MPP 2025/26 (0077A, 9CFU)
Models for Programming Paradigms

Roberto Bruni Filippo Bonchi
http://www.di.unipi.it/~bruni/

https://didawiki.di.unipi.it/doku.php/
magistraleinformatica/mpp/start

[7a - CCS syntax & op. semantics

http://www.di.unipi.it/~bruni/
https://didawiki.di.unipi.it/doku.php/magistraleinformatica/mpp/start
https://didawiki.di.unipi.it/doku.php/magistraleinformatica/mpp/start

CCS
Calculus of Communicating Systems

Sequential vs concurrent

A A
et

btk et

3

Concurrency

IMP/HOFL (sequential paradigms)
- determinacy

- any two non-terminating programs are equivalent

concurrent paradigms

- exhibit intrinsic nondeterminism to external observers

- nontermination can be a desirable feature (e.g. servers)
- not all nonterminating processes are equivalent

- Interaction is a primary issue

- new notions of behaviour / equivalence are needed

CCS: basics

Process algebra

- focus on few primitive operators (essential features)
- concise syntax to construct and compose processes
- not a full-fledged programming language

- full computational power (Turing equivalent)

Communication
- binary, message-passing over channels

Structural Operational Semantics

- small-step style (Labelled Transition System)

- processes as states

- ongoing interactions as labels

- defined by inference rules

- defined by induction on the structure of processes

5

From your forms

@ 5Sstelle @ 4stelle © 3stelle
© 2 stelle

® 1 stella
LTS

(over 19 answers)

Labelled transitions

ongoing interaction
with the environment
(with other processes)

L
P—q
a process —— T the Drocess

IN ItS current state state after the

- interaction
number of states/transitions

can be infinite

Example: counter

LTS: Labelled Transition
System

|4
Y
reset

reset
inc

val

)

inc »lE

reset

stop

reset,val

A Whid
A0

reset

stop

val

|

' - val
Inc)m iNnc > |

Inc

'es‘%gp stop stop
reset Stop
reset stop
reset stop
stop

CCS: states and labels

What is a process p ?

a sequential agent
a system where many sequential agents interact

What is a label ;1 ? send v on channel «

/
an action (e.g. an output) alv
a dual action (e.g. an input) o

recelve v on channel o
an internal action (silent action) 7

T
(no interaction with the environment) concluded
communication

CCS: actions & coactions

We can be even more abstract than that
without losing computational expressiveness

we disregard communicated values
(imagine there is a dedicated channel for each value)

alv becomesjust &, orjust o

a?v becomesjust «, orjust «

A denotes either a «

)\ denotes its dual (assume @ = o)

CCS. communication

v

A h
P1 — q1 P2 — Qg2

Example: vending machine

Tired

y \

Student< —— HoldCup < Select

coffee

coffee

PN

VendMach ——= Serve;

tea

coin
Y
cappuccino Serves

CCS syntax

rom your forms

® 5Sstelle @ 4stelle © 3stelle
© 2 stelle

® 1 stella
Process algebras

(over 8 answers)

P, q

CCS: syntax

;= nil iInactive process
x process variable (for recursion)
p-p action prefix
p\& restricted channel
p|9] channel relabelling
p+q nondeterministic choice (sum)
plq parallel composition
rec x. p recursion

(operators are listed in order of precedence)

16

p,q -

CCS: syntax

m rec x. coffee.x + tea.nil | water.nil

p.p

e to be read as

p+4q

Pl - rec z. (((coffee.x) + tea.nil) | water.nil)

(operators are listed in order of precedence)

|7

CCS: syntax

the only binder is the recursion operator
rec r.p

the notion of free (process) variable is defined as usual
fv(p)

a process Is called closed if it has no free variables

the notion of capture avoiding substitution is defined as usual
P/l

processes are taken up-to alpha-renaming of bound vars
rec x. coin.r = rec y. coin.y

CCS operational semantics

CCS: labels

C set of (input) actions, ranged by o! CAT =0
C set of (output) co-actions, ranged by @ a

A =CUC setof observable actions, rangedby X\)\

T ¢ A adistinguished silent action

L=AU{7T} setofactions, ranged by u

20

LTS of a process

the LTS of CCS is infinite (one state for each process)

starting from p , consider all reachable states:
the LTS of a process can be finite/infinite

21

Nil process

nil 4
the inactive process does nothing

no interaction is possible with the environment

represents a terminated agent

no operational semantics rule associated with nil

22

LTS of a process

nil
<

Action prefix

Act) 7
p.p —p

an action prefixed process can perform the action
and continue as expected

the action may involve an interaction with the environment

coin.coffee.nil

waits a coin, then gives a coffee and then it stops

ey il

: ey COIM ey CO
coin.coffe.nil > coffe.nil

24

p o £

LTS
0
f a process

Nondeterministic choice

s L
SumL) 1 g SumR) P2 Z
pP1+DP2 — ¢ pP1+DpP2 — (¢

process p; + p2 can behave either as p; or as p2

coin.(coffee.nil + tea.nil)

waits a coin, then gives a coffee or a tea, then it stops

coin.(coffee.nil + tea.nil)

l cotn

coffee.nil + tea.nil

coffee C)/tcm,

nil

26

LTS of a process

.

-

p—l_q‘

Recursion

p[rec T. p/x] q
rec r. p % q

Rec)

like a recursive definition let x = p in x

rec x. coin.(coffee.x + tea.nil)

waits a coin, then gives a coffee and is ready again
or a tea and stops

rec x. coin.(coffee.x + tea.nil) P = rec z. coin.(coffee.x + tea.nil)
)/ coin coffee ()/ coin
coffee.(rec x. coin.(coffee.x + tea.nil)) + tea.nil coffee.P + tea.nil

E e

nil nil

28

Recursion via process
constants

imagine some process constants A are available
together with a set A of declarations of the form

A=p
one for each constant

AépGA pﬁq

Const) M 7
— g

P £ coin.(coffee.P + tea.nil)

29

CCS: capacity 1 buffer

_ 1
A={B2nB B'2oui.B!) By

rec r. in.out.x

1
By
m out

CCS: capacity 2 buffer

CCS: boolean buffer

By = ing. By + ing. By By

outy out f
B; = out,. By
My AN f

By = out . By

1My outy

In g out f

32

Parallel composition

A A L
D1 1 P1— 41 P2 — QG2 P2 — g2

Com) - ParR) 7
1|2 p1lpe — q1lg2 p1lpe — p1lge

= q
ParlL) 7
pilp2 — q
processes running in parallel can interleave their actions
or synchronize when dual actions are performed

P = coin.coffee.nil M = coin.(coffee.nil + tea.nil)

P|M comn, coffee.nil| M

P|M 2% P|(coffee.nil + fea.nil)

P|M 5 coffee.nil|(coffee.nil 4 tea.nil)

33

LTS of a process

- -

E
34

CCS: parallel buffers

By| By
Bj £ in.B;

Bi £ out.B,

CCS: parallel buffers

B; | By

B} £ in.B; / \
B £ out.By mn mn

By |Bjy By |B;

CCS: parallel buffers

B; | By

CCS: par'allel buffers

B} | B}

N 7N
\/

Bi|Bj

B}
B

CCS: parallel buffers

By | B
B} £ in.Bj} y/ \\%
Bl émBl m N
e ms T By
0 1) S

B? compare with the 2-capacity buffer

39

Restriction

p=q pé{a,al
p\a = g\a

makes the channel o private to p

Res)

no interaction on a with the environment

If p Is the parallel composition of processes, then
they can synchronise on «

P = coin.coffee.nil M £ coin.(coffee.nil + tea.nil)

(P|M)\ coin\ coffee\tea — (coffee.nil|coffee.nil + tea.nil)\ coin\ coffee\ tea

(coffee.nil|coffee.nil + tea.nil)\ coin\ coffee\tea — (nil|nil)\ coin\ coffee)\ tea

40

Restriction: shorthand

given S ={aq,....,a,} we write p\S

instead of p\ai...\an

we omit trailing nil

P £ coin.coffee M = coin.(coffee + tea)

S = {coin, coffee, tea}

(PIM)\S = (coffee|coffee + tea)\S — (nil|nil)\S

41

LTS of a process

LTS of a process

Relabelling

plg] 2 qlo)

renames the action channels according to ¢

Rel)

we assume ¢(7) =T d(N) = p(N)
allows one to reuse processes

¢(coin) = moneta

¢(coffee) = caffe

JAN .
P = coin.coffee

P|¢] moneta, coffee|P] caffe, nil|¢]

44

LTS of a process

LTS of a process

CCS op. semantics

pq g {a,al P q
P\a = g\a plg] 2 qlg)

Act) Res)

7
p.p—p

A A v
1 P1—>41 P2 — QG2 P2 — g2

q Com) - ParR) 7
q1|p2 p1lpe — q1lqe p1lpe — p1lge

p[rec x. p/a:] ﬁ q

recx.pﬁq

47

Rec)

Linked buffers

By £ in.Bl n(out) =c Bf [i] B(% [iﬂ.
P oo e OUB% o] Bl
]| By [¢]
/ \
(Bi [n]|Bg 4] | By [#])\c

\ . /

Linked buffers
By [¢]

By £ in.By n(out) =

By[n)

Bi £ out.B;

Bi[¢] Bi[n]
Zn @ | | OUt

Linked buffers

By £in.By nlout) =c
p—~q= (pllald])\c

Bi £out.BY é(in) =c

B; —~ Bj
/ ‘m
B} ~ B} : >~ By —~ Bj

Linked boolean buffers

BQ) = . By + znfo n(gutt) = ¢(Z’nt) =5
B, = out;. By n(outs) = cy d(ing) = cy

B 2 outs.By p ~ q= (plnllal¢])\{ct, cr}

Linked boolean buffers

By = ing.By + ing. By
B, £ outy. By 1M outs 1M outs

Bfémf.B@ in ¢ outs ing out f

52

Linked boolean buffers

B@ Z’I”Lt Bt -+ an Bf n(outt) — C¢ ¢(Z’n/t) — Cy¢
By = out;. By n(outf) = Cy gb(znf) = Cf

B 2 oul;.By p —~ q= (plnllale])\{ct, cr}

53

Linked boolean buffers

By = ing.By + ins. By n(out;) = ¢ b(ing) = c;
B; = out;.By n(outs) = cy d(ins) = cy
By 2 oul;.By p ~q= (pllald)\{et, cr}
B, ~ By <" By ~ By —2~ B; ~ By
B, ~ B, <— By ~ B By ~ By — > B; ~ By

1N ¢ M f

outy out f

Bf/\Bt Bt/\Bf

54

CCS with value passing

alv.p =5 p a?r.p — p[¥/]

when the set of values is finite V £ {vy,...,v,}

alv.p = ay.p

alr.p = g, Pl L]+ oy pl")

receive
V -> p
w -> g = Qly.P + Oyy-q T Z Q. T
_> r ZFV, W

end

55

of Exercise: LTS?

P = (rec x. a.z) + (rec x. 5.x)

/\

reca? Q.T rec x. Bx

B

of Exercise: LTS?

Q =rec z. (a.x + B.7)

Q =reczx a.x+ B.x

Q2 a.Q+5.Q

CeDs

=
X
ercise: L
. LTS?

R FAY
= rec

X
e (. +

ecC 5

x .1ni
- il)
X
+ 0

R £
a.R+ 05

t Exercise: LTS?

T = rec z. ((a.nil|z) + B.nil)
T = rec z. (a|x) + 3
T = (aT) + 5

nil a|nil a|ar|nil

nil| 7 a|nil|T a|anil| T

59

t Exercise: LTS?

U = rec z. ((o.nil)|8.2)
U = rec . a|B.x
U = «|B.U
U > a|U

t Exercise: LTS?

U = rec z. ((a.nil)|B.7)

U = rec . a|B.x

U = alB.U
U - > a|U
Y
nil|8.U
B

t Exercise: LTS?

U = rec z. ((o.nil)|8.2)
U = rec . a|B.x
U = «|B.U
U > a|U ’

> ala|U

62

t Exercise: LTS?

U = rec z. ((o.nil)|8.2)
U = rec . a|B.x
U = «|B.U
U > a|U ’

> ala|U

Y
a|nil|3.U FE a|nil|U

(84

Y
nil|U nil|nil|3.U

63

t Exercise: LTS?

U = rec z. ((o.nil)|8.2)
U = rec . a|B.x
U = «|B.U

U > a|U ’ ’

87
87 87

Y Y
a|nil|3.U FE a|nil|U

Y
nil|U nil|nil|3.U

64

- ala|lU —— -

t Exercise: LTS?

U = rec z. ((o.nil)|8.2)
U = rec z. o|fS.x
U = o|f.U

U > a|U 0 b

Q
84 (8%

Y Y
Oz\nil|5.U >a|ni]‘U > .
B B

Y Y
nil|U nil|nil|3.U nil|nil|U

65

>Oé‘Oé|U > . .-

R E
X
ercise: L
. LTS?

.I
x)

U £
re
cx. alf
X

=
a|B.U

R E
X
ercise: L
. LTS?

.I
x)

U £
re
cx. alf
X

=
a|B.U

R E
X
ercise: L
. LTS?

.I
x)

U £
re
cx. alf
X

=
a|B.U

68

t Exercise: LTS?

let’s ignore nil
U = rec z. ((o.nil)|8.2)

U = rec . a|B.x

U2 a|3.U

b
A oz\U — ala|U

C?@

U < &\BU

87

69

t Exercise: LTS?

let’s ignore nil
U = rec z. ((o.nil)|8.2)

U = rec . a|B.x

U2 a|3.U

b p
A oz\U — ala|U

| 5@)T

U < oz\BU<a oz|cv\6U<

87

70

Badge exercise

Write an interactive counter modulo 4 in CCS

The counter process has four input channels:
Inc, val, reset, stop

and four output channels:
Co, C1, C2, C3
used to display the current value of the counter

Draw the LTS of the counter process.

71

P, q

CCS syntax

;= nil iInactive process
x process variable (for recursion)
p-p action prefix
p\& restricted channel
p|9] channel relabelling
p+q nondeterministic choice (sum)
plq parallel composition
rec x. p recursion

(operators are listed in order of precedence)

72

Some notation

mn
write Zpi instead of p1 +--- + p,
i=1

n
write sz- instead of pq|- - |pn
i=1

write p\{a1, ..., a, } instead of p\ai---\ay,

write u™.p instead of p.p....pu. p
H/—/

n

73

CCS op. semantics

pq g {a,al P q
P\a = g\a plg] 2 qlg)

Act) Res)

7
p.p—p

A A v
1 P1—>41 P2 — QG2 P2 — g2

q Com) - ParR) 7
q1|p2 p1lpe — q1lqe p1lpe — p1lge

p[rec x. p/a:] ﬁ q

recx.pﬁq

74

Rec)

CCS
Encoding imperative languages

Preliminaries: termination

A dedicated channel done:

a message is sent when the current command terminates

JAN
Done = done

done .
> nil

Done

76

Termination

Skip

skip

does nothing and sends done

7.Done

done

e — Done > nil

78

Variables

x ranging over V = {v1,..., v, }

a dedicated process for managing each variable
we can read its current value (channel xr;)

we can write any value (channel zw;)

XW £ z”: xw; . X;
i=1

X; = 77 X + XW

79

Variable declaration

var &

releases an uninitialised variable and terminates

XW\Done

xxxxxxx

Xl\w_/

wwwwwwwww
3311)2

80

Assighment

I .— Uy

sends a message to change the state of the variable
and then terminates

xw,;.Done

done

WIL °
e —— Done > 11l

8l

Sequential composition

C1, C2

suppose p1 models ¢q
po models ¢

p1|done.p2

unfortunate choice: does not scale
C1,C2,C3

p1|done.ps|done.ps

p3 can start after pq

82

Sequential?

done
\

\

83

Sequentiall

Sequential compositon

C1, C2

suppose p1 models ¢q ba(done) = d
po models ¢

P1 — P2 = (P1l@alld-p2)\d

now d is local to p; and ps

(((P1@a,] | d1-p2)\d1)|@a,] | d2-p3)\d2

(((p1]@a] | d-p2)\d)|@a] | d.p3)\d
(pl /\ p2) — P3

85

Conditional

If x = v, then ¢q else c¢o

suppose p1 models ¢q
po models co

receives the state of the variable
and then chooses accordingly

LT;.P1 -+ Z.CET‘]'.]?Q
J 71

86

Conditional

Iteration

while x = v; do ¢

suppose p models ¢

receives the state of the variable
and then chooses accordingly, possibly recurring

rec y. x7;.(p|ogl|d.y)\d + Z zr;.Done
J 71

Y £ ar;.(plgd]|d.Y)\d+) ar;.Done
J 71

Y Z2ar,.(p~Y)+ Z:m“j.Done
J 71

88

Concurrency

61|CQ

suppose p1 models ¢q
po models co

P1 |p2

unfortunate choice: done is possibly issued twice

89

Concurrent termination

Joint termination

Concurrency

61|CQ

suppose p1 models ¢q
po models co

(P11®d,] | P2|@a,] | d1.d2.Done)\d1\d>

the order is not important: both must be done to terminate
(p1l¢d] | p2|¢d] | d.d.Done)\d

(p1(¢al | p2[¢a] | d”.Done)\d

92

Finally

all channels for communicating with variables
must be restricted at the top
to guarantee read/write requests are synchronised

p\awy, xry, -}

several optimisations are possible:

action prefix instead of linking for sequential composition
allows more expressive guards

remove silent transitions

iIntroduce constants for loops

implement expressions

93

Example: optimisation

r:=1l;y:=2

Twi.done ™ YWy.done

((zwq.done)|pq| | d.yw,.done)\d

TW1.YWs.done

94

Example: optimisation

if b(x) then c; else ¢

Z LT;.P1 -+ Z LT j5.P2

b(v:) —b(v;)

