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Model Evaluation

. Metrics for Performance Evaluation
— How to evaluate the performance of a model?

. Methods for Performance Evaluation
— How to obtain reliable estimates?

| Methods for Model Comparison

— How to compare the relative performance
among competing models?



Model Evaluation

| Metrics for Performance Evaluation
— How to evaluate the performance of a model?

| Methods for Model Comparison

— How to compare the relative performance
among competing models?



Metrics for Performance Evaluation

0 Focus on the predictive capability of a model

— Rather than how fast it takes to classify or
build models, scalability, etc.

0 Confusion Matrix:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes | Class=No

Class=Yes a

b

Class=No C

d

a: TP (true positive)
b: FN (false negative)
c: FP (false positive)

d: TN (true negative)



Metrics for Performance Evaluation...

PREDICTED CLASS

Accuracy =

Class=Yes | Class=No
Class=Yes a b
ACTUAL TP) FN)
CLASS Class=No C d
(FP) (TN)
| Most widely-used metric:
a+d TP+TN

a+b+c+d TP+TN+FP+FN




Limitation of Accuracy

| Consider a 2-class problem
— Number of Class 0 examples = 9990
— Number of Class 1 examples = 10

| If model predicts everything to be class 0,
accuracy is 9990/10000 = 99.9 %

— Accuracy is misleading because model does
not detect any class 1 example



Cost Matrix

PREDICTED CLASS

ACTUAL
CLASS

C(ilj) Class=Yes | Class=No
Class=Yes | C(Yes|Yes) | C(No|Yes)
Class=No | C(Yes|No) | C(No|No)

C(i[j): Cost of misclassifying class j example as class i




Computing Cost of Classification

Cost | PREDICTED CLASS
Matrix
C(i])) + -
ACTUAL
+ -
CLASS 1 | 100
- 1 0
Model M, | PREDICTED CLASS Model M, | PREDICTED CLASS
+ - + -
ACTUAL ACTUAL
CLass |+ | 150 | 40 CLAss |t | 250 | 45
- 60 | 250 - 5 | 200
Accuracy = 80% Accuracy = 90%

Cost = 3910 Cost = 4255



Cost-Sensitive Measures

1P

TP+ FP
TP

TP+ FN
2rp 21P

r+p 2TP+FN+FP

Precision (p) =

Recall (1) =

F-measure (F) =

0 Precision is biased towards C(Yes|Yes) & C(Yes|No)
0 Recall is biased towards C(Yes|Yes) & C(No|Yes)
0 F-measure is biased towards all except C(No|No)

wa+wd

Weighted Accuracy =
wa+wb+wc+wd



Model Evaluation

| Metrics for Performance Evaluation
— How to evaluate the performance of a model?

| Methods for Model Comparison

— How to compare the relative performance
among competing models?



ROC (Receiver Operating Characteristic)

I Developed in 1950s for signal detection theory to analyze
noisy signals

— Characterize the trade-off between positive hits and
false alarms

I ROC curve plots TP (on the y-axis) against FP (on the x-
axis)

| Performance of each classifier represented as a point
on the ROC curve

— changing the threshold of algorithm, sample
distribution or cost matrix changes the location
of the point



ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)

- any points located at x > t is classified as positive
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ROC Curve

(TP,FP);

I (0,0): declare everything
to be negative class

I (1,1): declare everything
to be positive class

1 (0,1): ideal

| Diagonal line:
— Random guessing

— Below diagonal line:

# prediction is opposite of
the true class
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Using ROC for Model Comparison

True Positive Rate
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How to Construct an ROC curve

Instance

P(+|A)

True Class

1

0.95

+

0.93

+

0.87

0.85

0.85

0.85

0.76

0.53

OO (N|O[OW B~ |[W|DN

0.43

-
o

0.25

» Use classifier that produces
posterior probability for each
test instance P(+|A)

 Sort the instances according
to P(+|A) in decreasing order

* Apply threshold at each
unique value of P(+|A)

e Count the number of TP, FP,
TN, FN at each threshold

- TP rate, TPR = TP/(TP+FN)
+ FP rate, FPR = FP/(FP + TN)



How to construct an ROC curve
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Test of Significance

| Given two models:
— Model M1: accuracy = 85%, tested on 30 instances
— Model M2: accuracy = 75%, tested on 5000 instances

| Can we say M1 is better than M2?
— How much confidence can we place on accuracy of
M1 and M27?

— Can the difference in performance measure be
explained as a result of random fluctuations in the

test set?



Confidence Interval for Accuracy

| Prediction can be regarded as a Bernoulli trial

(binomial random experiment)
— A Bernoulli trial has 2 possible outcomes
— Possible outcomes for prediction: correct or wrong
— Probability of success is constant
— Collection of Bernoulli trials has a Binomial distribution:
¢ X ~ Bin(N, p) x: # of correct predictions, N trials, p constant prob.

¢ e.g: Toss a fair coin 50 times, how many heads would turn up?
Expected number of heads = Nxp =50 x 0.5 =25

Given x (# of correct predictions) or equivalently, acc=x/N, and
N (# of test instances)

Can we predict p (true accuracy of model)?




Confidence Interval for Accuracy

. For large test sets (N > 30), Area =/1 "¢

— acc has a normal distribution
with mean p and variance
p(1-p)/N

— the confidence interval for acc can
be derived as follows:

acc—p s ' 0 '
P(Z < <Z
( al2 \/p(l _ p)/N I—a/z) / \

=l-a Zoch Z1-0Ll2

| Confidence Interval for p:
2x Nxacc+Z' +./Z° +4xNxacc—4xN xacc’
2AN+Z,,)

p:



Confidence Interval for Accuracy

| Consider a model that produces an accuracy of
80% when evaluated on 100 test instances:
— N=100, acc =0.8

— Let1-a = 0.95 (95% confidence)

— Which is the confidence interval?

— From probability table, Z,,=1.96

N

50

100

500

1000

5000\

p(lower)

0.670

0.711

0.763

0.774

0.789

p(upper)

0.888

0.866

0.833

0.824

0.811

1-a

0.99

2.58

0.98

2.33

0.95

1.96

0.90

1.65




Comparing Performance of 2 Models

| Given two models, say M1 and M2, which is
better?

— M1 is tested on D1 (size=n1), found error rate = e,
— M2 is tested on D2 (size=n2), found error rate = e,
— Assume D1 and D2 are independent

— If n1 and n2 are sufficiently large, then

el ~ N(ILIIDGI)
82 ~ N(ﬂzaaz)

— Approximate variance of error rates:0, =

ni



Comparing Performance of 2 Models

0 To test if performance difference is statistically
significant: d =e,;— e,
— d ~ N(d;,c;) where d; is the true difference

— Since D1 and D2 are independent, their variance
adds up:

o} =0)+0, 26} +0,
_el(l-el) N e2(1—-e2)
nl n2

— |t can be shown at (1-a.) confidence level,

d=d+7Z 6

t



An Illustrative Example

0 Given: M1: n1 =30,e1=0.15
M2: n2 =5000, e2 =0.25

0d=|e2-e1]=0.1 (2-sided test to check: dt = 0 or dt <> 0)

~2_0.15(1-0.15) 0.25(1-0.25)

= =0.0043
30 5000

0 At 95% confidence level, Z,,,=1.96

d =0.100£1.96x+/0.0043 =0.100+0.128

=> Interval contains 0 => difference may not be
statistically significant
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