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Supervised Machine Learning
A machine is said to learn if, when tackling a task, it is able to improve its own

performance through experience.

• Task : the problem we are trying to solve, e.g., predict the cancer risk of a patient

• Experience : the experience on the task provided to the model, e.g., some dataset

• Performance : a measure of success, e.g., the success rate in predicting cancer

• Model : a function  solving the task with a learning algorithm 

Performance is often akin to loss, or error. 1



Machine Learning: tasks
Machine learning tackles two families of tasks: those whose solutions we do not know, or

can't express algorithmically.

Task Predict Example

Binary

classification

one of two discrete

labels

Is the patient at high risk of developing

cancer, or not?

Multilabel

classification

any of several

discrete labels

Of all the possible syndromes, which is the

patient going to develop?

Multiclass

classification

one of several

discrete labels
The student is going to major in...?

Regression a continuous label The student's grade is going to be...?

Task categorization admits also unsupervised and reinforce tasks, and several variations of supervised tasks. 2



Experience
Usually a dataset  of data  and labels .

Task Description Experience

Binary

classification

Is the patient at high risk of

developing cancer, or not?
Patients' clinical history

Multiclass

classification
The student will major in...?

Students interests, grades in

different subjects, and majors

Regression The student's grade will be...?
Grades, hours studying, and

interest
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Experience

Task Description Experience

Binary

classification

Is the patient at high risk of developing

cancer, or not?

Patients' clinical

history

An example dataset with label Risk.

Surname Birth year BMI Blood pressure Risk

Pogacar 1998 21.3 140 89 Low

... ... ... ... ... ...
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Experience

Task Description Experience

Regression The student's grade will be...? Grades, hours studying, and interest

An example dataset with label Grade.

Surname Birth year Course Interest Hours GPA Grade

Beretta 1988 Greek history 3 123 3.8 27

... ... ... ... ... ...
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A running example
We want to develop a model to detect early onset of cancer. We are given an historic

dataset of cancer patients and their biomarkers (the experience ), and wish to create a

statistical model (the model ) which predicts early cancer onset (task ), minimizing

the risk of undetected cancer cases (performance ).

With supervised learning, we aim to learn a model that solves the task on any unknown

experience. In our example, we want to learn a function  that, given a patient ,

computes a label  stating whether the patient will develop cancer or not.
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Models and generalization
Models are not developed to aid on known experiences, rather on unknown ones. The

performance of a model can't be uniquely measured on its performance on the given

experience, but rather on novel experiences which the model was not preview to. We

want to achieve a low generalization error.

Optimization

Maximizes performance on the

given experience : optimization

performance

Machine Learning

Maximizes performance on the

given, and expected non-given,

experience  and : generalization

performance

7
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Experience... not given?
If we do not know the non-given experience ... how can we ever expect to be effective on

it?

Equal distribution assumption. It is assumed that the given experience , and the non-

given experience  are sampled from the same distribution .

Given a learning algorithm , can I always expect the performance to transfer?
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The random process of data sampling
I can't. Sampling from the data distribution is a random process, and the resulting

models learned end up erring in terms of:

• Bias: the expected performance decrease w.r.t. the best model

• Variance: the variance with respect to different samples

Ideally, we want to have learning algorithms with low enough bias and variance.
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A capacity's view
Two categories improper models:

• Underfit. High bias, high variance.

Models which have poor

performance, regardless of samples.

They have not learnt enough!

• Overfit. Low bias, high variance.

Models which have overfit on the

given experience, and ought to

improve their generalization

performance. They have learnt too

much!

Bias (red) and variance (blue) as a decomposition of model

performance.
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A capacity's view
Two categories improper models:

• Underfit. High bias, high variance.

Models which have poor

performance, regardless of samples.

They have not learnt enough!

• Overfit. Low bias, high variance.

Models which have overfit on the

given experience, and ought to

improve their generalization

performance. They have learnt too

much!

Two models approximating a dataset: one model has too

low a capaticy and underfits the data (in red), while another

has too high a capacity and overfits the data (in blue).
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A capacity's view
Two categories improper models:

• Underfit. High variance, low bias.

Models which ought to improve

their performance on the given

experience 

• Overfit. Low variance, high bias.

Models which ought to improve

their generalization performance

on the unknown experience 

A properly fit model: it approximates the data well, without

being too strict, thus leaving space for some variance in the

data.

12



Searching for models
• Tackling the generalization gap. Data-based strategies to maximize

generalization performance

• Performance evaluation. How to measure model performance/error

• Parameterization. Exploring the space of models
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Tackling the generalization gap through

regularization
An obvious solution would be to reduce the capacity of a model. Thus, purposefully

constraining the model to reduce variance. This approach, named regularization, is

highly model-specific, and will be tackled on a model-by-model basis later.

Instead, why not tackle this directly with model-agnostic approaches?
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Tackling the generalization gap through data
We design two phases

• Model selection. A learning phase wherein, among all possible models in a model

space , we select a model 

• Model validation. An evaluation phase wherein the generalization performance

of the selected model  is estimated

Model validation cannot affect model selection: it only goes one way, from selection to

validation. Thus, we need to incorporate in model selection some strategy to avoid

under/overfitting.
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Model selection, data-only
The standard approach is model agnostic: we can apply this to any learning algorithm or

family of models we want. We operate a tripartite partitioning of :

• Training dataset : search through

the models' space 

• Validation dataset : guesstimate

the generalization performance of candidate

models 

• Test dataset : estimate the

generalization performance of the selected

model 

A partition of the dataset (in black) in training

(blue), validation (red), and test (beige).
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Model selection, data-only

A partition of the dataset (in black) in training (blue), validation (red), and test (beige).

Task Training Validation Test

Disease diagnosis Biology lectures Homework Exam

Learning a language Duolingo Exchange student Living abroad

Pandemic diffusion Black plague Ebola Covid
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Model selection, data-only
How to choose the partition?

• Size. Test and validation set of

similar size, training set of much

larger size, e.g., a ratio of 4:1. Some

learning algorithms are more data-

hungry, so this is a starting baseline.

• Distribution. Ideally, same

distribution for all three datasets.

Random stratified sampling is used

A partition of the dataset (in black) in training (blue),

validation (red), and test (beige). Patients with (red cross)

and without (green cross) cancer are split evenly among

the blocks.
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Model selection: hold-out
Hold-out leverages the three-blocks partition train-validation test.

1. Learn candidate models  on the training set

2. Evaluate them on the validation set

3. Estimate the generalization error on the test set
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Model selection: cross validation
Stretching hold-out, we aim to further increase the size of the validation set.

We partition a given set of data, e.g., the

training dataset, in two folds:

• in set , block  is a training dataset,

block  is the validation dataset

• in set , block  is a training dataset,

block  is the validation dataset

Now I can learn and guesstimate a model

 on both folds!
A set partitioned in two blocks, and the resulting folds. In

each fold, a block acts as validation set (in red), and the

other as training set (in blue).
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Model selection: cross validation

• Stronger guesstimates of

generalization performance

• Embarrassingly parallel problem

• Reduce validation data available

• For a learning over all folds, requires

models trained on different folds to

be comparable*

A set partitioned in two blocks, and the resulting folds. In

each fold, a block acts as validation set (in red), and the

other as training set (in blue).

*Rather, models' parameters. We will see parametric models further in the course. 21



Model selection: -fold cross validation
Why limit ourselves to two folds, when we can employ ?

• Stronger guesstimates of

generalization performance

• Embarrassingly parallel problem

• Reduced validation data available

• Large computational cost

• For a learning over all folds, requires

models trained on different folds to

be comparable* A set partitioned in  blocks, and the resulting folds. In

each fold, a block acts as validation set (red), and the other

as training set (blue).

*Rather, models' parameters. We will see parametric models further in the course. 22



Performance evaluation
With proper partitioning, we are now able to feed experiences (data) to the candidate

models  we wish to select. How do we evaluate them?

Classification. Classification tasks generally aim to measure a Hamming distance ( )

between the gold labels, and the labels given by the model. Either measured as error

(lower is better ) or performance (higher is better ).

Reminder: we indicate the vector of  gold labels with , the model of interest with 

, its prediction on an instance  with , and the indicator function with 𝟙.

Hamming distance 23

https://www.sciencedirect.com/topics/computer-science/hamming-distance
https://www.sciencedirect.com/topics/computer-science/hamming-distance


Performance evaluation: classi�cation

Task Measure Formulation

Binary, Multiclass Accuracy 𝟙  or 

Binary, Multiclass Error rate 𝟙  or 

Multilabel Jaccard similarity

Multilabel Hamming error
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Performance evaluation: classi�cation
For unbalanced data, where labels are not equally probable, it is sensible to adjust model

performance by computing metrics on each separate class of labels, then aggregate the

results, e.g., through average (balanced accuracy), minimum, maximum, etc.

We indicate with  the performance  of  on the subset of  with label .

Task Measure Formulation

Binary, Multiclass Balanced Accuracy

Binary, Multiclass Error rate

... ... ...
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Performance evaluation: classi�cation
In some binary cases, one label  is for us

of interest (positive label), e.g., patients we

predict will have cancer, while the other is

not (negative label). We can construct a

confusion matrix out of the predictions

 of the model, that we can then

leverage to define more performance

measures.

A confusion matrix: columns defined by the gold labels ,

and rows defined by the predicted labels .
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Performance evaluation: classi�cation
Measures derived by the confusion matrix.

Task Measure Formulation Description

Binary Precision
Of all the positive predictions, how many, in

proportion, are correct?

Binary Recall
Of all the positive instances, how many, in

proportion, have been correctly predicted?

Binary -score Harmonic mean of precision and recall

Binary Accuracy Accuracy

 indicates the harmonic mean. 27



Performance evaluation: classi�cation
Confusion matrices are limited in their

weighting, as any entry, e.g., true positives

( ), has a unitary weight in all

performance measures. Yet, in some

cases, some false weigh heavier than

others, e.g., diagnosing a false positive

cancer is far worse than diagnosing a false

negative. Thus, we introduce the cost

matrix, holding one weight per each

entry in the confusion matrix, weighing it

in performance measures.
A cost confusion matrix: each entry weighs the

correspondent entry in the confusion matrix.
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Performance evaluation: classi�cation
Binary measures can be extended to the multiclass case through a one-VS-all approach:

iterating over all possible labels, define the current label as positive, and all others as

negative, thus defining a multiclass problem as a set of binary ones. Then, aggregate the

performances.
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Performance evaluation: classi�cation

Aggregation Descripton

Micro average Global average

Macro average Actual per-label average

Weighted

average

Macro average, but introduces weights given by proportion of size

of the label set
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Performance evaluation: classi�cation
Among all possible model solving binary

classification tasks, some do not compute

a binary label per se, rather a score or

probability  of a label, e.g., the positive

label. To go from score to label we need to

threshold such probability, and different

thresholds  induce different labellings,

and thus different confusion matrices and

probabilities of true or false positives.

A ROC curve, numbers indicating the different thresholds

that have generated them. , indicate the rates

of true positives and false positives.
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Performance evaluation: classi�cation

A ROC curve, numbers indicating the different thresholds

that have generated them. , indicate the rates

of true positives and false positives.

Points of interest

•  Model with no true positives

•  Model with no false positives:

the best model

•  Same probability of true and

false positives: random models

•  Models with flipped labels
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Performance evaluation: classi�cation
A ROC curve also allows us to compute a

single scalar aggregating the

performances at different thresholds: the

Area Under the ROC Curve (AUC).

A ROC curve, numbers indicating the different thresholds

that have generated them. , indicate the rates

of true positives and false positives. The Area Under the

ROC Curve (AUC) in beige.
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Performance evaluation: regression
Unlike classification, regression estimates on a continuous set, thus we can't leverage

the same measures.

Performance Formulation Description

Mean Squared Error Mean error per instance

Max Squared Error Maximum error

R squared Error over default model
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Performance evaluation: regression
. The two terms of  are

• the model error 

• the variance of the data . This would also be the error of a simple model

predicting the average

Thus, their ratio compares the error of a model with the one of a default model. The

lower such ratio, the better the model, and the closer to  the  score. Viceversa, the

higher the ratio, the lower the  score.
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Supervised learning
We now know...

• given a dataset, how to define what

task it describes

• given a dataset, how to partition it

into separate blocks to ease

generalization in learning

• given a block, what role it serves,

and why

• given a task, how to compare

different models, choosing the

better one(s)

The space of parameters : we need to search this space to

find a suitable model.

The last missing ingredient: defining and

optimizing models.
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