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ABSTRACT
The recent years have witnessed the rise of accurate but obscure
decision systems which hide the logic of their internal decision
processes to the users. The lack of explanations for the decisions
of black box systems is a key ethical issue, and a limitation to the
adoption of machine learning components in socially sensitive and
safety-critical contexts. In this paper we focus on the problem of
black box outcome explanation, i.e., explaining the reasons of the
decision taken on a specific instance. We propose LORE, an agnos-
tic method able to provide interpretable and faithful explanations.
LORE first leans a local interpretable predictor on a synthetic neigh-
borhood generated by a genetic algorithm. Then it derives from the
logic of the local interpretable predictor a meaningful explanation
consisting of: a decision rule, which explains the reasons of the
decision; and a set of counterfactual rules, suggesting the changes
in the instance’s features that lead to a different outcome. Wide
experiments show that LORE outperforms existing methods and
baselines both in the quality of explanations and in the accuracy in
mimicking the black box.
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• Information systems → Decision support systems; Data
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1 INTRODUCTION
Popular magazines and newspapers are full of commentaries about
algorithms taking critical decisions that heavily impact on our life
and society, from granting a loan to finding a job or driving our car.
The worry is not only due to the increasing automation of decision
making, but mostly to the fact that the algorithms are opaque and
their logic unexplained. Themain cause for this lack of transparency
is that often the algorithm itself has not been directly coded by a hu-
man but it has been generated from data through machine learning.
Machine learning allows building predictive models which map
user features into a class (outcome or decision), obtained by general-
izing from a training set of examples. This learning process is made
possible by the digital records of past decisions and classification
outcomes, typically provided by human experts and decision mak-
ers. The process of inferring a classification model from examples
cannot be controlled step by step because the size of training data
and the complexity of the learned model are too big for humans.
This is how we got trapped in a paradoxical situation in which,

on one side, the legislator defines new regulations requiring that
automated decisions should be explained to affected people1 while,
on the other side, even more sophisticated and obscure algorithms
for decision making are generated [16, 37].

The lack of transparency in algorithms generated through ma-
chine learning grants to them the power to perpetuate or reinforce
forms of injustice by learning bad habits from the data. In fact, if
the training data contains a number of biased decision records, or
misleading classification examples due to data collection mistakes
or artifacts, it is likely that the resulting algorithm inherits the
biases and recommends discriminatory or simply wrong decisions2
[6, 7]. The inability of obtaining an explanation for what one con-
siders a biased decision is a profound drawback of learning from
big data, limiting social acceptance and trust on its adoption in
many sensitive contexts. Starting from [29] a rich literature has
been flourishing on discrimination discovery and avoidance. Some
of the ideas developed in that context can be reinterpreted for ad-
dressing the more general problem of explaining the logic driving
a decision taken by an obscure algorithm, which is precisely the
problem tackled in this paper.

In particular, in this paper we address the problem of explaining
the decision outcome taken by an obscure algorithm by providing
“meaningful explanations of the logic involved” when automated
decision making takes place, as prescribed by the GDPR. The de-
cision system can be obscure because based on a deep learning
approach, or because of inaccessibility of the source code, or other
reasons. We perform our research under some specific assumptions.
First, we assume that an explanation is interesting for a user if it
clarifies why a specific decision pertaining that user has been made,
i.e., we aim for local explanations, not general, global, descriptions
of how the overall system works [17]. Second, we assume that the
vehicle for offering explanations should be as close as possible to
the language of reasoning, that is logic. Thus, we are also assuming
that the user can understand elementary logic rules. Finally, we
assume that the black box decision system can be queried as many
times as necessary, to probe its decision behavior to the scope of
reconstructing its logic; this is certainly the case in a legal argumen-
tation in court, or in an industrial setting where a company wants
to stress-test a machine learning component of a manufactured
product, to minimize risk of failures and consequent industrial lia-
bility. On the other hand, we make no assumptions on the specific
algorithms used in the obscure classifier: we aim at an agnostic

1We refer here to the so-called "right to explanation" established in the European
General Data Protection Regulation (GDPR), entering into force in May 2018.
2www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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explanation method, one that works analyzing the input-output
behavior of the black box system, disregarding its internals.

We propose a solution to the black box outcome explanation
problem suitable for relational, tabular data, called LORE (for LOcal
Rule-based Explanations). Given a black box binary predictor b
and a specific instance x labeled with outcome y by b, we build a
simple, interpretable predictor by first generating a balanced set
of neighbor instances of the given instance x through an ad-hoc
genetic algorithm, and then extracting from such a set a decision
tree classifier. A local explanation is then extracted from the ob-
tained decision tree. The local explanation is a pair composed by
(i) a logic rule, corresponding to the path in the tree that explains
why x has been labeled as y by b, and (ii) a set of counterfactual
rules, explaining which conditions should be changed by x so to
invert the class y assigned by b. For example, from the compas
dataset [6, 7] we may have the following explanation: the rule
{age≤39, race=African−American, recidivist=True}→High Risk and
the counterfactuals {age>40}, {race=Native−American}.

The intuition behind our method, common to other approaches,
such as LIME [30], and Anchor [31] is that the decision boundary for
the black box can be arbitrarily complex over the whole data space,
but in the neighborhood of a data point there is a high chance that
the decision boundary is clear and simple, hence amenable to be
captured by an interpretable model. The novelty of our method lies
in (i) a focused procedure, based on genetic algorithm, to explore
the decision boundary in the neighborhood of the data point, which
produces a high-quality training data to learn the local decision
tree, and (ii) a high expressiveness of the proposed local explana-
tions, which surpasses state-of-the-art methods providing not only
succinct evidence why a data point has been assigned a specific
class, but also counterfactuals suggesting what should be different
in the vicinity of the data point to reverse the predicted outcome.
We propose extensive experiments to assess both quantitatively
and qualitatively the accuracy of our explanation method.

In the rest of this paper, after describing the state of the art in
the field of explanation of black box decision models (Section 2), we
offer a formalization of the problem by defining the notions of black
box outcome explanation, explanation through interpretable models,
and local explanation (Section 3). We then define our method LORE
in Section 4. Section 5 is devoted to the experiments, the set up of
which requires the definition of appropriate validation measures.
We critically compare local versus global explanations, rule-based
versus linear explanations, different types of rule-based explana-
tions with respect to the state of the art, and discuss the advantages
of genetic algorithms for neighborhood generation. Conclusions
and future research directions are discussed in Section 6.

2 RELATEDWORK
Recently, the research of methods for explaining black box deci-
sion systems has caught much attention [17]. A large number of
papers propose approaches for understanding the global logic of
the black box by providing an interpretable classifier able to mimic
the obscure decision system. Generally, these methods are designed
for explaining specific black box models, i.e., they are not black
box agnostic. Decision trees have been adopted to globally explain
neural networks [9, 22] and tree ensembles [18, 34]. Classification

rules have been widely used to explain neural networks [2, 3, 21]
but also to understand the global behavior of SVMs [15, 27]. Only
few methods for global explanation are agnostic with respect to the
black box [19, 24]. In the cases in which the training set is available,
classification rules are also widely used to avoid building black
boxes by directly designing a transparent classifier [17] which is
locally or globally interpretable on its own [23, 25, 39].

Other approaches, more related to the one we propose, address
the problem of explaining the local behavior of a black box [17].
In other words, they provide an explanation for the decision as-
signed to a specific instance. In this context there are two kinds
of approaches: the model-dependent approaches and the agnostic
ones. In the first category most of the papers aim at explaining
neural networks and base their explanation on saliency masks, i.e.,
a subset of the instance that explains what is mainly responsible
for the prediction [42, 43]. Examples of salient mask are parts of an
image, or words or sentences in a text. On the other hand, agnostic
approaches provide explanations for any type of black box. In [30]
the authors present LIME, which starts from instances randomly
generated in the neighborhood of the instance to be explained. The
method infers from them linear models as comprehensible local
predictors. The importance of a feature in the linear model repre-
sents the explanation finally provided to the user. As a limitation
of the approach, a random generation of the neighborhood does
not take into account density of black box outcomes in the neigh-
borhood instances. Hence, the linear classifiers inferred from them
may not correctly characterize outcome values as a function of the
predictive features. We will instead use a genetic algorithm that
exploits the black box for instance generation.

Extensions of LIME using decision rules (called anchors) and pro-
gram expression trees are presented in [31] and [33] respectively.
[31] uses a bandit algorithm that randomly constructs the anchors
with the highest coverage and respecting a precision threshold.
[33] adopts a simulated annealing approach that randomly grows,
shrinks, or replaces nodes in an expression tree. The neighborhood
generation process adopted is the same as in LIME. Another crucial
weak point of those approaches, is the need for user-specified pa-
rameters for desired explanations: the number of features [30], the
level of precision, the maximum expression tree depth [31]. Our
approach is instead parameter-free.

Concerning the counterfactual part of our notion of explanation,
[38] computes a counterfactual for an instance x by solving an
optimization problem over the space of instances. The solution is
an instance x ′ close to x but with different outcome assigned by
the black box3. Our approach provides a more abstract notion of
counterfactuals, consisting of logic rules rather than flips of feature
values. Thus, the user is given not only a specific example of how
to obtain actionable recourse (e.g., how to improve application
for getting a benefit), but also an abstract characterization of its
neighboorhood instances with reversed black box outcome.

To the best of our knowledge, in the literature there is no work
proposing a black box agnostic method for local decision explana-
tion based on both decision and counterfactual rules.

3If instead of a black box, we are given a machine learning model, this problem is
known as the inverse classification problem [1].
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3 PROBLEM AND EXPLANATIONS
Let us start recalling basic notation on classification of tabular data.
Afterwards, we define the black box outcome explanation problem,
and the notion of explanation for which we propose a solution.

Classification, black boxes, and interpretable predictors. A pre-
dictor or classifier, is a function b : X(m) → Y which maps data
instances (tuples) x from a feature space X(m) withm input fea-
tures to a decision y in a target space Y. We write b(x) = y to
denote the decision y predicted by b, and b(X ) = Y as a shorthand
for {b(x) | x ∈ X } = Y . We restrict here to binary decisions. An
instance x consists of a set ofm attribute-value pairs (ai ,vi ), where
ai is a feature (or attribute) and vi is a value from the domain of ai .
The domain of a feature can be continuous or categorical. A predic-
tor can be a machine learning model, a domain-expert rule-based
system, or any combination of algorithmic and human knowledge
processing. We assume that a predictor is available as a software
function that can be queried at will. In the following, we denote
by b a black box predictor, whose internals are either unknown to
the observer or they are known but uninterpretable by humans.
Examples include neural networks, SVMs, ensemble classifiers, or a
composition of data mining, legacy software, and hard-coded expert
systems. Instead, we denote with c an interpretable predictor, whose
internal processing yielding a decision c(x) = y can be given a sym-
bolic interpretation understandable by a human. Examples of such
predictors include rule-based classifiers, decision trees, decision
sets, and rational functions.

Black Box Outcome Explanation. Given a black box predictor
b and an instance x , the black box outcome explanation problem
consists in providing an explanation e for the decision b(x) = y.
We approach the problem by learning an interpretable predictor
c that reproduces and accurately mimes the local behavior of the
black box. An explanation of the decision is then derived from
c . By local, we mean focusing on the behavior of the black box
in the neighborhood of the specific instance x , without aiming
at providing a single description of the logic of the black box for
all possible instances. The neighborhood of x is not given, but
rather it has to be generated as part of the explanation process.
However, we assume that some knowledge is available about the
characteristics of the feature space X(m), in particular the ranges
of admissible values for the domains of features and, possibly, the
(empirical) distribution of features. Nothing is instead assumed
about the process of constructing the black box b. Let us formalize
the problem, and the approach based on interpretable models.

Definition 3.1 (Black Box Outcome Explanation). Let b be a black
box, and x an instance whose decision b(x) has to be explained.
The black box outcome explanation problem consists in finding an
explanation e ∈ E belonging to a human-interpretable domain E.

Definition 3.2 (Explanation Through Interpretable Models). Let
c = ζ (b,x) be an interpretable predictor derived from the black
box b and the instance x using some process ζ (·, ·). An explanation
e ∈ E is obtained through c , if e = ε(c,x) for some explanation logic
ε(·, ·) which reasons over c and x .

One point is still missing: which is a comprehensible domain E
of explanations? We will define an explanation e as a pair of objects:

e = ⟨r = p → y,Φ⟩

The first component r = p → y is a decision rule describing the
reason for the decision value y = c(x) The second component Φ
is a set of counterfactual rules, namely the minimal number of
changes in the feature values of x that would reverse the deci-
sion of the predictor. Let us consider as an example the follow-
ing explanation for a loan request for user x = {(age=22), (job =
none), (amount=10k), (car=no):

e = ⟨r = {age≤25, job=none, amount>5k}→deny,

Φ = {({age>25, amount≤5k}→grant),
({job=clerk, car=yes}→grant)}⟩

Here, the decision deny is due to the age lower than 25, the ab-
sence of job and an amount greater than 5k (see component r ). For
changing the decision instead it is required either an age higher
than 25 and a smaller amount, or owning a clerk job and a car (see
component Φ). Details are provided in the rest of the section.

In a decision rule (simply, a rule) r of the form p → y, the
decision y is the consequence of the rule, while the premise p is
a boolean condition on feature values. We assume that p is the
conjunction of split conditions sc of the form a ∈ [v1,v2], where
a is a feature and v1,v2 are values in the domain of a extended
with4 ±∞. An instance x satisfies r , or r covers x , if the boolean
condition p evaluates to true for x , i.e., if sc(x) is true for every
sc ∈ p. For example, the rule {age≤25, job=none}→deny is sat-
isfied by x0 = {(age=22), (job=none)} and not satisfied by x1 =
{(age=22), (job=clerk)}. We say that r is consistent with c , if c(x) = y
for every instance x that satisfies r . Consistency means that the
rule specifies some conditions for which the predictor makes a
specific decision. When the instance x for which we have to explain
the decision satisfies p, the rule p → y represents a motivation for
taking a decision value, i.e., p locally explains why b returned y.

Consider now a set δ of split conditions. We denote the update of
p by δ as p[δ ] = δ ∪{(a ∈ [v1,v2]) ∈ p | �[w1,w2], (a ∈ [w1,w2]) ∈
δ }. Intuitively, p[δ ] is the logical condition p with ranges for at-
tributes overwritten as stated inδ , e.g. {age≤25, job=none}[age>25]
is {age > 25, job=none}. A counterfactual rule for p is a rule of the
form p[δ ] → ŷ, for ŷ , y. We call δ a counterfactual. Consistency is
meaningful also for counterfactual rules, meaning that the rule is an
instance of the decision logic of c . A counterfactual δ describeswhat
features to change and how to change them to get an outcome differ-
ent fromy. Since c predicts eithery or ŷ, if such changes are applied
to the given instance x , the predictor c will return a different deci-
sion. Continuing the example before, changing the age feature of x0
to any value greater than 25 will change the predicted outcome of c
from deny to grant. An expected property of a consistent counter-
factual rulep[δ ] → ŷ is that it should beminimal w.r.t. x . Minimality

4 Using ±∞ we can model with a single notation typical univariate split conditions,
such as equality (a = v as a ∈ [v, v]), upper bounds (a ≤ v as a ∈ [−∞, v]), strict
lower bounds (a > v as a ∈ [v + ϵ, ∞] for a sufficiently small ϵ ). However, since
our method is parametric to a decision tree induction algorithm, split conditions can
also be multivariate, e..g, a ≤ b + v for a, b features (as in oblique decision trees).
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Algorithm 1: LORE(x ,b)
Input :x - instance to explain, b - black box, N - # of neighbors
Output :e - explanation of x

1 G ← 10; pc ← 0.5; pm← 0.2; // init. parameters

2 Z= ← GeneticNeigh(x, fitnessx=, b, N /2, G, pc, pm) // generate neigh.

3 Z, ← GeneticNeigh(x, fitnessx,, b, N /2, G, pc, pm) // generate neigh.

4 Z ← Z= ∪ Z,; // merge neighborhoods

5 c ← BuildTree(Z ); // build decision tree

6 r = (p→y) ← ExtractRule(c, x ); // extract decision rule

7 Φ← ExtractCounterfactuals(c, r, x ); // extract counterfactuals

8 return e = ⟨r, Φ⟩;

is measured5 w.r.t. the number of split conditions in p[δ ] not satis-
fied by x . Formally, we define nf (p[δ ],x) = |{sc ∈ p[δ ] | ¬sc(x)}|
(where nf (·, ·) stands for the number of falsified split conditions),
and, when clear from the context, we simply write nf . For exam-
ple, {age < 25, job=clerk} → grant is a counterfactual with two
conditions falsified by x0. It is not minimal if the counterfactual
{age>25, job=none} → ŷ, with only one falsified condition, is con-
sistent for c . In summary, a counterfactual rule p[δ ] → ŷ is a
(minimal) motivation for reversing a decision value.

We are now in the position to formally introduce the notion of
explanation that we are able to provide.

Definition 3.3 (Local Explanation). Let x be an instance, and
c(x) = y be the decision of c . A local explanation e = ⟨r ,Φ⟩ is
a pair of: a decision rule r = (p → y) consistent with c and satisfied
by x ; and, a set Φ = {p[δ1] → ŷ, . . . ,p[δv ] → ŷ} of counterfactual
rules for p consistent with c .

This definition completes the elements of the black box outcome
explanation problem. A solution to the problem will then consists
of: (i) computing an interpretable predictor c for a given black
box b and an instance x , i.e., defining the function ζ (·, ·) according
to Definition 3.2; (ii) deriving a local explanation from c and x ,
i.e., defining the explanation logic ε(·, ·) according to Definition 3.2.

4 PROPOSED METHOD
We propose LORE (LOcal Rule-based Explanations, Algorithm 1)
as a solution to the black box outcome explanation problem. An
interpretable predictor c is built for a given black box b and instance
x by first generating a set of N neighbor instances of x through a
genetic algorithm, and then extracting from such a set a decision
tree c . A local explanation, consisting of a single rule r and a set of
counterfactual rules Φ, is then derived from the structure of c .

4.1 Neighborhood Generation
The goal of this phase is to identify a set of instancesZ , with feature
characteristics close to the ones of x , that is able to reproduce the
local decision behavior of the black box b. Since the objective is to
learn a predictor, the neighborhood should be flexible enough to
include instances with both decision values, namely Z = Z= ∪ Z,

5Such a measure can be extended to exploit additional knowledge on the feature
domains in order not to generate invalid or unrealistic rules. E.g., the split condition
age ≤ 25 appears closer than age > 30 for an instance with age = 26. However, it is
not actionable: an individual cannot lower her age, or change her race or gender.

Algorithm 2: GeneticNeigh(x ,fitness,b,N ,G, pc, pm)
Input :x - instance to explain, b - black box, fitness - fitness

function, N - population size, G - # of generations, pc -
crossover probability, pm - mutation probability

Output :Z - neighbors of x

1 P0 ← {x |∀1 . . . N }; i ← 0; // population init.

2 evaluate(P0, fitness, b); // evaluate population

3 while i < G do
4 Pi+1 ← select(Pi ); // select sub-population

5 P ′i+1 ← crossover(Pi+1, pc); // mix records

6 P ′′i+1 ← mutate(P ′i+1, pm); // perform mutations

7 evaluate(P ′′i+1, fitness, b); // evaluate population

8 Pi+1 = P ′′i+1; i ← i + 1 // update population

9 end
10 Z ← Pi return Z ;

where instances z ∈ Z= are such that b(z) = b(x), and instances
z ∈ Z, are such that b(z) , b(x). In Algorithm 1, we extract
balanced subsets Z= and Z, (lines 2–3), and then put Z = Z= ∪ Z,
(line 4). This task differs from approaches to instance selection [28],
based on genetic algorithms [36] (also specialized for decision trees
[40]), in that their objective is to select a subset of instances from
an available training set. In our case, instead we cannot assume
that the training set used to train b is available, or not even that b
is a supervised machine learning predictor for which a training set
exists. Our task is instead similar to instance generation in the field
of active learning [14], also including evolutionary approaches [10].
We adopt an approach based on a genetic algorithmwhich generates
z ∈ Z= ∪ Z, by maximizing the following fitness functions:

fitnessx=(z) = Ib(x )=b(z) + (1 − d(x , z)) − Ix=z
fitnessx,(z) = Ib(x ),b(z) + (1 − d(x , z)) − Ix=z

where d : X(m) → [0, 1] is a distance function, Itrue = 1, and
Ifalse = 0. The first fitness function looks for instances z similar to
x (term 1 − d(x , z)), but not equal to x (term Ix=z ) for which the
black box b produces the same outcome as x (term Ib(x )=b(z)). The
second one leads to the generation of instances z similar to x , but
not equal to it, for which b returns a different decision. Intuitively,
for an instance z0 such that b(x) , b(z0) and x , z0, it turns
out fitnessx=(z0) < 1. For any instance z0 such that b(x) = b(z0),
instead, we have fitnessx=(z0) ≥ 1. Finally, fitnessx=(x) = 1. Thus,
maximization offitnessx=(·) occurs necessarily for instances different
from x and whose prediction is equal to b(x).

Like neural networks, genetic algorithms [20] are based on the
biological metaphor of evolution. They have three distinct aspects.
(i) The potential solutions of the problem are encoded into repre-
sentations that support the variation and selection operations. In
our case these representations, generally called chromosomes, cor-
respond to instances in the feature spaceXm . (ii) A fitness function
evaluates which chromosomes are the “best life forms”, that is, most
appropriate for the result. These are then favored in survival and
reproduction, thus shaping the next generation according to the
fitness function. In our case, these instances correspond to those
similar to x , according to distanced(·, ·), andwith the same/different
outcome returned by the black box b depending on the fitness func-
tion fitnessx= or fitness

x
,. (iii)Mating (called crossover) and mutation

4



parent 1 25 clerk 10k yes
parent 2 30 other 5k no

↓
children 1 25 other 5k yes
children 2 30 clerk 10k no

Figure 1: Crossover.

parent 25 clerk 10k yes
↓ ↓

children 27 clerk 7k yes

Figure 2: Mutation

produce a new generation of chromosomes by recombining features
of their parents. The final generation of chromosomes, according
to a stopping criterion, is the one that best fit the solution.

Algorithm 2 generates the neighborhoods Z= and Z, of x by
instantiating the evolutionary approach of [4]. Using the termi-
nology of [10], it is an instance of generational genetic algorithms
for evolutionary prototype generation. However, prototypes are
a condensed subset of a training set that enable optimization in
predictor learning. We aim instead at generating new instances that
separate well the decision boundary of the black box b. The usage
of classifiers within fitness functions of genetic algorithms can be
found in [5, 8, 12, 41]. However, the classifier they use is always
the one for which the population must be selected or generated for
and not another one (the black box) like in our case. Algorithm 2
first initializes the population P0 with N copies of the instance x to
explain. Then it enters the evolution loop that begins by selection
of the Pi+1 population having the highest fitness score. After that,
the crossover operator is applied on a proportion of Pi+1 according
to the pc probability, the resulting and the untouched individuals
are placed in P ′i+1. We use a two-point crossover which selects two
parents and two crossover features at random, and then swap the
crossover feature values of the parents (see Figure 1). Thereafter,
a proportion of P ′i+1, determined by pm, is mutated and placed in
P ′′i+1. The unmutated individuals are also added to P ′′i+1. Mutation
consists of replacing features values at random according to the
empirical distribution6 of a feature (see Figure 2). Individuals in
P ′′i+1 are evaluated according to the fitness function, and the evo-
lution loop continues until G generations are completed. Finally,
the best individuals according to the fitness function are returned.
Algorithm 2 is run twice, once using the fitness function fitnessx=
to derive neighborhood instances Z= with the same decision as x ,
and once using fitnessx, to derive neighborhood instances Z, with
different decision as x . Finally, we set Z = Z= ∪ Z,.

Figure 3 shows an example of neighborhood generation for a
black box consisting of a random forest model and a bi-dimensional
feature space. The figure contrasts uniform random generation
around a specific instance x (starred) to our genetic approach. The
latter yields a neighborhood that is denser in the boundary region
of the predictor. The density of generated instances will be a key
factor in extracting local (interpretable) predictors.

Distance Function. A key element in the definition of the fitness
functions is the distance d(x , z). We account for the presence of
mixed types of features by a weighted sum of simple matching
coefficient for categorical features, and of the normalized Euclidean
distance7 for continuous features. Formally, assuming h categorical
features andm − h continuous ones, we use:

d(x , z) = h

m
· SimpleMatch(x , z) + m − h

m
· NormEuclid(x , z).

6In experiments, we derive such a distribution from the test set of instances to explain.
7reference.wolfram.com/language/ref/NormalizedSquaredEuclideanDistance.html

Figure 3: Random forest black box: purple vs green decision.
Starred instance x . (Top) Uniformly random (left) and ge-
netic generation (right). (Bottom) Density of random (left)
and genetic (right) generation. (Best view in color).

Our approach is parametric to d(·, ·), and it can readily be applied to
improved heterogeneous distance functions [26]. Empirical results
with different distance functions are reported in Section 5.3.

4.2 Local Rule-Based Classifier and
Explanation Extraction

Given the neighborhood Z of x , the second step is to build an
interpretable predictor c trained on the instances z ∈ Z labeled
with the black box decision b(z). Such a predictor is intended to
mimic the behavior of b locally in the Z neighborhood. Also, c
must be interpretable, so that an explanation for x (decision rule
and counterfactuals) can be extracted from it. The LORE approach
considers decision tree classifiers due to the following reasons: (i)
decision rules can naturally be derived from a root-leaf path in a
decision tree; and, (ii) counterfactuals can be extracted by symbolic
reasoning over a decision tree. For a decision tree c , we derive an
explanation e = ⟨r ,Φ⟩ as follows. The decision rule r = (p → y) is
formed by including in p the split conditions on the path from the
root to the leaf node that is satisfied by the instance x , and setting
y = c(x). By construction, the rule r is consistent with c and satisfied
by x . Consider now the counterfactual rules in Φ. Algorithm 3 looks
for all paths in the decision tree c leading to a decision ŷ , y. Fix
one of such paths, and let q be the conjunction of split conditions in
it. Again by construction, q → ŷ is a counterfactual rule consistent
with c . Notice that the counterfactual δ for which q = p[δ ] has
not to be explicitly computed8 – this is a benefit of using decision
trees. Among all such q’s, only the ones with minimum number

8However, it can be done as follows. Consider the path from the leaf of p to the leaf
of q . When moving from a child to a father node, we retract the split condition. E.g.,
a ≤ v2 is retracted from {a ∈ [v1, v2]} by adding a ∈ [v1, +∞] to δ . When moving
from a father node to a child, we add the split condition to δ .
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Algorithm 3: ExtractCounterfactuals(c, r ,x)
Input :c - decision tree, r - rule (p → y), x - instance to explain
Output :Φ - set of counterfactual rules for p

1 Q ← GetPathsWithDifferentLabel(c, y); // get paths with label ŷ , y

2 Φ← ∅; min← +∞; // init. counterfactual set

3 for q ∈ Q do
4 qlen← nf (q, x ) = | {sc ∈ q | ¬sc(x )} |
5 if qlen < min then Φ← {q → ŷ }; min← qlen;
6 else if qlen = min then Φ← Φ ∪ {q → ŷ };
7 end
8 return Φ;

age ≤ 25

job

income ≤ 900

deny grant

age ≤ 17

deny grant

income ≤ 1500

job

deny grant

grant

true false

clerk other

clerk other

Figure 4: Example decision tree.

of split conditions sc not satisfied by x (line 4 of Algorithm 3) are
kept in Φ. As an example, consider the decision tree in Figure 4, and
the instance x = {(age, 22), (job, clerk), (income, 800)} for which the
decision deny (e.g., of a loan) has to be explained. The path followed
by x is the leftmost one in the tree. The decision rule extracted
from the path is {age ≤ 25, job=clerk, income ≤ 900} → deny.
There are four paths leading to the opposite decision: q1 = {age ≤
25, job=clerk, income > 900}, q2 = {17 < age ≤ 25, job = other},
q3 = {age > 25, income ≤ 1500, job = other}, and q4 = {age >
25, income > 1500}. It turns out: nf (q1,x) = 1, nf (q2,x) = 1,
nf (q3,x) = 2, and nf (q4,x) = 2. Thus, Φ = {q1→deny,q2→deny}.

As a further output, LORE computes a counterfactual instance
starting from a counterfactual rule q → ŷ and x . Among all pos-
sible instances that satisfy q, we choose the one that minimally
changes attributes from x according to q. This is done by look-
ing at the split conditions falsified by x : {sc ∈ q | ¬sc(x)}, and
modifying the lower/upper bound in sc that is closer to the value
in x . As an example, for the above path q1, the counterfactual in-
stance of x is {(age, 22), (job, clerk), (income, 900+ ϵ)}, and for q2 is
{(age, 22), (job, other), (income, 800)}.

5 EXPERIMENTS
LORE has been developed in Python9, using, for the genetic neigh-
borhood generation, the deap library [13], and for decision tree
induction (the interpretable predictor), the yadt system [32], which
is a C4.5 implementation with multi-way splits of categorical at-
tributes. After presenting the experimental setup, we report next:
(i) some analyses on the effect of the genetic algorithm parameters
for the neighborhood generation; (ii) evidence that the local ge-
netic neighborhood is more effective than a global approach; (iii) a
qualitative and quantitative comparison with naïve baselines and
state of the art competitors.

9The source code and datasets will be available at anonimized url. The experiments
were performed on Ubuntu 16.04.1 LTS 64 bit, 32 GB RAM, 3.30GHz Intel Core i7

5.1 Experimental Setup
We ran experiments on three real-world tabular datasets: adult, com-
pas and german10. In each of them, an instance represents attributes
of an individual person. All datasets includes both categorical and
continuous features.

The adult dataset from UCI Machine Learning Repository, in-
cludes 48, 842 instances with demographic information like age,
workclass, marital-status, race, capital-loss, capital-gain etc. The
income divides the population into two classes “<=50K” and “>50K”.

The compas dataset from ProPublica contains the features used
by the COMPAS algorithm for scoring defendants and their risk
(Low, Medium and High), for over 10, 000 individuals. We consid-
ered two classes “Low-Medium” and “High” risk, and we use the
following features: age, sex, race, priors_count, days_b_scree
ning_arrest, length_of_stay, c_charge_degree, is_recid.

In the german dataset from UCI Machine Learning Repository
each person of the 1, 000 entries is classified as a “good” or “bad”
creditor according to attributes like age, sex, checking_account,
credit_amount, duration, purpose, etc.

We experimented the following predictors as black boxes: sup-
port vector machines with RBF kernel (SVM), random forests with
100 trees (RF), and multi-layer neural networks with ‘lbfgs’ solver
(NN). Implementations of the predictors are from the scikit-learn
library. Unless differently stated, default parameters were used for
both the black boxes and the libraries of LORE. Missing values
were replaced by the mean for continuous features and by the mode
for categorical ones.

Each dataset was randomly split into train (80% instances), and
test (20% instances). The former is used to train black box predictors.
The latter, denoted by X , is the set of instances for which the black
box decision have to be explained. In the following, for some fixed
set of instances, we denote by Y the set of decisions provided by
the interpretable predictor c and by Ŷ the decisions provided by
the black box b on the same set.

We consider the following properties in evaluating the mimic
performances of the decision tree c inferred by LORE and of the
explanations returned by it against the black box classifier b:

• fidelity(Y , Ŷ ) ∈ [0, 1]. It compares the predictions of c and
of the black box b on the instances Z used to train c [11]. It
answer the question: how good is c at mimicking b?
• l-fidelity(Y , Ŷ ) ∈ [0, 1]. It compares the predictions of c and
b on the instances Zx covered by the decision rule in a local
(hence “l-”) explanation for x . It answers the question: how
good is the decision rule at mimicking b?
• cl-fidelity(Y , Ŷ ) ∈ [0, 1]. It compares the predictions of c
and b on the instances Zx covered by the counterfactual
rules in a local explanation for x .
• hit(y, ŷ) ∈ {0, 1}. It compares the predictions of c and b on
the instance x under analysis. It returns 1 if y = c(x) is equal
to ŷ = b(x), and 0 otherwise.
• c-hit(y, ŷ) ∈ {0, 1}. It compares the predictions of c and b
on a counterfactual instance of x built from counterfactual
rules in a local explanation of x .

10https://archive.ics.uci.edu/ml/datasets/adult, https://github.com/propublica/
compas-analysis, https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
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Figure 5: Impact of the number of generationsG and of pop-
ulation size N parameters of the genetic neighborhood gen-
eration. Bottom plots also report elapsed running times.

Distance hit fidelity l-fidelity |c | |p | nf

cosine .938±.24 .976±.11 .936±.24 4.4±2.5 2.1±1.8 1.9±1.0
minmax .958±.19 .965±.15 .956±.17 4.5±2.7 2.3±2.3 1.8±0.9
neuclid .966±.17 .967±.15 .963±.19 4.3±2.6 2.2±2.1 1.8±1.0

Table 1: Comparison of distance measures.

We measure the first three of them by the f1-measure [35]. Aggre-
gated values of f1 and hit/c-hit are reported by averaging them over
the the set of test instances x ∈ X .

5.2 Analysis of Neighborhood Generation
We analyze here the impact of the number of generationsG and size
of neighborhood N on the performances of instance generation and
on the size complexity of the LORE output. We report only results
for german dataset, since we get similar results for the other ones.
The other parameters of Algorithm 2 (probabilities of crossover
pc and mutation pm) are set with the default values of 0.5 and 0.2
respectively [4]. Figure 5 shows in the top plots the value of fitness
functions and measures of sizes of local classifier c (decision tree
depth), of decision rule (size of the antecedent p), and of counterfac-
tual rules (number nf of falsified split conditions). The bottom plots
show fidelity (f1-measure) and hit (rate) as well as running times
of neighborhood generation. Fixed N = 1000, after 10 generations,
the fitness function converges around the optimal value (top left),
fidelity is almost maximized (bottom left), and also the measures of
sizes (top right) become stable and small. We then set G=10 in all
other experiments. Figure 5-(bottom right) shows instead that the
size N of the neighborhood instances to be generated is relevant
for the hit rate but not for fidelity. By taking into account also the
running time (right side scale of the bottom plots), a good trade-off
is obtained by setting N=1000.

5.3 Comparing Distance Functions
A key element of the neighborhood generation is the distance func-
tion used by the genetic algorithm. A legitimate question is whether
the results of the approach are affected by the choice of the dis-
tance function adopted (see Section 4.1). For instance, [38] presents
considerable differences in their output of counterfactual instance

Dataset Method hit fidelity l-fidelity tree depth

adult lore .912 ± .29 .959 ± .17 .892 ± .29 4.16 ± 0.21
global .901 ± .28 .750 ± .00 .873 ± .27 12.00 ± 0.00

compas lore .942 ± .23 .992 ± .03 .937 ± .23 4.72 ± 2.15
global .902 ± .29 .935 ± .00 .857 ± .29 12.00 ± 0.00

german lore .925 ± .26 .988 ± .07 .920 ± .26 4.95 ± 2.54
global .880 ± .32 .571 ± .00 .824 ± .31 6.00 ± 0.00

Table 2: Local vs global approach.

varying the choice of the distance in their stochastic optimization
approach. Table 1 reports basic measures contrasting the normal-
ized Euclidean distance adopted by LORE with cosine andmin-max
distance on german dataset. The table does not highlight any con-
siderable difference. This can be justified by the fact that, following
instance generation, there are phases, such as decision tree building,
that abstract instances to patterns, resulting in resilience against
variability due to the distance function adopted.

5.4 Validation of Local Explanations
We now compare our local approach with a global approach, and
discuss alternative neighborhood instance generation methods.

Local vs Global Explanations. Extracting a predictor from the
neighborhood of an instance is a winning strategy, if contrasted to
an approach that builds a single predictor from all instances in the
test set, i.e., Z = X . In particular, this means that the interpretable
predictor will be the same for all instances in the test set. Let com-
pare our approach with such a global approach. Table 2 reports the
mean and standard deviation values of hit, fidelity, fairness and tree
depth for each dataset aggregating over the results of the various
black boxes. While for hit both LORE and global obtain similar
high performances, for the other scores LORE considerably over-
takes global. In particular, the size and depth of the decision tree
of the global approach may lead to explanations (decision rules and
counterfactuals) more complex to understand than those returned
by the proposed local approach LORE.

Comparing Neighborhood Generations. After concluding that
“local is better than global", we now show that our genetic pro-
gramming approach improves over the following baselines in the
generation of neighborhoods:
• crn returns as Z the k = 100 instances from X (the test set)
that are closest to x ;
• rnd augment the output of crn with additional randomly
generated instances so that a stratified Z is obtained;
• ris starting from the output of rnd performs the instance
selection procedure11 CNN [28];
• ros starting from the output of rnd performs a random
oversampling to balance the decision outcomes in Z .

Table 3 reports the aggregated evaluation measures over the
various black boxes and datasets. LORE overtook the performance
of all the other neighbors generators. Intuitively, this means that
LORE’s genertic programming approach contributes more than
the other methods in capturing/explaining the behavior of the
black box, both for direct and counterfactual decisions. Such a
11http://contrib.scikit-learn.org/imbalanced-learn
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Figure 6: Comparison of neighborhood generations methods.

Method hit fidelity l-fidelity c-hit cl-fidelity

lore .962 ± .19 .993 ± .04 .959 ± .19 .588 ± .42 .756 ± .40
crd .924 ± .26 .855 ± .23 .894 ± .25 .349 ± .26 .583 ± .48
rnd .946 ± .22 .904 ± .15 .920 ± .22 .494 ± .24 .712 ± .40
ris .916 ± .27 .869 ± .05 .870 ± .26 .501 ± .22 .708 ± .39
ros .968 ± .17 .965 ± .03 .953 ± .17 .491 ± .22 .733 ± .34

Table 3: Comparison of neighborhood generationsmethods.

Dataset german compass adult
Black Box lore lime lore lime lore lime

RF .925 ± .2 .880 ± .3 .941 ± .2 .826 ± .4 .901 ± .3 .824 ± .4
NN .980 ± .1 1.00 ± .0 .987 ± .1 .902 ± .3 .918 ± .3 .998 ± .1
SVM 1.00 ± .0 .966 ± .1 .997 ± .1 .900 ± .3 .985 ± .1 .987 ± .1

Table 4: LORE vs LIME: hit scores.

conclusion is reinforced by Figure 6, which shows the box plots
of the distributions of fidelity, l-fidelity and cl-fidelity, and some
summary data on the size of decision trees (|c |), of decision rule
premises (|p |), and of the number of falsified split conditions in
counterfactual rules (nf ). LORE has the highest mean and median
f1-measures (highmimic of the black box), the smallest interquartile
ranges (low variability of results), and the lowest complexity sizes.
Only for cl-fidelity LORE has the largest variability, but a median
value that is higher than the 90th percentile of the competitors.

5.5 Comparison with the State-of-Art
In this section we compare our approach with the state of the art.

5.5.1 Rules vs Linear Regression for Explanations. We present
first a quantitative and qualitative comparison with the linear expla-
nations of LIME12 [30]. A first crucial difference is that in LIME, the
number of features composing an explanation is an input parameter
that must be specified by the user. LORE, instead, automatically
provides the user with an explanation including only the features
useful to justify the black box decision. This is a clear improvement
over LIME. In experiments, unless otherwise stated, we vary the
number of features of LIME explanations from two to ten and we
consider the performance with the highest score.

Quantitative Comparison. Table 4 reports the mean and standard
deviation of hit for each black box predictor and dataset. More-
over, Figure 7 details the box plots of fidelity (top) and l-fidelity
(bottom). Results show that LORE definitely outperforms LIME un-
der various viewpoints. Regarding the hit score, even when LORE
is worse than LIME, it has a score close to 1. For RF black box,
instead, LIME performs considerably worse than LORE. The box
12https://github.com/marcotcr/lime

plots show that, in addition, LORE has better (local) fidelity scores
and is more robust than LIME, which, on the contrary, exhibits
very high variability in the neighborhood of the instance to explain
(i.e., for l-fidelity). This can be tracked back to the genetic instance
generation of LORE. Figure 8 reports a multidimensional scaling
of the neighborhood of a sample instance x generated by the two
approaches. LORE computes a dense and compact neighborhood.
The instances generated by LIME, instead, can be very distant from
each other and always with a low density around x .

Qualitative Comparison. We claim that the explanations provided
by LORE are more abstract and comprehensible than the ones of
LIME. Consider the example in Figure 9. The top part reports a
LORE local explanation for an instance x from the german dataset.
The central part is a LIME explanation. Weights are associated to
the categorical values in the instance x to explain, and to continu-
ous upper/lower bounds where the bounding values are taken from
x . Each weight tells the user how much the decision would have
changed for different (resp., smaller/greater) values of a specific
categorical (resp., continuous) feature. In the example, the weight
0.11 has the following meaning [30]: if the duration in months had
been higher than the value it is for x , the prediction would have
been, on average, 0.11 less “0” (or 0.11 more “1”). A not very easy
logic to follow when compared to a single decision rule which char-
acterize the contextual conditions for the decision of the black box.
Another major advantage of our notion of explanation consists of
the set of counterfactual rules. LIME provides a rough indication of
where to look for a different decision: different categorical values
or lower/higher continuous values of some feature. LORE’s coun-
terfactual rules provide high-level and minimal-change contexts
for reversing the outcome prediction of the black box.

5.5.2 Rules vs Anchors for Explanations. A recent extension of
LIME is the Anchor13 approach [31]. It provides explanations in
the form of decision rules, called anchors. Rules are computed by
incrementally adding equality conditions in the premise, while an
estimate of the rule precision is above a minimum threshold (set
to 95%). Such an estimation relies on neighborhood generation
through pure-exploration multi-armed bandit.

On a qualitative level of comparison, the Anchor approach re-
quires the apriori discretization of continuous features, while the
decision rule of LORE benefits of the capabilities of decision tree to
split continuous features. Contrast, for instance, the example rules
in Figure 9. Moreover, the approach of Anchor does not clearly
extend to compute counterfactuals.

Let us compare now the two approaches on a quantitative level.
Figure 10 reports the average precision of decision rules, where the

13https://github.com/marcotcr/anchor
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Figure 7: LORE vs LIME: box plots of fidelity and l-fidelity. Numbers on top are the mean values.

Figure 8: Neighborhoods of LORE (left) and LIME (right).

- LORE
r = ({credit_amount > 836, housing = own, other_debtors =

none, credit_history = critical account}→ decision = 0)
Φ = { ({credit_amount ≤ 836, housing = own, other_debtors =

none, credit_history = critical account}→ decision = 1),
({credit_amount > 836, housing = own, other_debtors =

none, credit_history = all paid back}→ decision = 1) }

- LIME

- Anchor
a = ({credit_history = critical account,

duration_in_month ∈ [0, 18.00]}→ decision = 0)

Figure 9: Explanations of LORE, LIME and Anchor.

precision of a rule is the fraction of instances in the neighborhood
set that are correctly classified by the rule. Although LORE does
not require to set the level of precision as parameter, the rule pre-
cision is on average high and very similar to that one obtained by
Anchor, which is by construction at least 95%. This can be attrib-
uted to the performances of the decision tree induction algorithm,
and of the instance generation procedure which produces balanced

Dataset german compass adult
Black box lore anchor lore anchor lore anchor

RF .76 ± .15 .61 ± .15 .75 ± .12 .73 ± .14 .70 ± .15 .69 ± .15
NN .69 ± .18 .53 ± .21 .83 ± .13 .79 ± .16 .81 ± .12 .65 ± .16
SVM .82 ± .16 .32 ± .16 .71 ± .16 .70 ± .20 .87 ± .14 .67 ± .13

Table 5: LORE vs Anchor: Jaccard measure of stability.

neighborhoods Z− and Z+. Figure 10 also shows the average cover-
age of decision rules, where the coverage of a rule is the fraction
of instances to explain covered by the rule. As reported in [31],
large values of coverage are preferable, since this means that the
set of decision rules produced over the instances to explain can be
condensed/restricted to a subset of it. LORE shows a consistently
better coverage than Anchor. Finally, we compare the stability of
the two approaches with respect to randomness introduced in the
neighboorhood generation. We measure stability using the Jaccard
coefficient of feature sets used in the 10 decision rules computed for
a same instances in 10 runs of the system. Table 5 reports mean and
standard deviation of the Jaccard coefficient. LORE has a better
stability than Anchor for all datasets and black boxes.

6 CONCLUSION
We have proposed a local black box agnostic explanation approach
based on logic rules. LORE builds an interpretable predictor for
a given black box and instance to be explained. The local inter-
pretable predictor, a decision tree, is trained on a dense set of
artificial instances similar to the one to explain generated by a
genetic algorithm. The decision tree enables the extraction of a
local explanation, consisting of a single rule for the decision and a
set of counterfactual rules for the reversed decision. An ample ex-
perimental evaluation of the proposed approach has demonstrated
the effectiveness of the genetic neighborhood procedure that leads
LORE to outperform the proposals in the state of the art. A num-
ber of extensions and additional experiments can be mentioned as
future work. First, LORE now works tabular data. An interesting
future research direction is to make the method suitable for image
and text data, for example by applying a pre-processing step for
extracting semantic tags/concepts that may be mapped to a tabular
format. Second, another study might be focused on the possibility
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Figure 10: LORE vs Anchor: box plots of precision and coverage. Numbers on top are the mean values.

to derive a global description of the black box bottom-up by com-
posing the local explanations and minimizing the size (complexity)
of the global description. Third, research lab experiments would be
useful for evaluating the human comprehensibility of the provided
explanations. Finally, LORE explanations can be used for identify-
ing data and/or algorithmic biases. After the local explanations are
retrieved, it would be interesting to develop an approach for deriv-
ing an unbiased dataset for safely training the obscure classifier, or
to prevent the black box from introducing an algorithmic bias.
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