPD P=RT

Lemma if R is a strong bisimulation,

then =R Is a strong bisimulation

Induced partition

Any equivalence relation induces a partition of processes
iInto equivalence classes

pl=={qlp=q}
If =R IS a strong bisimulation

q € |[pl=g \D $ZU/ = 3¢’ € [p']zx- ¢ L q

instead of listing all pairs of =r
we list only its equivalence classes

oI

A A e

20

oI

A A e

21

Bisimulation check

=r={ {B{,B|By,Bi|Bg},
{B3, B;|Bj}

23

TH. Strong bisimilarity is an equivalence relation

proof.
reflexive Id C ~

symmetric assume p ~ ¢ we wantto prove ¢ =p
p=>~q meansthereisas.b. R with (p,q) € R

then (¢,p) ¢ R™! and R isas.b.
thus (¢,p) eR™'C ~ ie. q~p

transitive assume p=>~q q=~7 we wanttoprove p>~r
p~q means thereisas.b. R; with (p,q) € Ry
q ~r means thereis as.b. Ry, with (¢,7) € Ro

then (p,7) € RooR; and R, o R, is as.b.
thus (p,?“) cRosoR{ C ~ le. p~r

24

TH. Strong bisimilarity is a strong bisimulation

proof.
take p ~q

take p - p’ we wantto find ¢ = ¢/ with p' ~ ¢
p~q meansthereisas.b. R with (p,qg) €R
since R is a strong bisimulation and p & p’

we have ¢ 5 ¢ with (p',¢') € R

since R C ~wehave p' ~¢

take ¢ 2 ¢ wewanttofind p = p’ with p' ~ ¢
follows from previous case (strong bisimilarity is symmetric)

25

Cor. Strong bisimilarity is the largest strong bisimulation

proof.
strong bisimilarity is a strong bisimulation (previous TH.)

by definition

:éUR

R S.b.

any other strong bisimulation is included in =~

26

TH. Recursive definition of strong bisimilarity
Vup.p = = 3 .q5d Ap ~¢
Vp,q. p >~ q & A
Vg q=q = Fp.pop AP~
proof.
=) follows immediately because ~ is a strong bisimulation
Vi p.p =0 = 3¢ g d Ap =
<) take p,gs.t. § A
Vg g q = Fp.pop Ap =g
we want 1o prove p >~ g
this is done by proving that R = {(p,q)} U ~ is a s.b.

(see next slide)

27

TH. Recursive definition of strong bisimilarity (continue)

R = {(p,q)} U~ isas.b.
take (r,s) € R
take r 2+ we wantto find s = s’ with (r',s") € R
if 7~ s then we can find s = s’ with (r',s') € ~ CR

because =~ is a strong bisimulation

. (Vu,p.p=p = 3. gD d AP ~¢
if (r,s) = (p,q) then p & ' and ! x

0 p
\ Y, ¢ qg—=>q¢ = I .p=p AP ~{¢

thus we can find ¢ & s’ with (',s’) € ~ C R

take s s’ we wantto find » 5 " with (+/,s') € R

analogous to the previous case

28

CCS
Bisimilarity as a fixpoint

29

Strong bis as fix

vp,q. (p,q) € Ri=

Vu,p'.p B p = 3. g5 dAp R
A
V.. q = q = Fp.pLHpAp R

d:p(PxP)— 0P xP) mapsrelations to relations

Vu,p'.p 5 p = 3. g5 d A R
A
Vu, . q S q = I .p B Ap R

R C &(R)
a strong bisimulation

30

Strong bis as fix

Vu,p'.p B p = 3. g5 gAY =~
Vp,q. p >~ ql& A\
V. q = q = W .p L Ap ~d

d:p(PxP)— 0P xP) mapsrelations to relations
Vi, p'.p=p = 3. q=d AP R

®(R) =< (p,q)| A
Vu,¢'.q 5 q = Fp.pHpAp R

~ = §(~)
strong bisimilarity is a fixpoint

31

Fixpoint: which CPO?

Can we reuse Kleene’s fix point theorem?

we want to find the coarsest relation,
not the least relation

ldea: reverse the usual order (inclusion)!

(p(P xP),E)

a relation with more pairs Is RCR < R CR
smaller than one with less pairs

1L =P x7P

32

Least fixpoint... reversed

(P x P)
R CR < R CR pre-fixpoints @®(R)C R
(R € ®(R))

strong bisimulations

coarset,
¥ larger

least pre-fixpoint
T finer, strong bisimilarity

smaller

Computing fixpoints
can we reuse Kleene’s fix point theorem to compute =~ ?
~ = u O™ (P x P)

 ———_intersection

start from the universal relation (all pairs, a unique partition)
all processes are equivalent

we apply & to distinguish more and more processes
R, distinguishable in one step
R distinguishable in two steps

the number of partitions increases at each step

34

TH. & Is monotone

proof.

take R; C Rs we needto prove ®(R;)C ®(R5)
R, C R, ®(R,) C ®(R;)

take (p,q) € ®(R-)we need to prove (p,q) € ®(R1)

take P — P’ we wantto find ¢ 2= ¢’ with (p’.¢") € Ry

since (p,q) € ®(R>) we have ¢ = ¢’ with (p',q") € Ry C Ry

take ¢ = ¢’ we want to find p 5 p' with (0, 4) € Ry
analogous to the previous case
hence (p, q) € ®(R)

35

TH. ® is continuous (for finitely branching processes)

roof.
P RyCR,C---CR,LC...
take a chain {R fnen R,OR,;D---OR, DO.
we need to prove @ (|_| Rn> = | | (R
neN neN
<I>(|_|Rn)|_|<1>(Rn) <I>(|_|Rn)|_|<1>(R
neN neN neN neN
follows from monotonicity & (ﬂ Rn) 5 ﬂ B(R,,)
neEN neN
take (p,q) € ﬂ ®(R,,) we want to prove (p,q) € ® (ﬂ Rn)
neN

neN
Vn. (p,q) € ®(R,,) (continue)

36

TH. ® is continuous (for finitely branching processes)

proof. (continue) .o < N 2®.) (ﬂ)
R,

vn. (p,q) € ®(R,) = (p,q) €
neN
take p L p" we want to find q LA q with (p',q") € ﬂ R,
neN
vn. (p',¢") € R,
sinceVn. (p,q) € ®(R,) thenVn. 3q,,. ¢ & ¢, with (p’,q,) € R,

RhbODR{D2---O2R, D... Vk <n. (p',q,) € Ry

q is finitely branching: {¢’ | ¢ = ¢’} is finite
thus Im € N such that {n | ¢, = ¢} is infinite
hence Vn. (p', ¢n) € R, and we take ¢ = qnm,

take ¢ — ¢ we want to find p 5 p'with (p,q') € ﬂ R,
analogous to the previous case neN

37

Strong bis as fix

P finitely branching processes

~ = | | @"(Ps x Py)

neN
how do we know a process is finitely branching?

we can restrict the syntax: guarded processes

38

CCS
guarded processes

39

CCS: guarded processes

the allowed form of recursion is very general

there are processes with infinitely many outgoing transitions

suppose p = g take P 2 rec z. p|z P2plP
P
[
v \ 17
q|P plq|P plplg|P

such processes are called infinitely branching and are BAD

40

CCS: guarded processes

guarded processes guarantee that process variables occur
under a prefix (recursion is guarded by some action)

let X be a set of process variables

G(p, X) all recursively defined names are guarded in p
if 2 name in X occurs free in p it is prefixed by an action

G(nil, X) £ true G(plg], X) = G(p, X)

Gz, X)=z¢ X G(p+q,X) = G(p, X) ANG(q, X)
G(pp, X) = G(p,0) G(plg, X) £ G(p, X) A G(q, X)
G(p\o, X) = G(p,X) G(rec z. p,X) = G(p, X U{z})

a closed process p is guarded if G(p,?) holds true

41

¥ Exercise: guarded?

R=recz. ax+ [G(R,0)? Q

G(rec z. a.x + (5,0) = G(a.x + B, {z})
= Glax, {z}) NG(B, {7})
= G(z,0) A G(nil, 0)
=x ¢ () A\ true

— true

42

k Exercise: guarded?

T = rec z. (a|z) + f3 G(T,0)? €3

G(rec z. (a|z) + 8,0) = G((a|z) + B, {z})
= Glajz, {z}) NG(B,{x})
= G(a, {z)) A Gz, {z}) A G(nil,)
= G(nil,) A x & {x} A true

— true A false

— false

43

k Exercise: guarded?

U = rec . a|B.2 G(U,0)? &

G(rec z. a|B.z,0) = G(a|B8.7, {z})
= G(a,{z}) NG(B.z,{z})
= G(nil, 0) A G(z, 0)
=true Az & ()
= true

44

k Exercise: guarded?

rec r. x € unguarded

rec r. a.rec y. T & guarded

rec r. arec y. r+y €9 unguarded

rec r. a.rec y. x|y € unguarded

rec z. arec y. z|f.y @& guarded

45

