

https://didawiki.di.unipi.it/doku.php/magistraleinformatica/mpp/start

MPP 2025/26 (0077A, 9CFU)

Models for Programming Paradigms

Roberto Bruni Filippo Bonchi http://www.di.unipi.it/~bruni/

17a - CCS syntax & op. semantics

CCS Calculus of Communicating Systems

Sequential vs concurrent

Concurrency

IMP/HOFL (sequential paradigms)

- determinacy
- any two non-terminating programs are equivalent

concurrent paradigms

- exhibit intrinsic nondeterminism to external observers
- nontermination can be a desirable feature (e.g. servers)
- not all nonterminating processes are equivalent
- interaction is a primary issue
- new notions of behaviour / equivalence are needed

CCS: basics

Process algebra

- focus on few primitive operators (essential features)
- concise syntax to construct and compose processes
- not a full-fledged programming language
- full computational power (Turing equivalent)

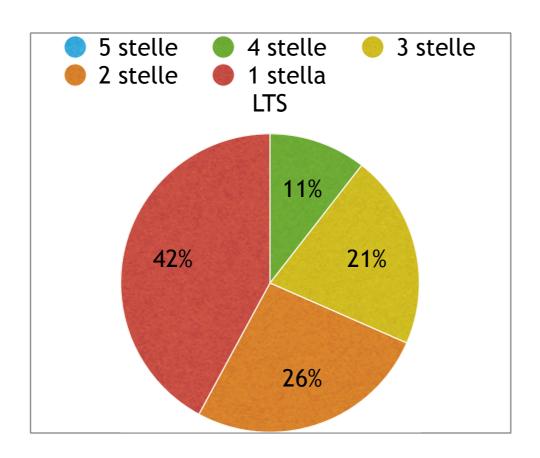
Communication

- binary, message-passing over channels

Structural Operational Semantics

- small-step style (Labelled Transition System)
- processes as states
- ongoing interactions as labels
- defined by inference rules
- defined by induction on the structure of processes

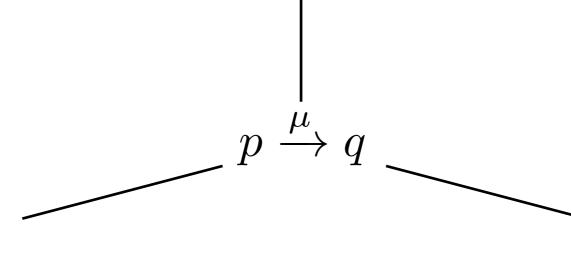
From your forms



(over 19 answers)

Labelled transitions

ongoing interaction with the environment (with other processes)

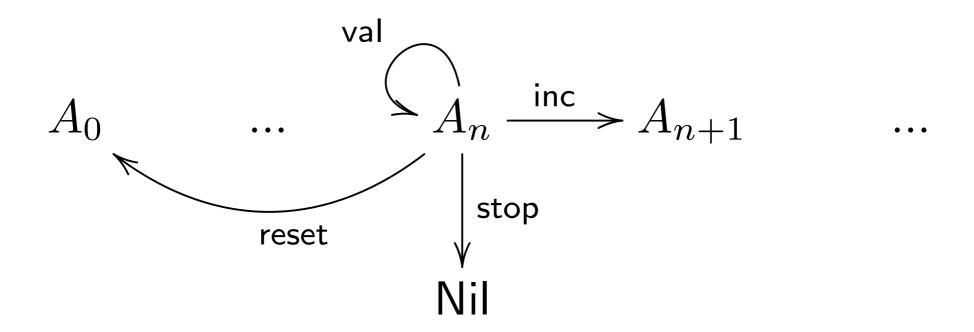


a process in its current state

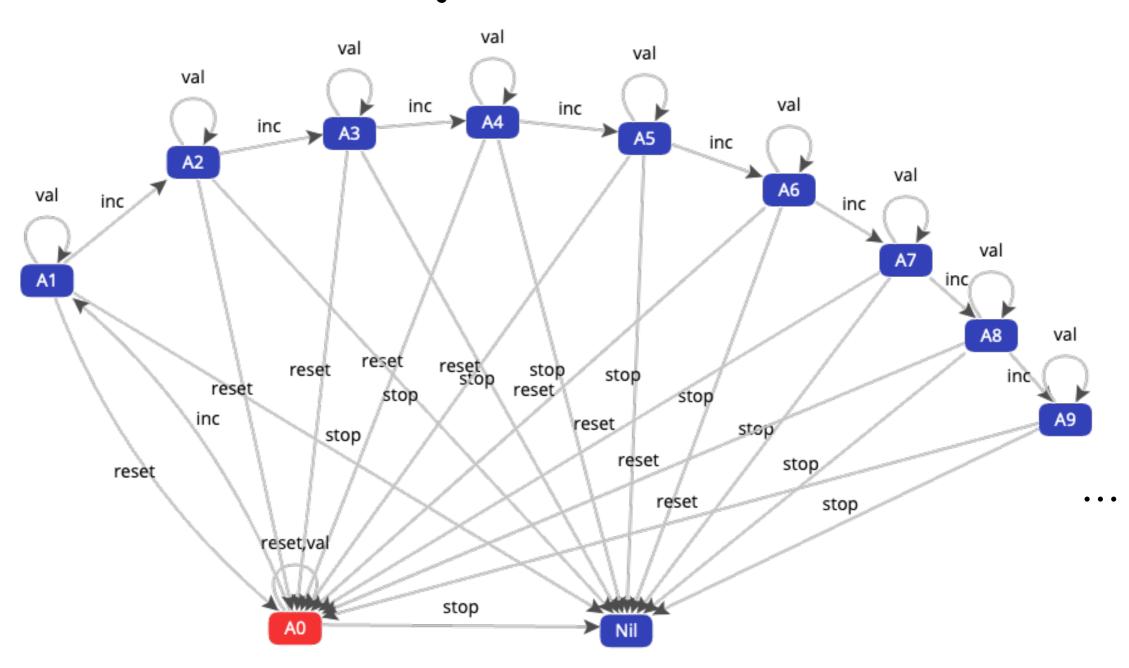
the process state after the interaction

number of states/transitions can be infinite

Example: counter



LTS: Labelled Transition System



CCS: states and labels

What is a process p?

a sequential agent a system where many sequential agents interact

What is a label μ ? send v on channel α an action (e.g. an output) $\alpha!v$ a dual action (e.g. an input) $\alpha?v$ receive v on channel α an internal action (silent action) τ concluded communication

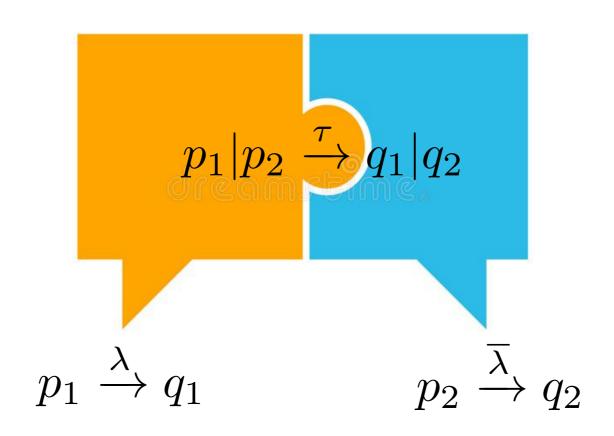
CCS: actions & coactions

We can be even more abstract than that without losing computational expressiveness

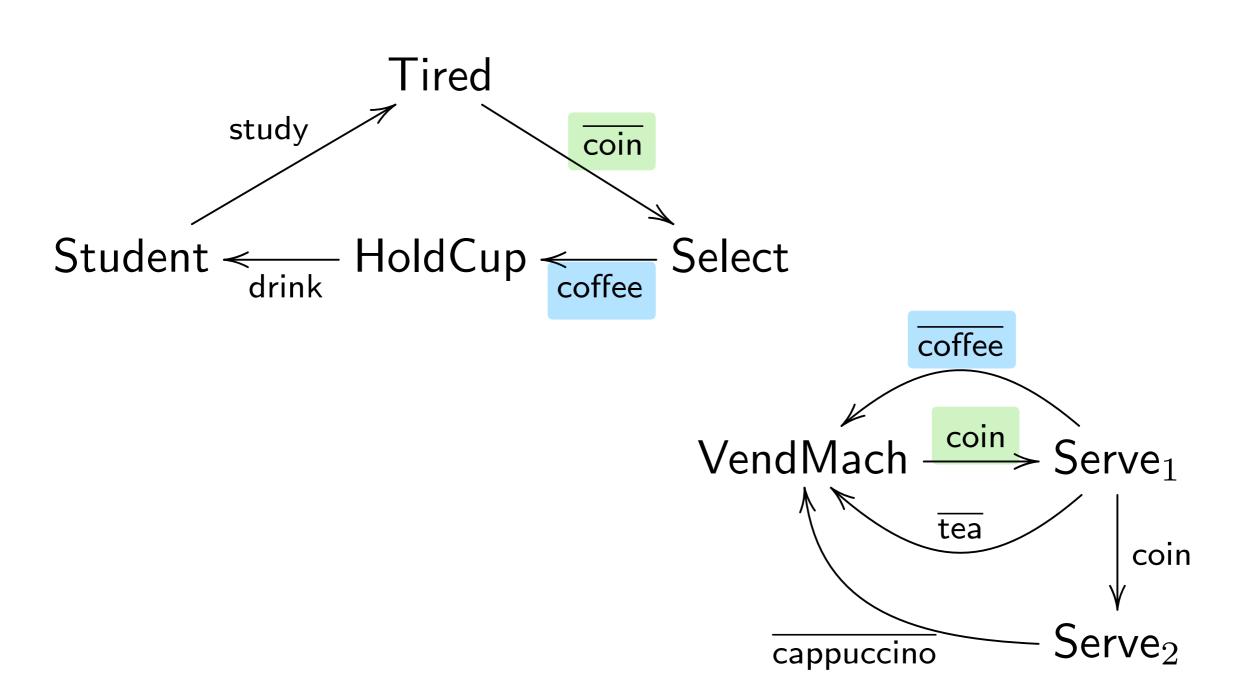
we disregard communicated values (imagine there is a dedicated channel for each value)

- $\alpha!v$ becomes just $\overline{\alpha v}$ or just $\overline{\alpha}$
- $\alpha?v$ becomes just α_v or just α
 - λ denotes either α $\overline{\alpha}$
 - $\overline{\lambda}$ denotes its dual (assume $\overline{\overline{\alpha}} = \alpha$)

CCS: communication

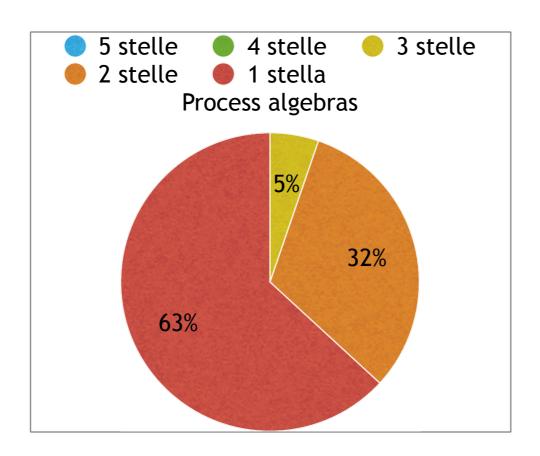


Example: vending machine



CCS syntax

From your forms



(over 8 answers)

CCS: syntax

(operators are listed in order of precedence)

CCS: syntax

```
\begin{array}{ll} \stackrel{p,q}{::=} & \underset{|}{\min} & \\ \mid \stackrel{x}{x} & \\ \mid \stackrel{p,p}{p} \\ \mid \stackrel{p}{p} \mid q & \\ \mid \stackrel{p|q}{rec} \stackrel{x.}{x.} p & \\ \end{array} \qquad \begin{array}{ll} \mathbf{rec} \; x. \; \mathsf{coffee}.x + \mathsf{tea.nil} \, | \; \mathsf{water.nil} \\ \mathsf{to} \; \mathsf{be} \; \mathsf{read} \; \mathsf{as} \\ \mid \stackrel{p}{p} \mid q & \\ \mid \stackrel{p|q}{rec} \; x. \; p & \\ \end{array} \qquad \begin{array}{ll} \mathsf{rec} \; x. \; (((\mathsf{coffee}.x) + \mathsf{tea.nil}) \, | \; \mathsf{water.nil}) \\ \end{array}
```

(operators are listed in order of precedence)

CCS: syntax

the only binder is the recursion operator

$$\mathbf{rec} \ x. \ p$$

the notion of free (process) variable is defined as usual fv(p)

a process is called *closed* if it has no free variables

the notion of capture avoiding substitution is defined as usual

$$p[^q/_x]$$

processes are taken up-to alpha-renaming of bound vars $\operatorname{rec} x$. $\operatorname{coin} x = \operatorname{rec} y$. $\operatorname{coin} y$

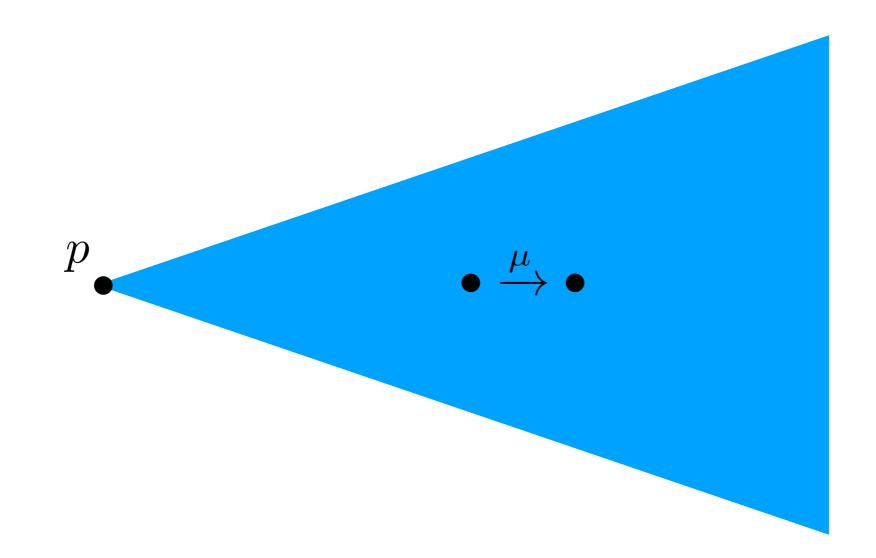
CCS operational semantics

CCS: labels

- ${\mathcal C}$ set of (input) actions, ranged by ${\mathcal C} \cap {\overline{\mathcal C}} = \emptyset$ set of (output) co-actions, ranged by ${\overline{\alpha}}$
- $\Lambda=\mathcal{C}\cup\overline{\mathcal{C}}$ set of observable actions, ranged by λ $\overline{\lambda}$
- $au
 ot \in \Lambda$ a distinguished silent action
- $\mathcal{L} = \Lambda \cup \{\tau\}$ set of actions, ranged by μ

LTS of a process

the LTS of CCS is infinite (one state for each process)



starting from $\,p\,$, consider all reachable states: the LTS of a process can be finite/infinite

Nil process

 $\mathbf{nil} \not \to$

the inactive process does nothing
no interaction is possible with the environment
represents a terminated agent
no operational semantics rule associated with **nil**

LTS of a process

Action prefix

$$\operatorname{Act}) \frac{}{\mu.p \xrightarrow{\mu} p}$$

an action prefixed process can perform the action and continue as expected

the action may involve an interaction with the environment

$$coin.\overline{coffee}.\mathbf{nil}$$

waits a coin, then gives a coffee and then it stops

$$coin.\overline{coffe}.\mathbf{nil} \xrightarrow{coin} \overline{coffe}.\mathbf{nil} \xrightarrow{\overline{coffe}} \mathbf{nil}$$

LTS of a process

$$\mu.p \bullet \xrightarrow{\mu} \stackrel{p}{\bullet}$$

Nondeterministic choice

$$\begin{array}{ccc} & & \frac{p_1 \xrightarrow{\mu} q}{p_1 + p_2 \xrightarrow{\mu} q} & & \text{SumR)} & \frac{p_2 \xrightarrow{\mu} q}{p_1 + p_2 \xrightarrow{\mu} q} \end{array}$$

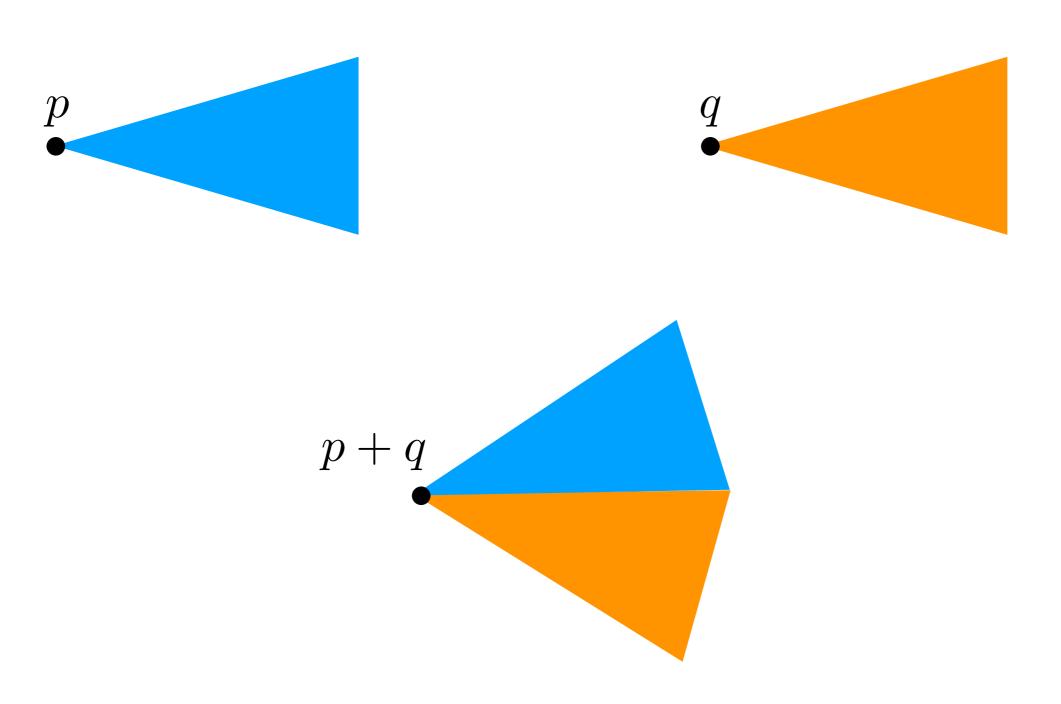
process $p_1 + p_2$ can behave either as p_1 or as p_2

$$coin.(\overline{coffee}.\mathbf{nil} + \overline{tea}.\mathbf{nil})$$

waits a coin, then gives a coffee or a tea, then it stops

$$coin.(\overline{coffee}.\mathbf{nil} + \overline{tea}.\mathbf{nil})$$
 $coin$
 $\overline{coffee}.\mathbf{nil} + \overline{tea}.\mathbf{nil}$
 \overline{coffee}
 \overline{coffee}
 \overline{tea}
 \overline{nil}

LTS of a process



Recursion

Rec)
$$\frac{p[\overset{\mathbf{rec}\ x.\ p}{/x}] \xrightarrow{\mu} q}{\mathbf{rec}\ x.\ p \xrightarrow{\mu} q}$$

like a recursive definition let x = p in x

rec
$$x. coin.(\overline{coffee}.x + \overline{tea}.nil)$$

waits a coin, then gives a coffee and is ready again or a tea and stops

Recursion via process constants

imagine some process constants A are available together with a set Δ of declarations of the form

$$A \triangleq p$$

one for each constant

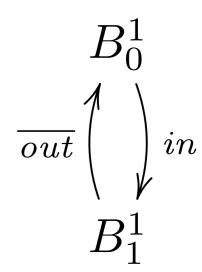
Const)
$$\frac{A \triangleq p \in \Delta \quad p \xrightarrow{\mu} q}{A \xrightarrow{\mu} q}$$

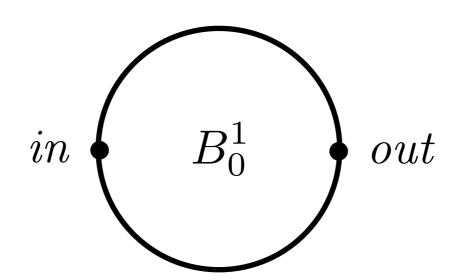
$$P \triangleq coin.(\overline{coffee}.P + \overline{tea}.\mathbf{nil})$$

CCS: capacity 1 buffer

$$\Delta = \{ B_0^1 \triangleq in.B_1^1, B_1^1 \triangleq \overline{out}.B_0^1 \}$$

 $\mathbf{rec} \ x. \ in. \overline{out}.x$



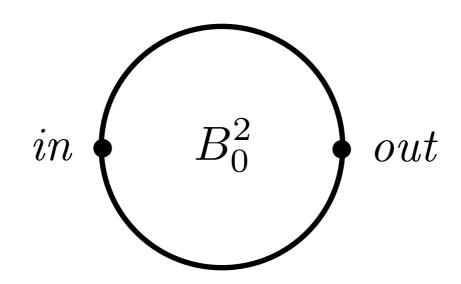


CCS: capacity 2 buffer

$$B_0^2 \triangleq in.B_1^2$$

$$B_1^2 \triangleq in.B_2^2 + \overline{out}.B_0^2$$

$$B_2^2 \triangleq \overline{out}.B_1^2$$



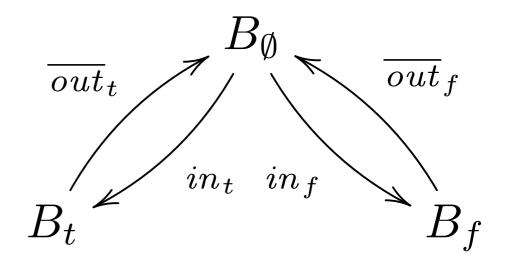
$$B_0^2$$
 $\overline{out} \left(\begin{array}{c} A \\ \downarrow \end{array} \right) in$
 B_1^2
 $\overline{out} \left(\begin{array}{c} A \\ \downarrow \end{array} \right) in$
 B_2^2

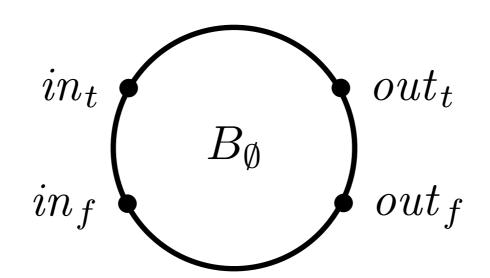
CCS: boolean buffer

$$B_{\emptyset} \triangleq in_t.B_t + in_f.B_f$$

$$B_t \triangleq \overline{out}_t.B_{\emptyset}$$

$$B_f \triangleq \overline{out}_f.B_{\emptyset}$$





Parallel composition

$$\operatorname{ParL})\frac{p_1 \xrightarrow{\mu} q_1}{p_1 | p_2 \xrightarrow{\mu} q_1 | p_2} \quad \operatorname{Com}) \frac{p_1 \xrightarrow{\lambda} q_1 \quad p_2 \xrightarrow{\overline{\lambda}} q_2}{p_1 | p_2 \xrightarrow{\tau} q_1 | q_2} \quad \operatorname{ParR}) \frac{p_2 \xrightarrow{\mu} q_2}{p_1 | p_2 \xrightarrow{\mu} p_1 | q_2}$$

processes running in parallel can interleave their actions or synchronize when dual actions are performed

$$P \triangleq \overline{coin}.coffee.nil$$

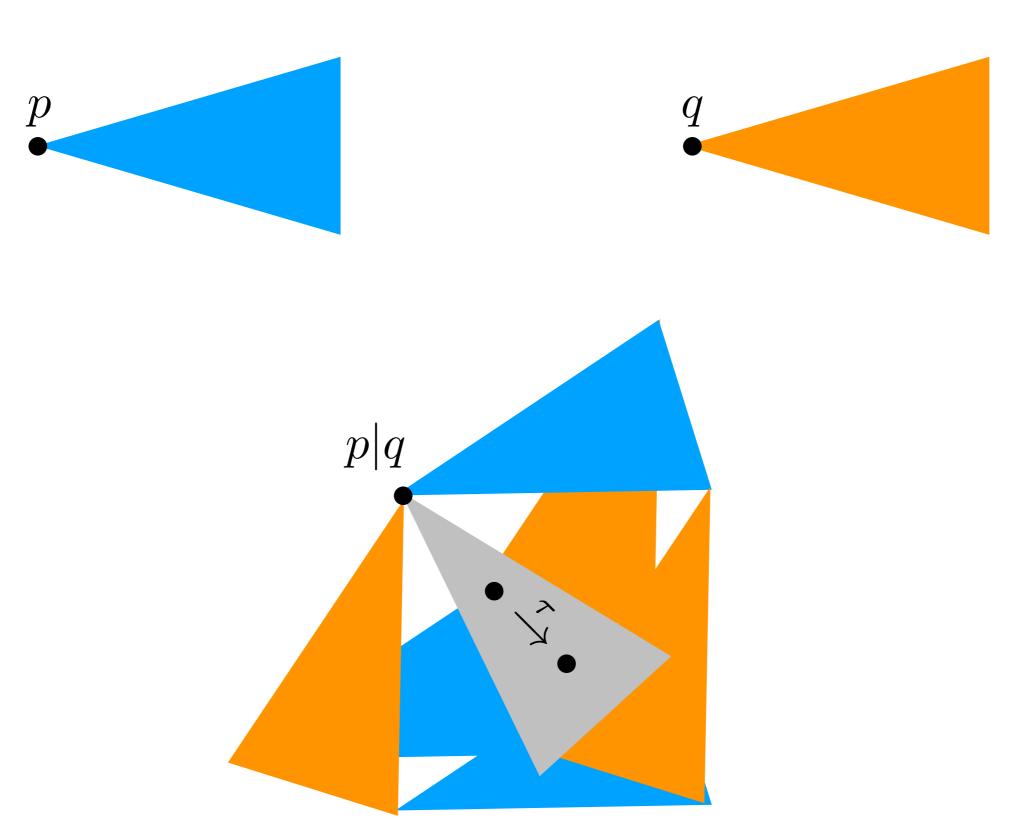
$$P \triangleq \overline{coin}.coffee.nil$$
 $M \triangleq coin.(\overline{coffee}.nil + \overline{tea}.nil)$

$$P|M \xrightarrow{\overline{coin}} coffee.nil|M$$

$$P|M \xrightarrow{coin} P|(\overline{coffee}.\mathbf{nil} + \overline{tea}.\mathbf{nil})$$

$$P|M \xrightarrow{\tau} coffee.\mathbf{nil}|(\overline{coffee}.\mathbf{nil} + \overline{tea}.\mathbf{nil})$$

LTS of a process



CCS: parallel buffers

$$B_0^1 | B_0^1$$

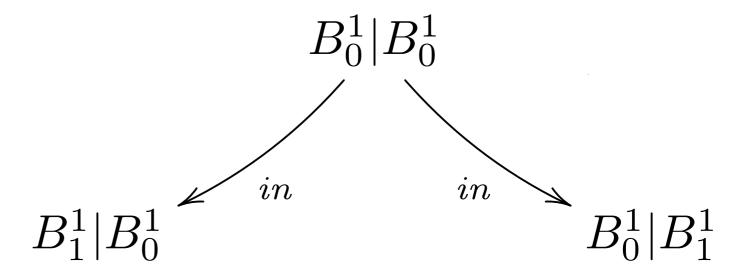
$$B_0^1 \triangleq in.B_1^1$$

$$B_1^1 \triangleq \overline{out}.B_0^1$$

CCS: parallel buffers

$$B_0^1 \triangleq in.B_1^1$$

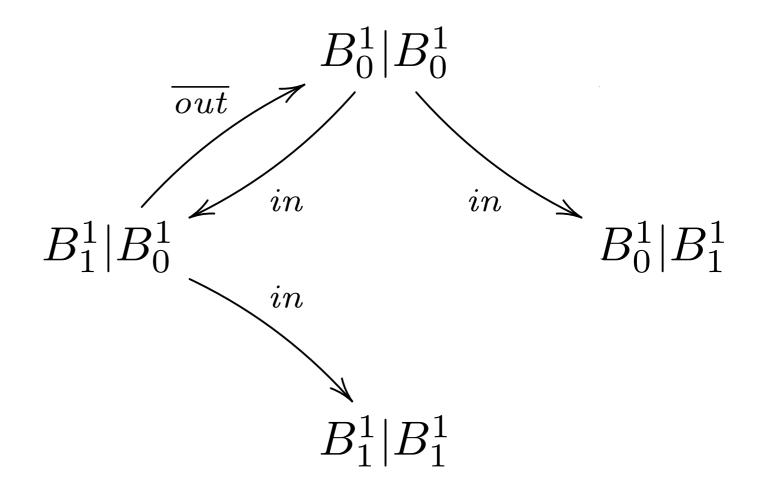
$$B_1^1 \triangleq \overline{out}.B_0^1$$



CCS: parallel buffers

$$B_0^1 \triangleq in.B_1^1$$

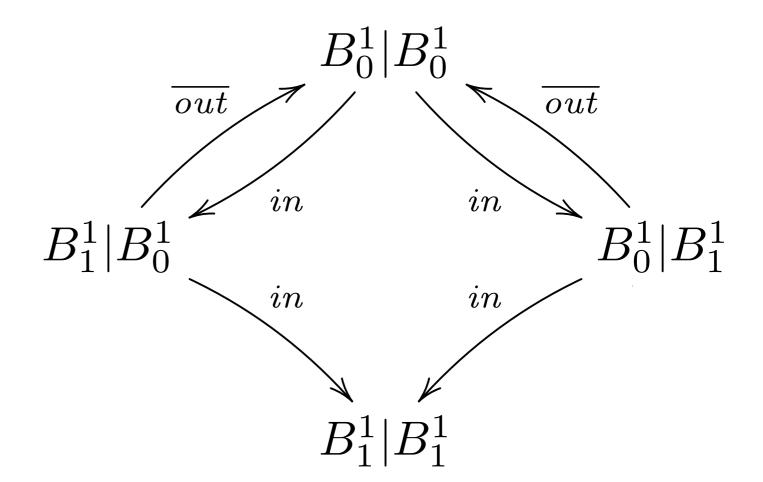
$$B_1^1 \triangleq \overline{out}.B_0^1$$



CCS: parallel buffers

$$B_0^1 \triangleq in.B_1^1$$

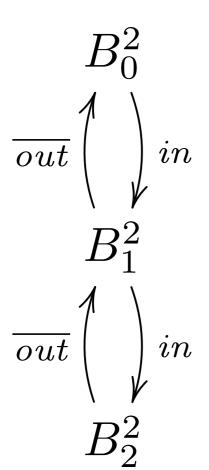
$$B_1^1 \triangleq \overline{out}.B_0^1$$

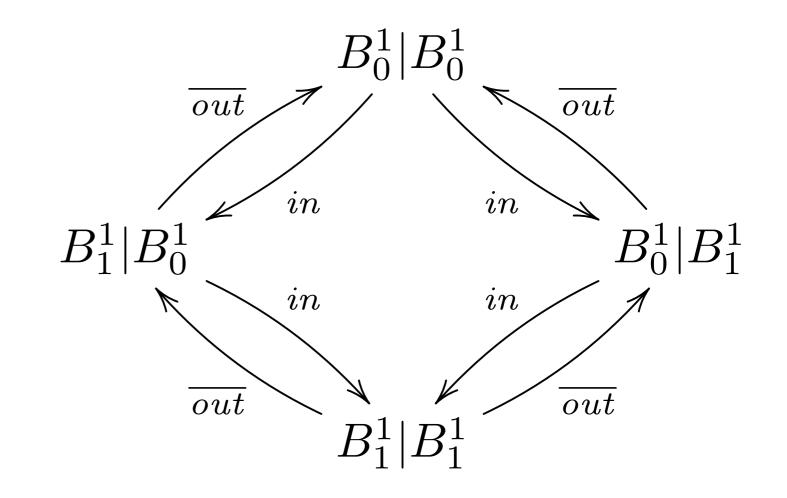


CCS: parallel buffers

$$B_0^1 \triangleq in.B_1^1$$

$$B_1^1 \triangleq \overline{out}.B_0^1$$





compare with the 2-capacity buffer

Restriction

Res)
$$\frac{p\xrightarrow{\mu}q\quad\mu\not\in\{\alpha,\overline{\alpha}\}}{p\backslash\alpha\xrightarrow{\mu}q\backslash\alpha}$$

makes the channel α private to p

no interaction on α with the environment

if p is the parallel composition of processes, then they can synchronise on α

$$P \triangleq \overline{coin}.coffee.\mathbf{nil}$$

$$P \triangleq \overline{coin}.coffee.nil$$
 $M \triangleq coin.(\overline{coffee}.nil + \overline{tea}.nil)$

$$(P|M)\backslash coin \backslash coffee \backslash tea \xrightarrow{\tau} (coffee.\mathbf{nil}|\overline{coffee}.\mathbf{nil} + \overline{tea}.\mathbf{nil}) \backslash coin \backslash coffee \backslash tea$$

$$(coffee.nil|\overline{coffee}.nil + \overline{tea}.nil) coin coffee tea \xrightarrow{\tau} (nil|nil) coin coffee tea$$

Restriction: shorthand

given $S=\{\alpha_1,...,\alpha_n\}$ we write $p \backslash S$ instead of $p \backslash \alpha_1 \ldots \backslash \alpha_n$

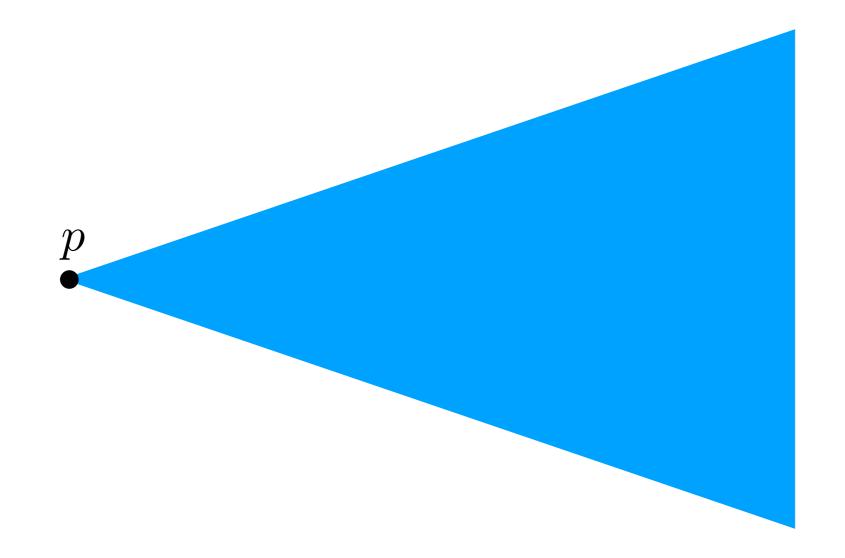
we omit trailing nil

$$P \triangleq \overline{coin}.coffee$$
 $M \triangleq coin.(\overline{coffee} + \overline{tea})$

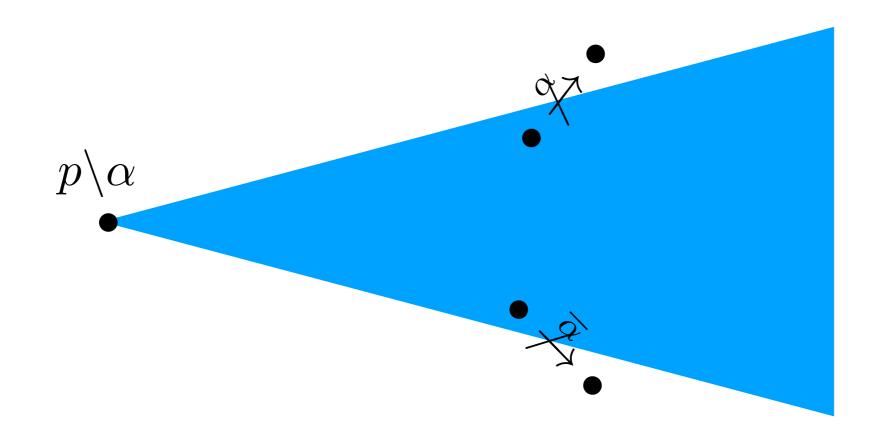
$$S \triangleq \{coin, coffee, tea\}$$

$$(P|M)\backslash S \xrightarrow{\tau} (coffee|\overline{coffee} + \overline{tea})\backslash S \xrightarrow{\tau} (\mathbf{nil}|\mathbf{nil})\backslash S$$

LTS of a process



LTS of a process



Relabelling

$$\frac{p \xrightarrow{\mu} q}{p[\phi] \xrightarrow{\phi(\mu)} q[\phi]}$$

renames the action channels according to ϕ

$$\phi(\tau) = \tau$$

we assume
$$\phi(\tau) = \tau$$
 $\phi(\overline{\lambda}) = \overline{\phi(\lambda)}$

allows one to reuse processes

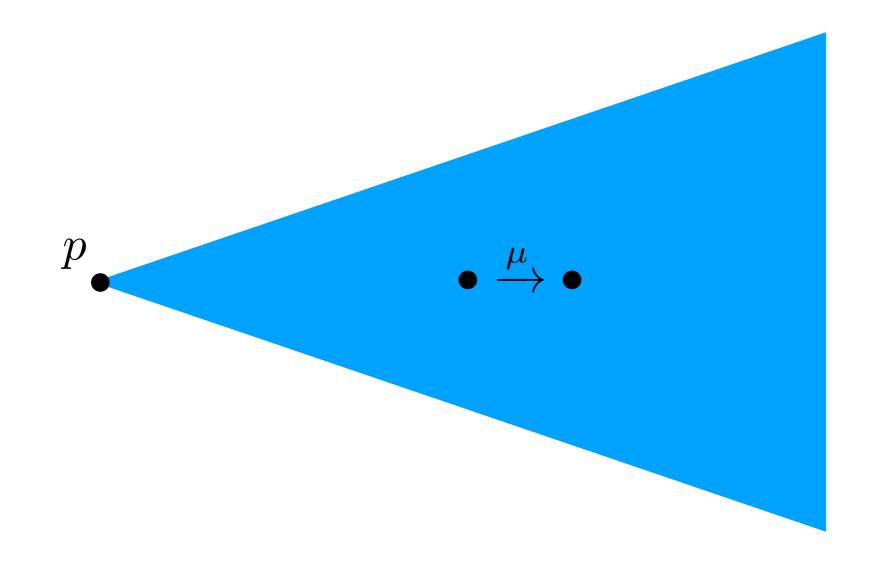
$$P \triangleq \overline{coin}.coffee$$

$$\phi(coin) = moneta$$

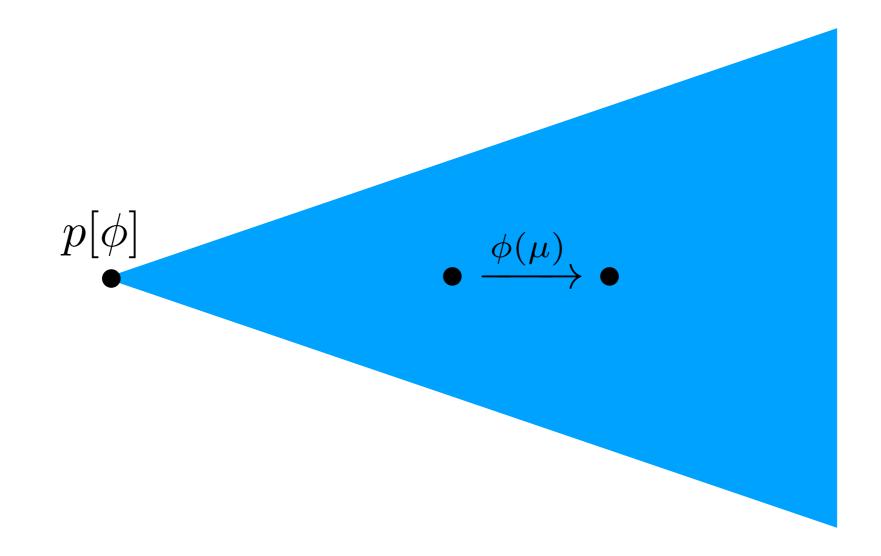
$$\phi(coffee) = caffè$$

$$P[\phi] \xrightarrow{\overline{moneta}} coffee[\phi] \xrightarrow{caff\grave{e}} \mathbf{nil}[\phi]$$

LTS of a process



LTS of a process



CCS op. semantics

Act)
$$\xrightarrow{\mu} p$$

$$\operatorname{Act}) \frac{p \xrightarrow{\mu} q \quad \mu \not\in \{\alpha, \overline{\alpha}\}}{\mu.p \xrightarrow{\mu} p} \qquad \operatorname{Res}) \frac{p \xrightarrow{\mu} q \quad \mu \not\in \{\alpha, \overline{\alpha}\}}{p \backslash \alpha \xrightarrow{\mu} q \backslash \alpha} \qquad \operatorname{Rel}) \frac{p \xrightarrow{\mu} q}{p[\phi] \xrightarrow{\phi(\mu)} q[\phi]}$$

$$\operatorname{Rel}) \frac{p \xrightarrow{\mu} q}{p[\phi] \xrightarrow{\phi(\mu)} q[\phi]}$$

$$\begin{array}{ccc} & & & \frac{p_1 \xrightarrow{\mu} q}{p_1 + p_2 \xrightarrow{\mu} q} & & \text{SumR)} & \frac{p_2 \xrightarrow{\mu} q}{p_1 + p_2 \xrightarrow{\mu} q} \end{array}$$

SumR)
$$\frac{p_2 \xrightarrow{\mu} q}{p_1 + p_2 \xrightarrow{\mu} q}$$

ParL)
$$\dfrac{p_1 \xrightarrow{\mu} q_1}{p_1 | p_2 \xrightarrow{\mu} q_1 | p_2}$$

$$\operatorname{ParL})\frac{p_1 \xrightarrow{\mu} q_1}{p_1 | p_2 \xrightarrow{\mu} q_1 | p_2} \quad \operatorname{Com}) \frac{p_1 \xrightarrow{\lambda} q_1 \quad p_2 \xrightarrow{\overline{\lambda}} q_2}{p_1 | p_2 \xrightarrow{\tau} q_1 | q_2} \quad \operatorname{ParR}) \frac{p_2 \xrightarrow{\mu} q_2}{p_1 | p_2 \xrightarrow{\mu} p_1 | q_2}$$

$$\frac{p_2 \xrightarrow{\mu} q_2}{p_1|p_2 \xrightarrow{\mu} p_1|q_2}$$

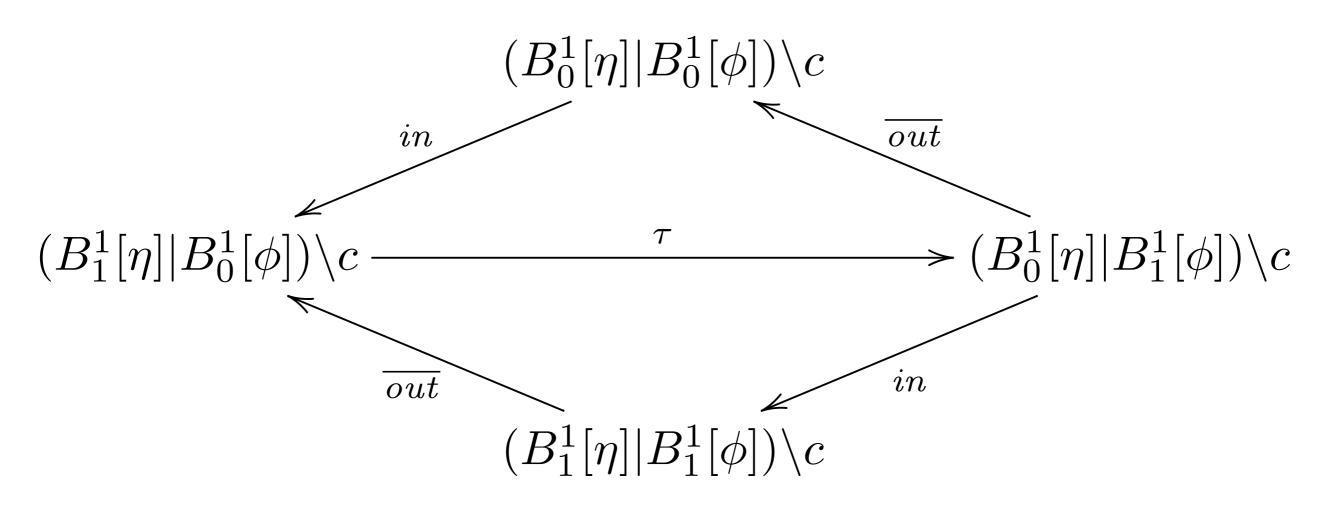
Rec)
$$\frac{p[\mathbf{rec}\ x.\ p/_x] \xrightarrow{\mu} q}{\mathbf{rec}\ x.\ p \xrightarrow{\mu} q}$$

Linked buffers

$$B_0^1 \triangleq in.B_1^1 \qquad \eta(out) = c$$
 $B_1^1 \triangleq \overline{out}.B_0^1 \qquad \phi(in) = c$

$$B_0^1[\phi]$$
 $\overline{out}igg(igg)c$
 $B_1^1[\phi]$

$$B_0^1[\eta]$$
 $ar{c}igg(igg)in$ $B_1^1[\eta]$



Linked buffers

$$B_0^1 \triangleq in.B_1^1 \qquad \eta(out) = c$$

$$B_0^1[\phi] \qquad B_0^1[\eta]$$

$$B_1^1 \triangleq \overline{out}.B_0^1 \qquad \phi(in) = c$$

$$B_1^1[\phi] \qquad B_1^1[\eta]$$

$$in \qquad B_0^1 \qquad out$$

$$in \qquad B_0^1[\eta] \qquad e$$

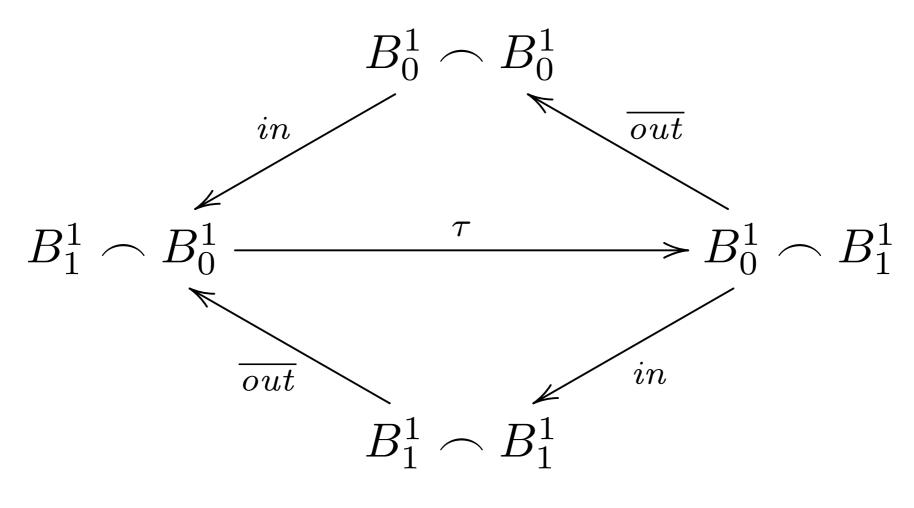
$$e \qquad B_0^1[\phi] \qquad out$$

Linked buffers

$$B_0^1 \triangleq in.B_1^1 \qquad \eta(out) = c$$

$$B_1^1 \triangleq \overline{out}.B_0^1 \qquad \phi(in) = c$$

$$p \frown q \triangleq (p[\eta]|q[\phi]) \backslash c$$



$$B_{\emptyset} \triangleq in_t.B_t + in_f.B_f$$

$$\eta(out_t) = c_t$$

$$\phi(in_t) = c_t$$

$$B_t \triangleq \overline{out}_t.B_{\emptyset}$$

$$\eta(out_f) = c_f$$

$$\phi(in_f) = c_f$$

$$B_f \triangleq \overline{out}_f.B_{\emptyset}$$

$$p \frown q \triangleq (p[\eta]|q[\phi]) \setminus \{c_t, c_f\}$$

$$B_{\emptyset} \triangleq in_{t}.B_{t} + in_{f}.B_{f}$$

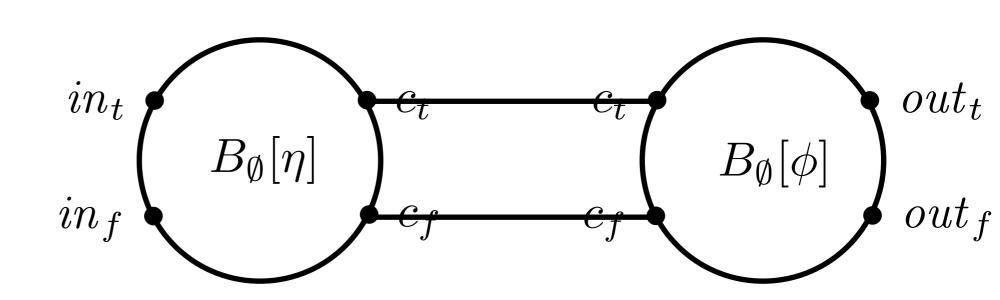
$$B_{t} \triangleq \overline{out}_{t}.B_{\emptyset} \qquad in_{t}$$

$$B_{\emptyset} \Rightarrow \overline{out}_{f}.B_{\emptyset} \qquad in_{f}$$

$$Out_{t} \qquad in_{f}$$

$$Out_{f} \qquad in_{f}$$

$$Out_{f} \qquad in_{f}$$



$$B_{\emptyset} \triangleq in_t.B_t + in_f.B_f$$

$$\eta(out_t) = c_t$$

$$\phi(in_t) = c_t$$

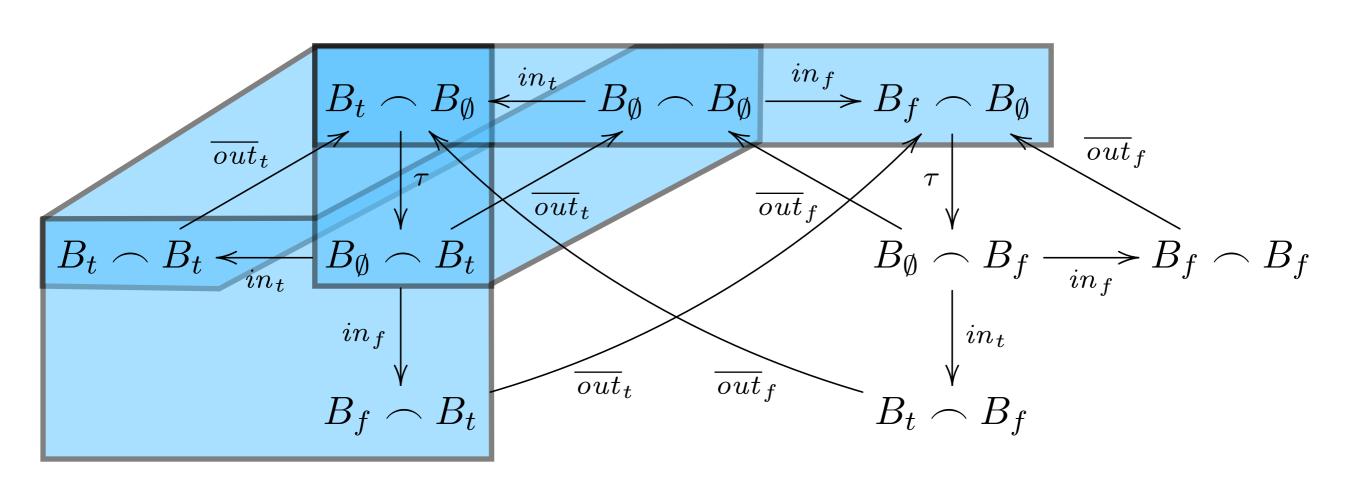
$$B_t \triangleq \overline{out}_t.B_{\emptyset}$$

$$\eta(out_f) = c_f$$

$$\phi(in_f) = c_f$$

$$B_f \triangleq \overline{out}_f.B_{\emptyset}$$

$$p \frown q \triangleq (p[\eta]|q[\phi]) \setminus \{c_t, c_f\}$$



$$B_{\emptyset} \triangleq in_t.B_t + in_f.B_f$$

$$\eta(out_t) = c_t$$

$$\phi(in_t) = c_t$$

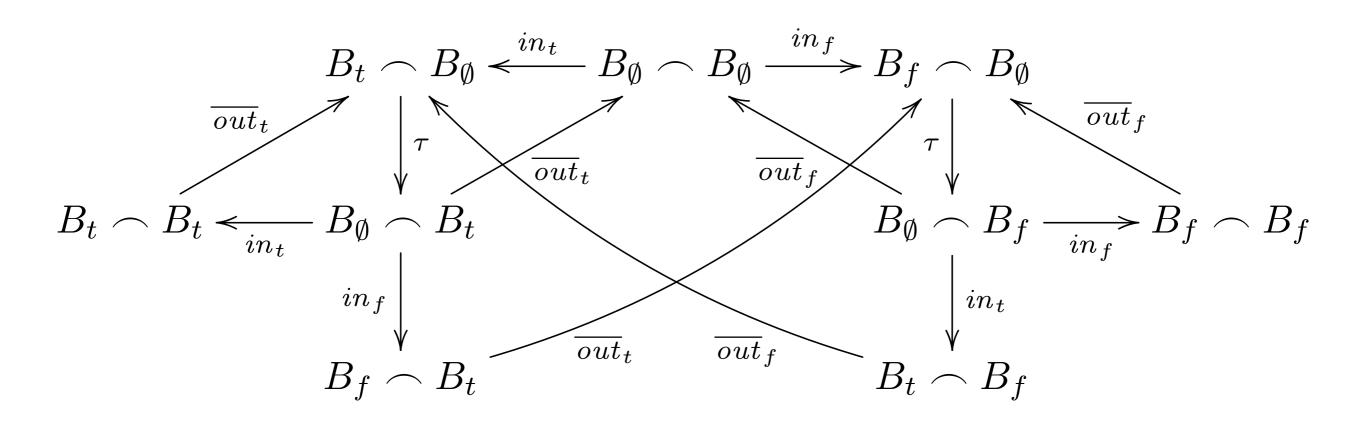
$$B_t \triangleq \overline{out}_t.B_{\emptyset}$$

$$\eta(out_f) = c_f$$

$$\phi(in_f) = c_f$$

$$B_f \triangleq \overline{out}_f.B_{\emptyset}$$

$$p \frown q \triangleq (p[\eta]|q[\phi]) \setminus \{c_t, c_f\}$$



CCS with value passing

$$\alpha!v.p \xrightarrow{\overline{\alpha_v}} p$$

$$\alpha?x.p \xrightarrow{\alpha_v} p[v/x]$$

when the set of values is finite $V \triangleq \{v_1, ..., v_n\}$

$$\alpha!v.p \equiv \overline{\alpha_v}.p$$

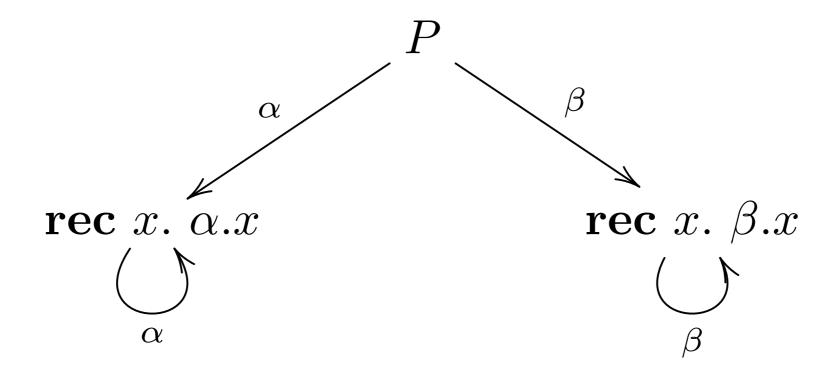
$$\alpha?x.p \equiv \alpha_{v_1}.p[^{v_1}/_x] + \dots + \alpha_{v_n}.p[^{v_n}/_x]$$

receive

$$egin{array}{lll} \mathbf{v} & -> & \mathbf{p} \\ \mathbf{w} & -> & \mathbf{q} \end{array} & \equiv lpha_v.p + lpha_w.q + \sum_{z
eq v,w} lpha_z.r \\ & \underline{\hspace{0.5cm}} -> & \mathbf{r} \end{array}$$

end

$$P \triangleq (\mathbf{rec} \ x. \ \alpha.x) + (\mathbf{rec} \ x. \ \beta.x)$$



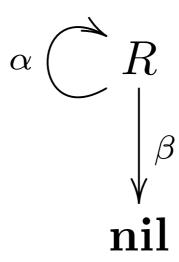
$$Q \triangleq \mathbf{rec} \ x. \ (\alpha.x + \beta.x)$$

$$Q \triangleq \mathbf{rec} \ x. \ \alpha.x + \beta.x$$

$$Q \triangleq \alpha.Q + \beta.Q$$

$$\alpha \bigcirc Q \bigcirc \beta$$

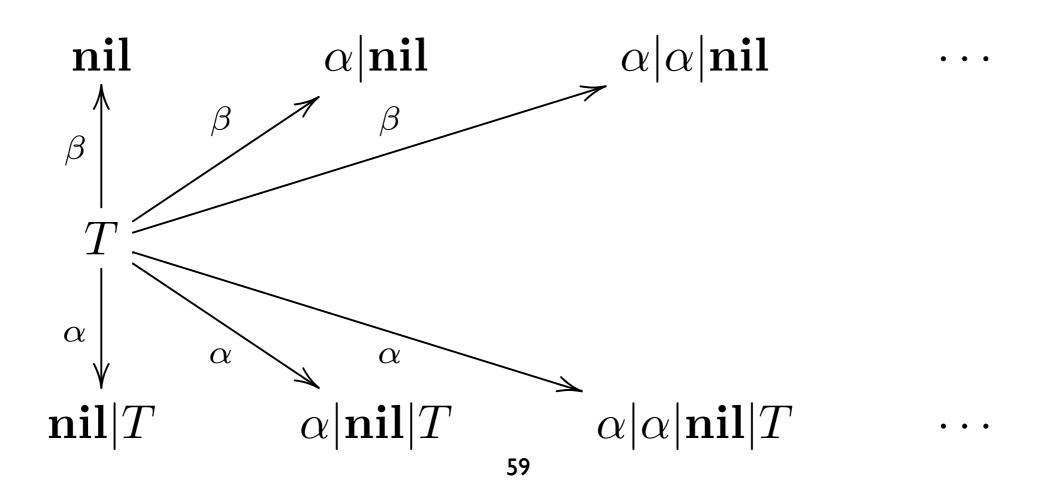
$$R \triangleq \mathbf{rec} \ x. \ (\alpha.x + \beta.\mathbf{nil})$$
 $R \triangleq \mathbf{rec} \ x. \ \alpha.x + \beta$
 $R \triangleq \alpha.R + \beta$



$$T \triangleq \mathbf{rec} \ x. \ ((\alpha.\mathbf{nil}|x) + \beta.\mathbf{nil})$$

$$T \triangleq \mathbf{rec} \ x. \ (\alpha|x) + \beta$$

$$T \triangleq (\alpha|T) + \beta$$



$$U \triangleq \mathbf{rec} \ x. \ ((\alpha.\mathbf{nil})|\beta.x)$$

$$U \triangleq \mathbf{rec} \ x. \ \alpha|\beta.x$$

$$U \triangleq \alpha|\beta.U$$

$$U \xrightarrow{\beta} \alpha|U$$

$$\alpha \downarrow$$

$$\mathbf{nil}|\beta.U$$

$$U \triangleq \mathbf{rec} \ x. \ ((\alpha.\mathbf{nil})|\beta.x)$$

$$U \triangleq \mathbf{rec} \ x. \ \alpha|\beta.x$$

$$U \triangleq \alpha|\beta.U$$

$$U \xrightarrow{\beta} \alpha|U$$

$$\alpha \downarrow$$

$$\mathbf{nil}|\beta.U$$

$$\beta \downarrow$$

$$\mathbf{nil}|U$$

$$U \triangleq \mathbf{rec} \ x. \ ((\alpha.\mathbf{nil})|\beta.x)$$

$$U \triangleq \mathbf{rec} \ x. \ \alpha|\beta.x$$

$$U \triangleq \alpha|\beta.U$$

$$U \xrightarrow{\beta} \alpha|U \xrightarrow{\beta} \alpha|\alpha|U$$

$$\alpha \downarrow \alpha \downarrow \alpha$$

$$\mathbf{nil}|\beta.U \xrightarrow{\alpha} \alpha|\mathbf{nil}|\beta.U$$

$$\beta \downarrow \alpha$$

$$U \triangleq \mathbf{rec} \ x. \ ((\alpha.\mathbf{nil})|\beta.x)$$

$$U \triangleq \mathbf{rec} \ x. \ \alpha|\beta.x$$

$$U \triangleq \alpha|\beta.U$$

$$U \xrightarrow{\beta} \alpha|U \xrightarrow{\beta} \alpha|\alpha|U$$

$$\alpha \downarrow \alpha \downarrow \alpha$$

$$\mathbf{nil}|\beta.U \xrightarrow{\alpha} \alpha|\mathbf{nil}|\beta.U \xrightarrow{\beta} \alpha|\mathbf{nil}|U$$

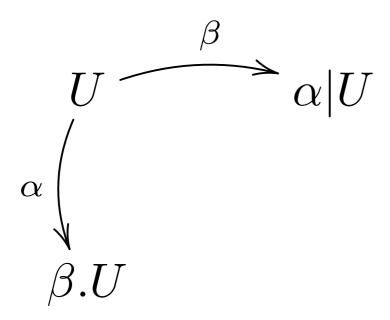
$$\alpha \downarrow \alpha \downarrow \alpha$$

$$\mathbf{nil}|U \qquad \mathbf{nil}|\mathbf{nil}|\beta.U$$

$$U \triangleq \mathbf{rec} \ x. \ ((\alpha.\mathbf{nil})|\beta.x)$$

$$U \triangleq \mathbf{rec} \ x. \ \alpha|\beta.x$$

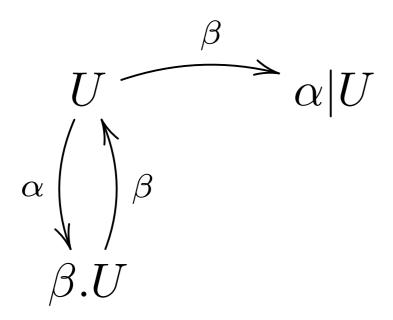
$$U \triangleq \alpha|\beta.U$$



$$U \triangleq \mathbf{rec} \ x. \ ((\alpha.\mathbf{nil})|\beta.x)$$

$$U \triangleq \mathbf{rec} \ x. \ \alpha|\beta.x$$

$$U \triangleq \alpha|\beta.U$$



$$U \triangleq \mathbf{rec} \ x. \ ((\alpha.\mathbf{nil})|\beta.x)$$

$$U \triangleq \mathbf{rec} \ x. \ \alpha|\beta.x$$

$$U \triangleq \alpha|\beta.U$$

$$U = \alpha | U \qquad \alpha | \alpha | U$$

$$\alpha \left(\begin{array}{c} \beta \\ \alpha \\ \beta \end{array} \right) \alpha \left(\begin{array}{c} \beta \\ \alpha \\ \beta \end{array} \right) \alpha \left(\begin{array}{c} \beta \\ \alpha \\ \beta \end{array} \right) U$$

$$\beta \cdot U \qquad \alpha | \beta \cdot U$$

$$U \triangleq \mathbf{rec} \ x. \ ((\alpha.\mathbf{nil})|\beta.x)$$

$$U \triangleq \mathbf{rec} \ x. \ \alpha|\beta.x$$

$$U \triangleq \alpha|\beta.U$$

$$U \xrightarrow{\alpha} \alpha | U \xrightarrow{\beta} \alpha | \alpha | U$$

$$\alpha \left(\begin{array}{c} \beta \\ \beta \\ \end{array} \right) \beta \qquad \alpha \left(\begin{array}{c} \beta \\ \beta \\ \end{array} \right) \beta$$

$$\beta . U \leftarrow_{\alpha} \alpha | \beta . U$$

$$U \triangleq \mathbf{rec} \ x. \ ((\alpha.\mathbf{nil})|\beta.x)$$

$$U \triangleq \mathbf{rec} \ x. \ \alpha|\beta.x$$

$$U \triangleq \alpha|\beta.U$$

Badge exercise

Write an interactive counter modulo 4 in CCS

The counter process has four input channels: inc, val, reset, stop

and four output channels:

Co, C1, C2, C3

used to display the current value of the counter

Draw the LTS of the counter process.

CCS syntax

p,q	::=	\mathbf{nil}	inactive process
		\boldsymbol{x}	process variable (for recursion)
		$\mu.p$	action prefix
		p ackslash lpha	restricted channel
		$p[\phi]$	channel relabelling
		p+q	nondeterministic choice (sum)
		p q	parallel composition
		$\mathbf{rec} \ x. \ p$	recursion

(operators are listed in order of precedence)

Some notation

write
$$\sum_{i=1}^{n} p_i$$
 instead of $p_1 + \cdots + p_n$

write
$$\prod_{i=1}^{n} p_i$$
 instead of $p_1 | \cdots | p_n$

write $p \setminus \{a_1, ..., a_n\}$ instead of $p \setminus a_1 \cdots \setminus a_n$

write
$$\mu^n.p$$
 instead of $\underbrace{\mu.\mu...\mu.p}_n$

CCS op. semantics

Act)
$$\frac{}{\mu.p \xrightarrow{\mu} p}$$

$$\operatorname{Act}) \frac{p \xrightarrow{\mu} q \quad \mu \not\in \{\alpha, \overline{\alpha}\}}{\mu.p \xrightarrow{\mu} p} \qquad \operatorname{Res}) \frac{p \xrightarrow{\mu} q \quad \mu \not\in \{\alpha, \overline{\alpha}\}}{p \backslash \alpha \xrightarrow{\mu} q \backslash \alpha} \qquad \operatorname{Rel}) \frac{p \xrightarrow{\mu} q}{p[\phi] \xrightarrow{\phi(\mu)} q[\phi]}$$

$$\operatorname{Rel}) \frac{p \xrightarrow{\mu} q}{p[\phi] \xrightarrow{\phi(\mu)} q[\phi]}$$

$$\begin{array}{ccc} & & & \frac{p_1 \xrightarrow{\mu} q}{p_1 + p_2 \xrightarrow{\mu} q} & & \text{SumR)} & \frac{p_2 \xrightarrow{\mu} q}{p_1 + p_2 \xrightarrow{\mu} q} \end{array}$$

SumR)
$$\frac{p_2 \xrightarrow{\mu} q}{p_1 + p_2 \xrightarrow{\mu} q}$$

ParL)
$$\dfrac{p_1 \xrightarrow{\mu} q_1}{p_1 | p_2 \xrightarrow{\mu} q_1 | p_2}$$

$$\operatorname{ParL})\frac{p_1 \xrightarrow{\mu} q_1}{p_1 | p_2 \xrightarrow{\mu} q_1 | p_2} \quad \operatorname{Com}) \frac{p_1 \xrightarrow{\lambda} q_1 \quad p_2 \xrightarrow{\overline{\lambda}} q_2}{p_1 | p_2 \xrightarrow{\tau} q_1 | q_2} \quad \operatorname{ParR}) \frac{p_2 \xrightarrow{\mu} q_2}{p_1 | p_2 \xrightarrow{\mu} p_1 | q_2}$$

ParR)
$$\xrightarrow{p_2 \xrightarrow{\mu} q_2} p_1 | p_2 \xrightarrow{\mu} p_1 | q_2$$

Rec)
$$\frac{p[\mathbf{rec}\ x.\ p/_x] \xrightarrow{\mu} q}{\mathbf{rec}\ x.\ p \xrightarrow{\mu} q}$$

CCS Encoding imperative languages

Preliminaries: termination

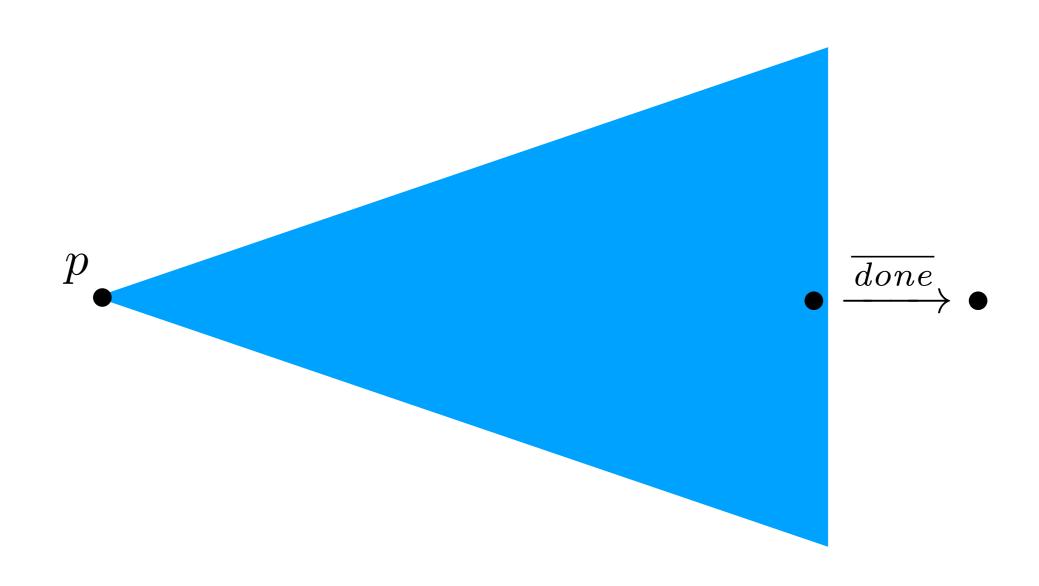
A dedicated channel done:

a message is sent when the current command terminates

Done
$$\triangleq \overline{done}$$

Done
$$\xrightarrow{\overline{done}}$$
 \mathbf{nil}

Termination



skip

does nothing and sends done

au.Done

$$ullet$$
 $\xrightarrow{ au}$ Done $\xrightarrow{\overline{done}}$ \mathbf{nil}

Variables

$$x$$
 ranging over $V = \{v_1, ..., v_n\}$

a dedicated process for managing each variable we can read its current value (channel xr_i) we can write any value (channel xw_i)

$$XW \triangleq \sum_{i=1}^{n} xw_i.X_i$$
$$= xw_1.X_1 + \dots + xw_n.X_n$$

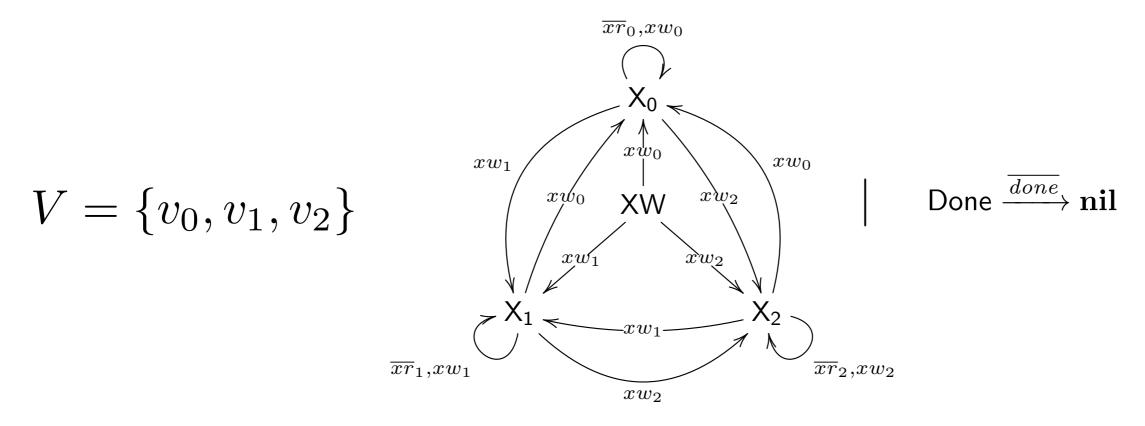
$$X_i \triangleq \overline{xr}_i.X_i + XW$$

Variable declaration

var x

releases an uninitialised variable and terminates

XW Done



Assignment

$$x := v_i$$

sends a message to change the state of the variable and then terminates

$$\overline{xw}_i$$
.Done

•
$$\xrightarrow{\overline{xw}_i}$$
 Done $\xrightarrow{\overline{done}}$ nil

Sequential composition

 c_1 ; c_2

suppose

 p_1 models c_1

 p_2 models c_2

 $p_1|done.p_2$

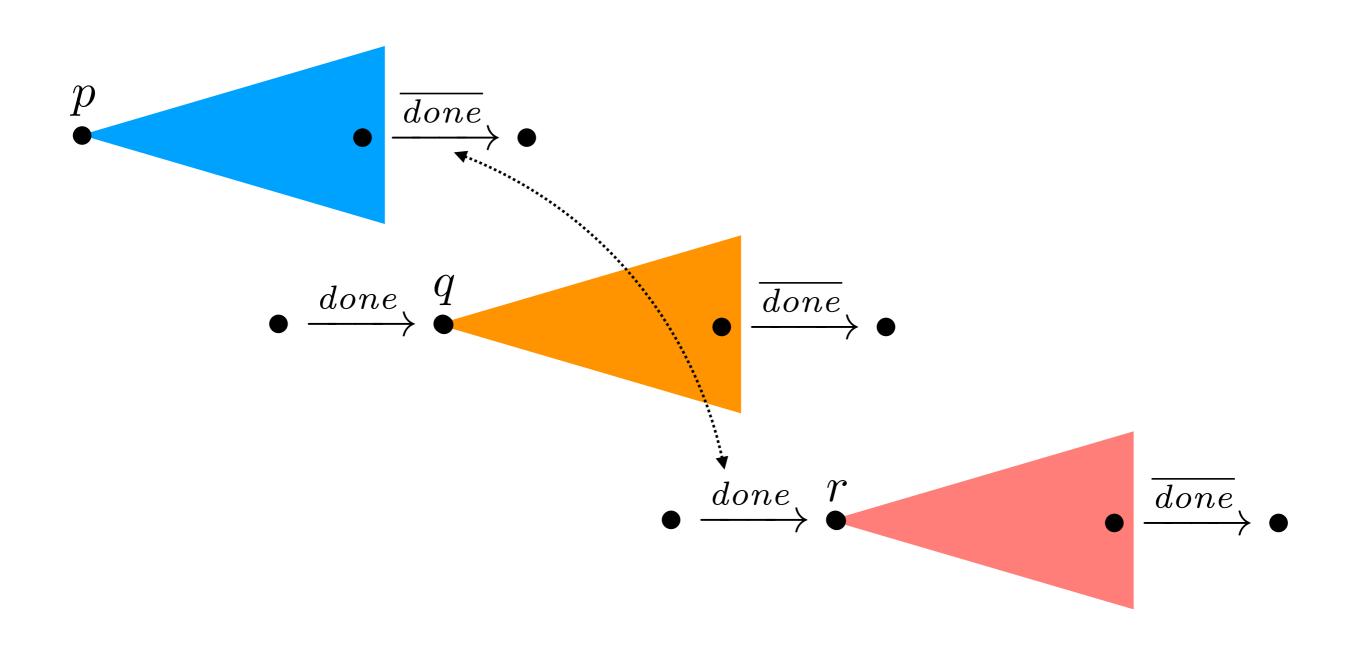
unfortunate choice: does not scale

 $c_1; c_2; c_3$

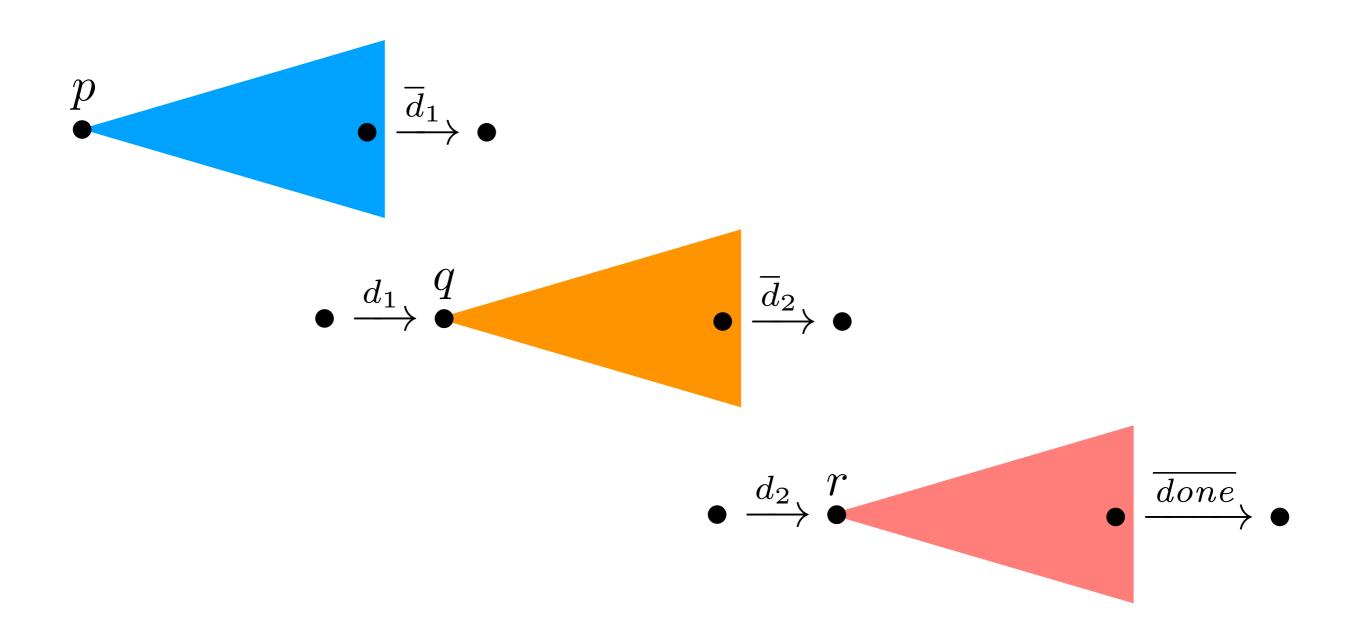
 $p_1|done.p_2|done.p_3$

 p_3 can start after p_1

Sequential?



Sequential!



Sequential compositon

 c_1 ; c_2

suppose

$$p_1$$
 models c_1 p_2 models c_2

$$\phi_d(done) = d$$

$$p_1 \frown p_2 \triangleq (p_1[\phi_d]|d.p_2) \backslash d$$

now d is local to p_1 and p_2

$$((p_1[\phi_{d_1}] \mid d_1.p_2)\backslash d_1)[\phi_{d_2}] \mid d_2.p_3)\backslash d_2$$

$$(((p_1[\phi_d] \mid d.p_2) \backslash d)[\phi_d] \mid d.p_3) \backslash d$$

$$(p_1 \frown p_2) \frown p_3$$

Conditional

if $x = v_i$ then c_1 else c_2

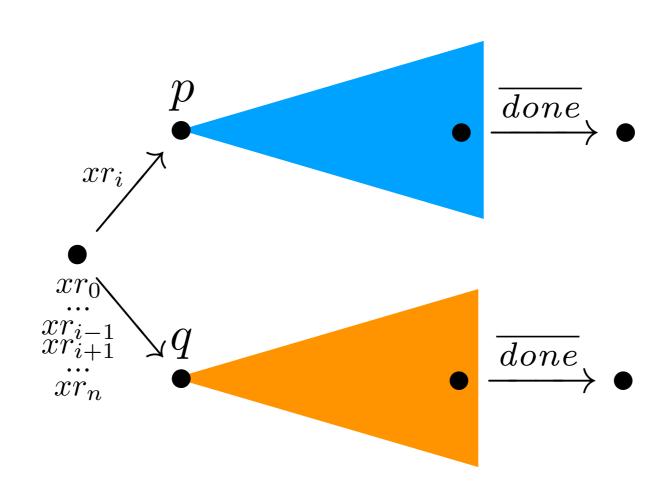
suppose p_1 models c_1

 p_2 models c_2

receives the state of the variable and then chooses accordingly

$$xr_i.p_1 + \sum_{j \neq i} xr_j.p_2$$

Conditional



Iteration

while $x = v_i \text{ do } c$

 ${\tt suppose} \qquad p \; {\tt models} \; c \\$

receives the state of the variable and then chooses accordingly, possibly recurring

rec
$$y. xr_i.(p[\phi_d]|d.y)\backslash d + \sum_{j\neq i} xr_j.$$
Done

$$Y \triangleq xr_i.(p[\phi_d]|d.Y)\backslash d + \sum_{j\neq i} xr_j.\mathsf{Done}$$

$$Y \triangleq xr_i.(p \frown Y) + \sum_{j \neq i} xr_j.$$
Done

Concurrency

$$c_1 \mid c_2$$

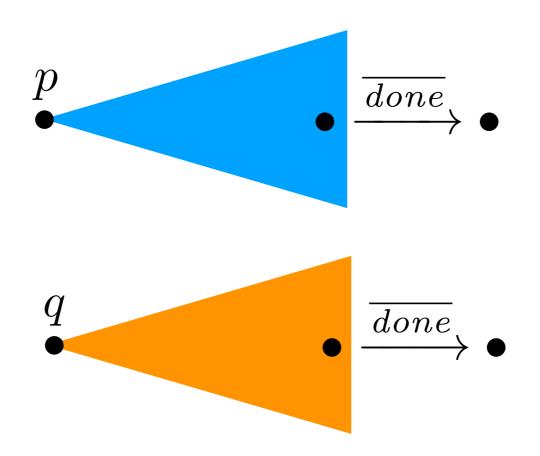
suppose p_1 models c_1

 p_2 models c_2

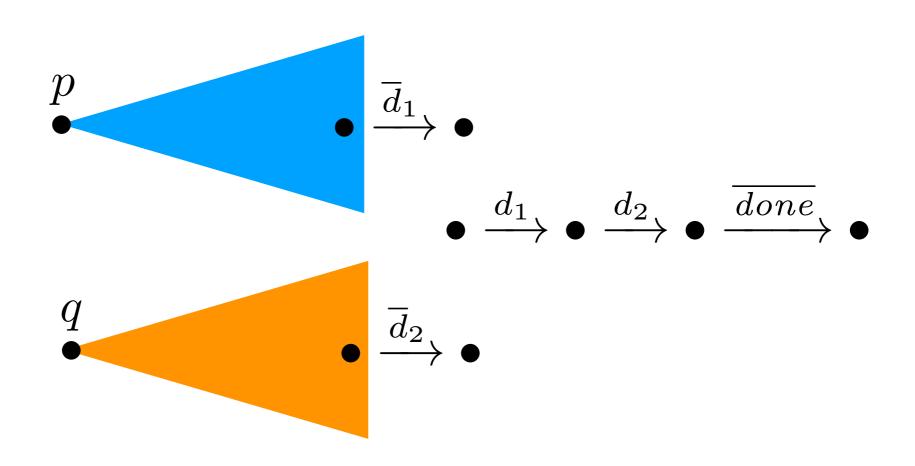
$$p_1|p_2$$

unfortunate choice: done is possibly issued twice

Concurrent termination



Joint termination



Concurrency

$$c_1 \mid c_2$$

suppose

 p_1 models c_1

 p_2 models c_2

$$(p_1[\phi_{d_1}] | p_2[\phi_{d_2}] | d_1.d_2.\mathsf{Done}) \backslash d_1 \backslash d_2$$

the order is not important: both must be done to terminate

$$(p_1[\phi_d] \mid p_2[\phi_d] \mid d.d.\mathsf{Done}) \setminus d$$

$$(p_1[\phi_d] \mid p_2[\phi_d] \mid d^2.\mathsf{Done}) \setminus d$$

Finally

all channels for communicating with variables must be restricted at the top to guarantee read/write requests are synchronised

$$p \setminus \{xw_1, xr_1, \cdots\}$$

several optimisations are possible:
action prefix instead of linking for sequential composition
allows more expressive guards
remove silent transitions
introduce constants for loops
implement expressions

. . .

Example: optimisation

$$x := 1; y := 2$$

$$\overline{xw}_1.\overline{done} \qquad \overline{yw}_2.\overline{done}$$

$$((\overline{xw}_1.\overline{done})[\phi_d] \mid d.\overline{yw}_2.\overline{done}) \backslash d$$

$$\overline{xw}_1.\overline{yw}_2.\overline{done}$$

Example: optimisation

if b(x) then c_1 else c_2

$$\sum_{b(v_i)} xr_i.p_1 + \sum_{\neg b(v_j)} xr_j.p_2$$