Supervised machine learning




Supervised Machine Learning

A machine is said to learn if, when tackling a task, it is able to improve its own
performance through experience.

e Task T the problem we are trying to solve, e.g., predict the cancer risk of a patient
e Experience E: the experience on the task provided to the model, e.g., some dataset
e Performance P: a measure of success, e.g., the success rate in predicting cancer

e Model F: a function f(e) solving the task with a learning algorithm A

Performance is often akin to loss, or error. 1
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Machine learning tackles two families of tasks: those whose solutions we do not know, or
can't express algorithmically.

Task

Binary
classification

Multilabel
classification

Multiclass
classification

Regression

Task categorization admits also unsupervised and reinforce tasks, and several variations of supervised tasks.

Predict

one of two discrete
labels

any of several
discrete labels

one of several
discrete labels

a continuous label

Example

Is the patient at high risk of developing
cancer, or not?

Of all the possible syndromes, which is the
patient going to develop?

The student is going to major in...?

The student's grade is going to be...?



Experience
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Usually a dataset (X, Y) of data X and labels Y.

Task

Binary
classification

Multiclass
classification

Regression

Description

Is the patient at high risk of
developing cancer, or not?

The student will major in...?

The student's grade will be...?

Experience
Patients' clinical history

Students interests, grades in
different subjects, and majors

Grades, hours studying, and
interest
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Task

Binary

classification

Is the patient at high risk of developing
cancer, or not?

An example dataset with label Risk.

Surname Birthyear BMI Blood pressure VOsmazr Risk

Pogacar

1998

21.3

140

Description

89

Low

Experience

Patients' clinical
history
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Task Description Experience

Regression The student's grade will be...? Grades, hours studying, and interest
An example dataset with label Grade.

Surname Birthyear Course Interest Hours GPA Grade

Beretta 1988 Greek history 3 123 3.8 27



A running example

We want to develop a model to detect early onset of cancer. We are given an historic
dataset of cancer patients and their biomarkers (the experience F), and wish to create a
statistical model (the model F') which predicts early cancer onset (task 7T'), minimizing
the risk of undetected cancer cases (performance P).
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With supervised learning, we aim to learn a model that solves the task on any unknown
experience. In our example, we want to learn a function f that, given a patient z,
computes a label y = f(x) stating whether the patient will develop cancer or not.



Models and generalization

Models are not developed to aid on known experiences, rather on unknown ones. The
performance of a model can't be uniquely measured on its performance on the given
experience, but rather on novel experiences which the model was not preview to. We
want to achieve a low generalization error.

Optimization Machine Learning

Maximizes performance on the Maximizes performance on the

given experience F: optimization vs given, and expected non-given,

performance experience E and E: generalization
performance
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If we do not know the non-given experience E.. how can we ever expect to be effective on
it?

Equal distribution assumption. It is assumed that the given experience FE, and the non-
given experience E are sampled from the same distribution Pr”.

Given a learning algorithm A, can I always expect the performance to transfer?



The random process of data sampling

I can't. Sampling from the data distribution is a random process, and the resulting
models learned end up erring in terms of:

e Bias: the expected performance decrease w.r.t. the best model

e Variance: the variance with respect to different samples

Ideally, we want to have learning algorithms with low enough bias and variance.



A capacity's view
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‘Two categories improper models:

o Underfit. High bias, high variance.
Models which have poor

performance, regardless of samples.

They have not learnt enough!

e Overfit. Low bias, high variance.
Models which have overfit on the
given experience, and ought to
improve their generalization
performance. They have learnt too
much!

Bias (red) and variance (blue) as a decomposition of model
performance.
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A capacity's view

1343
UNIVERSITA DI P1sA

‘Two categories improper models:

o Underfit. High bias, high variance.
Models which have poor
performance, regardless of samples.
They have not learnt enough!

e Overfit. Low bias, high variance.
Models which have overfit on the
given experience, and ought to
improve their generalization
performance. They have learnt too
much!

Two models approximating a dataset: one model has too
low a capaticy and underfits the data (in red), while another
has too high a capacity and overfits the data (in blue).
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A capacity's view
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‘Two categories improper models:

e Underfit. High variance, low bias.

Models which ought to improve
their performance on the given
experience F

e Overfit. Low variance, high bias.
Models which ought to improve
their generalization performance
on the unknown experience F

O
O

A properly fit model: it approximates the data well, without
being too strict, thus leaving space for some variance in the
data.

12



=
UNIVERSITA DI P1sa

e Tackling the generalization gap. Data-based strategies to maximize
generalization performance

e Performance evaluation. How to measure model performance/error

e Parameterization. Exploring the space of models

13



Tackling the generalization gap through
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An obvious solution would be to reduce the capacity of a model. Thus, purposefully
constraining the model to reduce variance. This approach, named regularization, is
highly model-specific, and will be tackled on a model-by-model basis later.

Instead, why not tackle this directly with model-agnostic approaches?

14



Tackling the generalization gap through data

We design two phases

e Model selection. A learning phase wherein, among all possible models in a model
space F, we select a model f

e Model validation. An evaluation phase wherein the generalization performance
of the selected model f is estimated

Model validation cannot affect model selection: it only goes one way, from selection to
validation. Thus, we need to incorporate in model selection some strategy to avoid
under/overfitting.
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Model selection, data-only

The standard approach is model agnostic: we can apply this to any learning algorithm or
family of models we want. We operate a tripartite partitioning of (X, Y):

o Training dataset (X' Y'"): search through
the models' space F

e Validation dataset (X", Y "): guesstimate

the generalization performance of candidate
models f1,..., f

o Test dataset (X', Y!*): estimate the A partition of the dataset (in black) in training
generalization performance of the selected =~ (Plue) validation (red) andtest (beige).
model fz
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Model selection, data-only
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A partition of the dataset (in black) in training (blue), validation (red), and test (beige).

Task Training Validation Test
Disease diagnosis Biology lectures Homework Exam
Learning a language Duolingo Exchange student Livingabroad
Pandemic diffusion Black plague Ebola Covid
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Model selection, data-only

How to choose the partition?

e Size. Test and validation set of
similar size, training set of much
larger size, e.g., aratio of 4:1. Some
learning algorithms are more data-

hungry, so thisis a starting baseline.

e Distribution. Ideally, same
distribution for all three datasets.
Random stratified sampling is used

A partition of the dataset (in black) in training (blue),
validation (red), and test (beige). Patients with (red cross)

and without (green cross) cancer are split evenly among
the blocks.
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Model selection: hold-out
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Hold-out leverages the three-blocks partition train-validation test.

1. Learn candidate models f1,..., fi on the training set
2. Evaluate them on the validation set

3. Estimate the generalization error on the test set
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Model selection: cross validation

Stretching hold-out, we aim to further increase the size of the validation set.

We partition a given set of data, e.g., the
training dataset, in two folds:

e inset 1, block 1isatraining dataset, 0 1
block 2 is the validation dataset

e in set 2, block 2 is a training dataset, 0 1
block 1 is the validation dataset

Now I can learn and guesstimate a model 0 1
f; on both folds!

A set partitioned in two blocks, and the resulting folds. In
each fold, a block acts as validation set (in red), and the
other as training set (in blue).
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Model selection: cross validation

e Stronger guesstimates of
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generalization performance

e Embarrassingly parallel problem 0 1

e Reduce validation data available

e For alearning over all folds, requires 0 L
models trained on different folds to
be comparable® 0 1

A set partitioned in two blocks, and the resulting folds. In
each fold, a block acts as validation set (in red), and the
other as training set (in blue).

*Rather, models' parameters. We will see parametric models further in the course. 271



Model selection: k-fold cross validation
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Why limit ourselves to two folds, when we can employ k?

e Stronger guesstimates of

generalization performance

e Embarrassingly parallel problem

e Reduced validation data available

e Large computational cost

e For alearning over all folds, requires

models trained on different folds to

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

be comparable*

A set partitioned in k£ = 5 blocks, and the resulting folds. In

each fold, a block acts as validation set (red), and the other

as training set (blue).

*Rather, models' parameters. We will see parametric models further in the course.
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Performance evaluation

With proper partitioning, we are now able to feed experiences (data) to the candidate
models f1, ..., fr we wish to select. How do we evaluate them?

UNIVERSITA DI P1sa

Classification. Classification tasks generally aim to measure a Hamming distance (©)
between the gold labels, and the labels given by the model. Either measured as error
(lower is better |) or performance (higher is better 1).

Reminder: we indicate the vector of n gold labels with Y € ), the model of interest with f
, its prediction on an instance z’ with f(z*), and the indicator function with 1.

Hamming distance

23


https://www.sciencedirect.com/topics/computer-science/hamming-distance
https://www.sciencedirect.com/topics/computer-science/hamming-distance

Performance evaluation: classification %

Task

Binary, Multiclass

Binary, Multiclass

Multilabel

Multilabel

Measure Formulation

1 .

Accuracy — > 1, 1(Y; = f(2*)) or 1 — Error rate
n
1 .

Error rate — > 1 1(Y; # f(2*)) or 1 — Accuracy
n
1 YiN f(z)

d similarity — ) . :

Jaccard similarity - Dy ASD

1

Hammingerror — > " 1—(Y; 0 f(z"))
n

24



Performance evaluation: classification . ©_

For unbalanced data, where labels are not equally probable, it is sensible to adjust model
performance by computing metrics on each separate class of labels, then aggregate the
results, e.g., through average (balanced accuracy), minimum, maximum, etc.

We indicate with p(Y?, f) the performance p of f on the subset of Y with label 1.

Task Measure Formulation
Binary, Multiclass Balanced Accuracy YT y| Zm Accuracy(Y", f)

Binary, Multiclass Error rate 1 — Balanced Accuracy

25



Performance evaluation: classification % _

In some binary cases, one label yis for us Y

of interest (positive label), e.g., patients we positive negative
predict will have cancer, while the other is

not (negative label). We can construct a
confusion matrix out of the predictions

f(z') of the model, that we can then £(X)
leverage to define more performance

measures.

tp I

fn tn

negative positive

A confusion matrix: columns defined by the gold labels Y,
and rows defined by the predicted labels f(X).
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Performance evaluation: classification . .

Measures derived by the confusion matrix.

Task Measure Formulation Description
. . tp Of all the positive predictions, how many, in
Binary Precision :
tp+ fp proportion, are correct?
, tp Of all the positive instances, how many, in
Binary Recall , ,
tp+ fn proportion, have been correctly predicted?

Binary fl-score h(precision,recall) Harmonic mean of precision and recall
tp +tn
tp+itn+ fp+ fn

Binary Accuracy Accuracy

h indicates the harmonic mean. 27



Performance evaluation: classification %

Confusion matrices are limited in their Y
weighting, as any entry, e.g., true positives positive  negative
(tp), has a unitary weight in all

performance measures. Yet, in some

cases, some false weigh heavier than

others, e.g., diagnosing a false positive f( X)
cancer is far worse than diagnosing a false
negative. Thus, we introduce the cost

matrix, holding one weight per each

entry in the confusion matrix, weighing it A cost confusion matrix: each entry weighs the
in performance Imeasures. correspondent entry in the confusion matrix.

Wtp W fp

W fn Wtn

negative positive
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Performance evaluation: classification

Binary measures can be extended to the multiclass case through a one-VS-all approach:
iterating over all possible labels, define the current label as positive, and all others as
negative, thus defining a multiclass problem as a set of binary ones. Then, aggregate the

performances.
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Performance evaluation: classification %

Aggregation
Micro average

Macro average

Weighted
average

Descripton
Global average
Actual per-label average

Macro average, but introduces weights given by proportion of size
of the label set
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Performance evaluation: classification _©_

Among all possible model solving binary
classification tasks, some do not compute
a binary label per se, rather a score or
probability a of a label, e.g., the positive
label. To go from score to label we need to
threshold such probability, and different
thresholds 7 induce different labellings,
and thus different confusion matrices and
probabilities of true or false positives.

E[FP]

A ROC curve, numbers indicating the different thresholds
that have generated them. E|T P], E[F P], indicate the rates
of true positives and false positives.
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Performance evaluation: classification . ©_

Points of interest

e (1,1) Model with no true positives

e (0,1) Model with no false positives:
the best model

e (z,x) Same probability of true and
EFP|

A ROC curve, numbers indicating the different thresholds

that have generated them. E[T'P], E[F P|, indicate the rates ° (m, T — 5) Models with flipped labels
of true positives and false positives.

false positives: random models

32



Performance evaluation: classification
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A ROC curve also allows us to compute a !
single scalar aggregating the
performances at different thresholds: the
Area Under the ROC Curve (AUC).

E[FP|

A ROC curve, numbers indicating the different thresholds
that have generated them. E[T P, E|F'P|, indicate the rates
of true positives and false positives. The Area Under the
ROC Curve (AUC) in beige.
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Performance evaluation: regression

Unlike classification, regression estimates on a continuous set, thus we can't leverage
the same measures.

Performance Formulation Description

1
Mean Squared Error | — > ' . || f(z;) — Yi ||5 Mean error per instance
n

Max Squared Error | max{> ., || f(z;) — Y; ||3} Maximum error

62

Rsquared | 1 - — Error over default model
%
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Performance evaluation: regression
R?. The two terms of R? are

e the model error e? = Zz 1 H f(wz) Y; H%

e the variance of the data 0. This would also be the error of a simple model

predicting the average

Thus, their ratio compares the error of a model with the one of a default model. The
lower such ratio, the better the model, and the closer to 1 the R? score. Viceversa, the
higher the ratio, the lower the R? score.

35
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We now know...
e given a dataset, how to define what
task it describes

e given a dataset, how to partition it
into separate blocks to ease

generalization in learning

: . 0
* givena block, what role it serves, The space of parameters ©: we need to search this space to
and Why find a suitable model.
e given a task, how to compare The last missing ingredient: defining and
different models, choosing the optimizing models.

better one(s)
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