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Classification: Definition

| Given a collection of records (training set)

— Each record is by characterized by a tuple (x,y),
where x is the attribute set and y is the class label

+ x: attribute, predictor, independent variable, input
# y: class, response, dependent variable, output

| Task: Learn a model that maps each attribute set x into
one of the predefined class labels y

| Goal: previously unseen records should be assigned a
class as accurately as possible.
— A test set is used to determine the accuracy of the model.
Usually, the given data set is divided into training and test sets,

with training set used to build the model and test set used to
validate it.
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General Approach for Building
Classification Model

Tid Attrib1 Attrib2 Attrib3  Class Lea rni ng
1 Yes Large 125K No algorithm
2 No Medium 100K No
3 No Small 70K No
4 Yes Medium 120K No Inductlon l
5 No Large 95K Yes
6 No Medium 60K No \
7 | Yes Large 220K No Learn
8 |No Small 85K Yes Model
9 No Medium 75K No
10 | No Small 90K Yes
Training Set
Apply
Tid  Attrib1 Attrib2 Attrib3  Class MOdeI
11 No Small 55K ?
12 | Yes Medium 80K ?
13 | Yes Large 110K ? DedUCtion
14 | No Small 95K ?
15 | No Large 67K ?
Test Set
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Examples of Classification Task

Task Attribute set, x Class label, y

Categorizing | Features extracted from |spam or non-spam
email email message header
messages and content

|dentifying Features extracted from | malignant or benign
tumor cells | MRI scans cells

Cataloging | Features extracted from | Elliptical, spiral, or
galaxies telescope images iIrregular-shaped
galaxies
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Classification Techniques

0 Base Classifiers
— Decision Tree based Methods
— Rule-based Methods
— Nearest-neighbor
— Neural Networks
— Deep Learning
— Naive Bayes and Bayesian Belief Networks
— Support Vector Machines
0 Ensemble Classifiers
— Boosting, Bagging, Random Forests
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Example of a Decision Tree

Consider the problem of predicting whether a loan borrower will

repay the loan or default on the loan payments.

AN AN )
{\c”b {\db 00‘)
& & K oy :
SR & e Splitting Attributes
71\
Home Marital Annual Defaulted R
ID 4 1
Owner Status Income Borrower 2’ I
Home |
1 |Yes Single  |125K No owner \
1
2 |No Married |100K  |No Y‘e% WAO y
3 |No Single 70K No NO MarSt
4 Yes Married |120K N . . .
| © ‘ Single, Divorced w‘arned
5 No Divorced |95K Yes
6 |No Married |60K No Income NO
7 |Yes Divorced | 220K No < SOV \> 80K
8 No Single 85K Y
e - NO YES
9 No Married |75K No
10 |[No Single 90K Yes
Training Data Model: Decision Tree
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Another Example of Decision Tree

N N
0.»°{\°0 & g&"oog 2
P S P
ID Home Marital Annual Defaulted
Owner Status Income Borrower
1 Yes Single 125K No
2 [No Married |100K No
3 [No Single 70K No
4 |Yes Married |120K No
5 |No Divorced | 95K Yes
6 |No Married |60K No
7 |Yes Divorced | 220K No
8 [No Single 85K Yes
9 [No Married |75K No
10 [No Single 90K Yes
11/6/2025

MarSt

Marri:y

NO

There could be more than one tree that

Single,

\%i)rced

Home
Owner

Ye?/

NO

QO

Income

< SOV

NO

fits the same data!
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Apply Model to Test Data

Test Data

Start from the root of tree.
\ Home Marital Annual Defaulted

' Owner Status Income Borrower

No Married |[80K ?
Home
Yy Owner N\io
NO MarSt
Single,?/orced \iﬂarried
Income NO

< SOV \> 80K
NO YES
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Apply Model to Test Data

Home |

Yy

NO

Owner N\io

MarSt

e Home

Single,?/orced \iﬂarried

Income

< 80V
NO

11/6/2025

\> 80K

YES

NO

Test Data

Owner

No

Marital
Status

Married

Annual Defaulted
Income Borrower

80K ?

Introduction to Data Mining, 2"9 Edition



Apply Model to Test Data

Test Data

Home Marital Annual Defaulted

Owner Status Income Borrower

__»|No Married |80K ?
Home Pt
yy Owner N\l‘o "
NO MarSt
Single,?/orced \iﬂarried
Income NO
<80V \> 80K
NO YES
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Apply Model to Test Data

Home

Yy

NO

Owner N\l‘o

MarSt

Single,?/orced \iﬂarried

Income

< 80V
NO

11/6/2025

\> 80K

YES

NO

Test Data

Home Marital Annual Defaulted

Owner Status Income Borrower

- Married |80K ?
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Apply Model to Test Data

Test Data

Home Marital Annual Defaulted

Owner Status Income Borrower

Home P
Yy Owner N\l‘o /,,
NO MarSt .
Single,?/orced \I:/Iarried
Income NO
< 80V \> 80K
NO YES
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Apply Model to Test Data

Test Data

Home Marital Annual Defaulted

Owner Status Income Borrower

Home | ;
Yy Owner N\l‘o //,
NO MarSt
Single,?/orced warried ,// AS§‘| n”DefauIted to
0
Income NO B’

< SOV \> 80K
NO YES

11/6/2025 Introduction to Data Mining, 2"4 Edition 13



Decision Tree Classification Task

Tid Attrib1 Attrib2 Attrib3  Class
1 Yes Large 125K No
2 No Medium 100K No
3 No Small 70K No
4 Yes Medium 120K No
5 No Large 95K Yes
6 No Medium 60K No
7 Yes Large 220K No
8 No Small 85K Yes
9 No Medium 75K No
10 | No Small 90K Yes
Training Set
Tid Attrib1 Attrib2 Attrib3  Class
11 | No Small 55K ?
12 | Yes Medium 80K ?
13 | Yes Large 110K ?
14 | No Small 95K ?
15 | No Large 67K ?
Test Set
11/6/2025

Tree
Induction
algorithm

Inductipbn

Learn
Model

I\

Apply Decision
MOdeI Tree

Deduction
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Decision Tree Induction

Many Algorithms:
— Hunt's Algorithm (one of the earliest)
— CART
— ID3, C4.5
— SLIQ,SPRINT
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General Structure of Hunt's Algorithm

I H Marital A | Defaulted
0 Let D, be the set of training ID  Jome i uE e e

Owner

records that reach a node t 1 lYes |Single |125K |No
2 No Married |100K No
0 General Procedure: 3 No|Single 70K No
4 Yes Married |120K No
— If D; contains records that 5 |No Divorced | 95K Yoz
belong the same class vy;, 6 |No  |Maried 60K  |No
then tis a leaf node 7 |Yes  |Divorced 220K  |No
|abe|ed as yt 8 |No Singlle 85K Yes
9 No Married |75K No
— If D; contains records that 10 |No  |Single |90K  |Yes
belong to more than one D
t

class, use an attribute test
to split the data into
smaller subsets.

Recursively apply the
procedure to each subset. \
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Hunt’'s Algorithm

Defaulted = No

(7,3)

(a)

11/6/2025

ID Home Marital Annual Defaulted
Owner Status Income Borrower
1 |Yes Single 125K No
2 |No Married |100K No
3 |No Single 70K No
4 |Yes Married |120K No
5 [No Divorced | 95K Yes
6 |[No Married |60K No
7 |Yes Divorced |220K No
8 |No Single 85K Yes
9 [No Married |75K No
10 |No Single 90K Yes
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Hunt’'s Algorithm

Defaulted = No

(7,3)

(a)

11/6/2025

Defaulted = No

Defaulted = No

(3,0)
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(b)

(4,3)

ID Home Marital Annual Defaulted
Owner Status Income Borrower
1 |Yes Single 125K No
2 |No Married |100K No
3 |No Single 70K No
4 |Yes Married |120K No
5 [No Divorced | 95K Yes
6 |[No Married |60K No
7 |Yes Divorced |220K No
8 [No Single 85K Yes
9 [No Married |75K No
10 |No Single 90K Yes
18




Hunt’'s Algorithm

Home Marital Annual Defaulted

ID Owner Status Income Borrower

1 |Yes Single 125K No
Defaulted = No 2 |No Married [100K  |No
(7 3) Defaulted = No Defaulted = No s No Single 70K No
, (3,0) (4,3) 4 |Yes Married |120K No

(a) (b) 5 [No Divorced | 95K Yes
6 |[No Married |60K No
7 |Yes Divorced |220K No

8 [No Single 85K Yes
9 |No Married |75K No

10 |No Single 90K Yes

Defaulted = No Marital
Status

(3a0) Single, Married
Divorced
Defaulted = Yes Defaulted = No
(1,3) (3,0)

(c)
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Hunt’'s Algorithm

Defaulted = No

(7,3)

(a)

Marital
Status

Married

Defaulted = Yes

Defaulted = No

(1,3)

(c)

11/6/2025

(3,0)

ID Home Marital Annual Defaulted
Owner Status Income Borrower
1 Yes Single 125K No
2 No Married | 100K No
Defaulted = No Defaulted = No 3 No Single 70K No
(3,0) (4,3) 4 |Yes |Married |120K |No
(b) 5 |No Divorced |95K Yes
6 No Married |60K No
7 Yes Divorced | 220K No
8 [No Single 85K Yes
No 9 No Married |75K No
Defaulted = No arital 10 |No Single 90K Yes
] Status
(3’0) Single, Married
Divorced
Defaulted = No
Income (3, 0)
< 80K >= 80K
Defaulted = No Defaulted = Yes
(1,0 (0,3)
(d)
Introduction to Data Mining, 2"9 Edition 20




Design Issues of Decision Tree Induction

0 Greedy strategy:

— the number of possible decision trees can be
very large, many decision tree algorithms
employ a heuristic-based approach to guide
their search in the vast hypothesis space.

— Split the records based on an attribute test
that optimizes certain criterion.
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Tree Induction

| How should training records be split?

— Method for specifying test condition
¢ depending on attribute types

— Measure for evaluating the goodness of a test
condition

| How should the splitting procedure stop?

— Stop splitting if all the records belong to the same
class or have identical attribute values

— Early termination



11/6/2025

How to specify the attribute
test condition?

Introduction to Data Mining, 2" Edition
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Methods for Expressing Test Conditions

0 Depends on attribute types
— Binary
— Nominal
— Ordinal

— Continuous

0 Depends on number of ways to split
— 2-way split
— Multi-way split
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Test Condition for Nominal Attributes

o0 Multi-way split:

— Use as many partitions as
distinct values.

Marital
Status

Single Divorced Married

o0 Binary split:
— Divides values into two subsets

Marital Marital Marital
Status Status Status

OR OR

{Married}  {Single, {Single}  {Married,  {Single, {Divorced}
Divorced} Divorced}  Married}

11/6/2025 Introduction to Data Mining, 29 Edition 25



Test Condition for Ordinal Attributes

o Multi-way split; @

— Use as many partitions
as distinct values

Small

Medium Large Extra Large

0 Binary split: @ @

— Divides values into two

subsets
— Preserve order Mot teargey o e e
property among
attribute values - .
is grouping
violates order
property
{Small, {Medium,

Large} Extra Large}
11/6/2025 Introduction to Data Mining, 2"4 Edition 26



Test Condition for Continuous Attributes

Annual
Income
> 80K?

Yes No

(i) Binary split

11/6/2025

Annual
Income?

[10K,25K) [25K,50K)

[50K,80K)

(ii) Multi-way split
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Splitting Based on Continuous Attributes

0 Different ways of handling

— Discretization to form an ordinal categorical
attribute

¢ Ranges can be found by equal interval bucketing,
equal frequency bucketing (percentiles), or
clustering.

+ Static — discretize once at the beginning
¢ Dynamic — repeat at each node

— Binary Decision: (A <v) or (A >v)
+ consider all possible splits and finds the best cut
¢ can be more compute intensive
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How to determine the Best Split

Customer Id | Gender | Car Type | Shirt Size Class
1 M Family Small (&1]
2 M Sports Medinm (&l]
3 M Sports Medium (1]
4 M Sports Large (&l]
H M Sports Extra Large (&l]
[ M Sports Extra Large (&l]
7 F Sports Small (&1]
8 F Sports Small (&1]
9 F Sports Medium (&1]
B f S I . t t . . 1 0 d f I 0 10 F Luxury Large (&1]
e ore p I Ing ] recor S o c ass [ 11 M Family Large 1
12 M Family Extra Large C1
1 0 reco rds Of CIass 1 13 M Family Medium C1
14 M Luxury Extra Large C1
15 F Luxury Small C1
16 F Luxury Small C1
17 F Luxury Medinm C1
1% F Luxury Medinm C1
19 F Luxury Medinm C1
20 F Luxury Large C1

Customer

(13ende;\
A e -~ I -

Which test condition is the best?
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Tree Induction

How to determine the best split?



How to determine the Best Split

0 Greedy approach:

— Nodes with purer / homogeneous class
distribution are preferred

0 Need a measure of node impurity:

11/6/2025

CO0: 5
C1:5

High degree of impurity,

CO0: 9
C1: 1

Low degree of impurity,

Non-homogeneous Homogeneous

Introduction to Data Mining, 2"9 Edition
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Measures of Node Impurity

0 Gini Index

GINI(t) =1— Z[ p(j DI

J

0 Entropy

Entropy(t) ==X p(j|t)log p(j|?)

0 Misclassification error

Error(t) =1-max P(i | t)
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Finding the Best Split

1. Compute impurity measure (P) before splitting

2. Compute impurity measure (M) after splitting
o0 Compute impurity measure of each child node
o0 Mis the weighted impurity of children

3. Choose the attribute test condition that
produces the highest gain

Gain=P-M

or equivalently, lowest impurity measure after
splitting (M)
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Finding the Best Split

Before Splitting: | €0 | NOO > P
C1 NO1
Yes No Yes No
Node N1 Node N2 Node N3 Node N4
Co N10 Co N20 CO0 N30 Co N40
C1 N1l C1 N21 C1 N31 C1 N41
1 v v v
M11 M12 M21 M22
g J \\ J
Y Y
M1 M2
Gain=P-M1 vs P-M2

11/6/2025
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Measure of Impurity: GINI

0 Gini Index for a given node t :

GINI(1) =1- 2 [p(j DT

(NOTE: p(j | v) is the relative frequency of class j at node t).

— Maximum (1 - 1/n.) when records are equally
distributed among all classes, implying least
interesting information

— Minimum (0.0) when all records belong to one class,
Implying most interesting information

11/6/2025 Introduction to Data Mining, 29 Edition 35



Measure of Impurity: GINI

0 Gini Index for a given node t :

GINI(1) =1- 2 [p(j DT

(NOTE: p(j | v) is the relative frequency of class j at node t).

— For 2-class problem (p, 1 — p):
¢ GINI=1-p?2-(1-p)?=2p (1-p)

C1 0 C1 1 C1 2 C1 3
C2 6 C2 5 C2 4 C2 3
Gini=0.000 Gini=0.278 Gini=0.444 Gini=0.500

11/6/2025
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Computing Gini Index of a Single Node

GINI(t) =1— Z[ p(j DY

C1 0 P(C1)=0/6=0 P(C2)=6/6=1

C2 6 Gini=1-P(C1)2-P(C2)2=1-0-1=0
C1 1 P(C1) = 1/6 P(C2) = 5/6

C2 > Gini = 1 — (1/6)2 - (5/6)2 = 0.278

C1 2 P(C1) = 2/6 P(C2) = 4/6

C2 4 Gini = 1 — (2/6)2— (4/6)2 = 0.444
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Gini Index for a Collection of Nodes

0 When a node p is split into k partitions (children)

k
n. ,
GINI,,, = - GINI (i)
i=1
where, n; = number of records at child |,

n = number of records at parent node p.

0 Choose the attribute that minimizes weighted average
Gini index of the children

0 Gini index is used in decision tree algorithms such as
CART, SLIQ, SPRINT

11/6/2025 Introduction to Data Mining, 2"4 Edition
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Binary Attributes: Computing GINI Index

0 Splits into two partitions
0 Effect of Weighing partitions:

— Larger and Purer Partitions are sought for.

Yes No

Node N1 Node N2
Gini(N1) = =
=1 — (5/6)2— (1/6)2 N1 | N2
=0.278 ci 5 | 2
Gini(N2) C2 1| 4
=1 — (2/6)2 - (4/6)2 Gini=0.361
= 0.444

Parent
C1 7
C2 5
Gini = 0.486

Weighted Gini of N1 N2
=6/12 * 0.278 +

6/12 * 0.444

= 0.361

11/6/2025 Introduction to Data Mining, 2"4 Edition
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Categorical Attributes: Computing Gini Index

. For each distinct value, gather counts for each class in
the dataset

| Use the count matrix to make decisions

Multi-way split

CarType

Two-way split

(find best partition of values)

{Sports, . {Family,
Luxury} {Family} {Sports} Luxury}
C1 9 1 C1 8 2
C2 7 3 C2 0 10
Gini 0.468 Gini 0.167

Which of these is the best?

Family | Sports Luxury
C1 1 8 1
C2 3 0 7
Gini 0.163
11/6/2025
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Continuous Attributes: Computing Gini Index

I Use Binary Decisions based on one p | Home  Marital Annual ', o ..
value

Owner Status Income

. o 1 Yes Single 125K No
| Several Choices for the splitting value .. .. B
— Number of possible splitting values 3 |No Single [ 70K |
= Number of distinct values 4 |ves |Maried l120k  INo
| Each splitting value has a count matrix |5 |No  [Divorced [95K | Ves |
associated with it 6 |No Married [ 60K |
— Class counts in each of the fo|ves  [Plvoreed 220k [Ne
partitions, A<vand A>v 8 [No  |Single [85K __|Yes :
. 9 No Married |75K
| Simple method to choose best v 0 Ino - e

— For each v, scan the database to Anrual | ,
gather count matrix and compute nnual neome
its Gini index 7\

— Computationally Inefficient! (O(N?))
Repetition of work. Defaulted Yes | 0 3

Defaulted No 3 4

<80 >80
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Continuous Attributes: Computing Gini Index...

| For efficient computation O(NlogN): for each attribute,
— Sort the attribute on values

— Linearly scan these values, each time updating the count matrix
and computing gini index

— Choose the split position that has the least gini index

EX no [ Mo [No[ves[ves[Yes [No [ No[ No [ Mo |

Sorted Values
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Continuous Attributes: Computing Gini Index...

| For efficient computation: for each attribute,
— Sort the attribute on values

— Linearly scan these values, each time updating the count matrix
and computing gini index

— Choose the split position that has the least gini index

B o | o | Mo | ves | ves | ves | Mo | Mo | No | Mo |

Annual Income

Sorted Values

60 | 70 |75|85|90|95|100|120| 125| 220
Split Positions —» [ 55 [ 65 || 72 [ 80 | 87 [| 92 [ o7 [ 110 || 122 | 172 [ 230

[<=]>ll<=]>ll<=] > <= > ll<=] > ll<=] > [<=] > [[<=[ > [I<=] > [I<=] > [[<=] > |
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Continuous Attributes: Computing Gini Index...

| For efficient computation: for each attribute,
— Sort the attribute on values

— Linearly scan these values, each time updating the count matrix
and computing gini index

— Choose the split position that has the least gini index

B o | o | Mo | ves | ves | ves | Mo | Mo | o | Mo |

Annual Income

Sorted Values

60 | 70 |75|85|90|95|100|120| 125| 220
Split Positions —» [ 55 [ 65 || 72 [ 80 | 87 [| 92 [ o7 [ 110 || 122 | 172 [ 230

<=[>[[<=] > l<=] > [[<==] > l<=] > [[<=] > [[<=] > [[<=] > [[<=] > [[<=] > [[<=] > |
Yes 0|3 " " " " "
No 3|4
Gini 0.343
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Continuous Attributes: Computing Gini Index...

| For efficient computation: for each attribute,
— Sort the attribute on values

— Linearly scan these values, each time updating the count matrix
and computing gini index

— Choose the split position that has the least gini index

B o | o | Mo | ves | ves | ves | Mo | Mo | No | Mo |

Annual Income
St i 60 | 70 | 75 | 85 | 90 | o5 | 100 | 120 | 125 | 220

Split Positions — [ 55 [ 65 [ 72 [ 80 [ 87 [ 92 [ o7 | 110 | 122 | 172 [ 230

Yes (O | 3o (3ffo|3}jo(3(1|12|2(13]0}j3[0f3 0|3 ]0(f3(0

No (0| 71|62 |5]3|43]|4(3 43|44 |35]2(|6]17)]0O0

Gini 0.420 f 0.400 || 0.375 || 0.343 || 0.417 (| 0.400 || 0.300 || 0.343 || 0.375 ([ 0.400 || 0.420
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Continuous Attributes: Computing Gini Index...

| For efficient computation: for each attribute,
— Sort the attribute on values

— Linearly scan these values, each time updating the count matrix
and computing gini index

— Choose the split position that has the least gini index

B o | o | Mo | ves | ves | ves | Mo | Mo | No | Mo |

Annual Income
St i 60 | 70 | 75 | 85 | 90 | o5 | 100 | 120 | 125 | 220

Split Positions — [ 55 [ 65 [ 72 [ 80 [ 87 [ 92 [ o7 | 110 | 122 | 172 [ 230

Yes (O | 3o (3ffo|3}jo(3(1|12|2(13]0}j3[0f3 0|3 ]0(f3(0

No (0| 71|62 |5]3|43]|4(3 43|44 |35]2(|6]17)]0O0

Gini 0.420 f 0.400 || 0.375 || 0.343 || 0.417 (| 0.400 || 0.300 || 0.343 || 0.375 ([ 0.400 || 0.420
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Measure of Impurity: Entropy

0 Entropy at a given node t:

Entropy(t) = =2 p(j [t)log p(j 1)

(NOTE: p(j | ¢ is the relative frequency of class j at node t).

+ Maximum (log n.) when records are equally distributed
among all classes implying least information

¢ Minimum (0.0) when all records belong to one class,
iImplying most information

— Entropy based computations are quite similar to
the GINI index computations
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Computing Entropy of a Single Node

Entropy(t) = -2 p(j|t)log, p(j|1t)

C1 0 P(C1)=0/6=0 P(C2)=6/6=1

C2 6 Entropy =-0log0-1log1=-0-0=0

C1 1 P(C1)=1/6 P(C2) = 5/6

C2 5 Entropy = - (1/6) log, (1/6) - (5/6) log, (1/6) = 0.65
C1 2 P(C1) = 2/6 P(C2) = 4/6

C2 4 Entropy = — (2/6) log, (2/6) — (4/6) log, (4/6) = 0.92
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Computing Information Gain After Splitting

0 Information Gain:

GAIN , = Entropy(p) — (i i Entropy(i)j
i=l1 n

Parent Node, p is split into k partitions;
n; is number of records in partition |

— Measures Reduction in Entropy achieved because of
the split. Choose the split that achieves most reduction
(maximizes GAIN)

— Used in the ID3 and C4.5 decision tree algorithms

— Disadvantage: Tends to prefer splits that result in
large number of partitions, each being small but pure.
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Problem with large number of partitions

0 Node impurity measures tend to prefer splits that
result in large number of partitions, each being
small but pure

“o™

— Customer ID has highest information gain because entropy for
all the children is zero

— Can we use such a test condition on new test instances?
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Solution

0 A low impurity value alone is insufficient to find a good
attribute test condition for a node

0 Solution: Consider the number of children produced by
the splitting attribute in the identification of the best split

0 High number of child nodes implies more complexity

0 Method 1: Generate only binary decision trees

— This strategy is employed by decision tree classifiers
such as CART

0 Method 2: Modify the splitting criterion to take into
account the number of partitions produced by the attribute
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Gain Ratio

0 Gain Ratio;

GAIN 7 7

GainRATIO = =—|ISplitINFO = —> —log—

"~ SplitINFO|°F 5 08
Parent Node, p is split into k partitions
n; is the number of records in partition |

— Adjusts Information Gain by the entropy of the partitioning
(SplitINFO).
¢ Higher entropy partitioning (large number of small partitions) is
penalized!

— Used in C4.5 algorithm
— Designed to overcome the disadvantage of Information Gain
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Gain Ratio

0 Gain Ratio;

GainRATIO =

split

GAIN

Split

SplitINFO

SplitINFO = —3.

r N

n

ni

log
n

Parent Node, p is split into k partitions

n; is the number of records in partition |

CarType

CarType

) {Sports, -

Family | Sports | Luxury Ly {Family}
C2 3 0 / C2 7 3
Gini 0.163 Gini 0.468

SplitINFO = 1.52

11/6/2025

SplitINFO = 0.72

Introduction to Data Mining, 2"9 Edition

CarType

spors ot
C1 8 2
C2 0 10
Gini 0.167

SplitINFO = 0.97
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Measure of Impurity: Classification Error

0 Classification error at a node t:

Error(t) =1—max P(i|t)

— Maximum (1 - 1/n.) when records are equally
distributed among all classes, implying least
interesting information

— Minimum (0) when all records belong to one class,
iImplying most interesting information
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Computing Error of a Single Node

Error(t) =1—max P(i|t)

C1 0
C2 6
C1 1
C2 5
Cl 2
C2 4

11/6/2025

P(C1)=0/6=0 P(C2)=6/6=1
Error=1-max(0,1)=1-1=0

P(C1)=1/6 P(C2) = 5/6
Error =1 -max (1/6, 5/6) =1 — 5/6 = 1/6

P(C1) = 2/6 P(C2) = 4/6
Error =1 — max (2/6,4/6) =1-4/6 =1/3
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Comparison among Impurity Measures

For a 2-class problem:

09t
08¢
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0&f
05t
04¢
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02t f

/
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/
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a m kY
I-““ Gini
I."r ‘\-\\ Y 7
Jx' n\\ \
/ _ _ ) '
Misclassification
| error

0

01 02 03 04 05 0B 07 OB 08
p

11/6/2025

1

Introduction to Data Mining, 29 Edition

1 Consistency among the impurity mesures
1+ if a node N1 has lower entropy than node

N2, then the Gini index and error rate of N1
will also be lower than that of N2

.| The attribute chosen as splitting criterion by

the impurity measures can still be different!
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Misclassification Error vs Gini Index

Yes

Node N1

Gini(N1)
= 1 — (3/3)2— (0/3)2
=0

Gini(N2)
= 1 — (4/7)2- (3/7)2
= 0.489

11/6/2025

No

Node N2

N1 | N2
Ci| 3| 4
C2 | 0| 3
Gini=0.342

Parent
C1 7
C2 3
Gini = 0.42

Gini(Children)
=3M10*0
+7/10 * 0.489
= 0.342

Gini improves but
error remains the
same!!
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Misclassification Error vs Gini Index

Yes
Node N1
N1 | N2
C1 3 4
C2 0 3
Gini=0.342

Misclassification error for all three cases = 0.3 !

11/6/2025

Parent
C1 7
C2 3
Gini = 0.42

No
Node N2
N1 | N2
C1 3 4
C2 1 2
Gini=0.416

Introduction to Data Mining, 29 Edition
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Determine when to stop splitting



Stopping Criteria for Tree Induction

| Stop expanding a node when all the records
belong to the same class

| Stop expanding a node when all the records have
similar attribute values

| Early termination (to be discussed later)



Advantages of Decision Tree

| Easy to interpret for small-sized trees

| Accuracy is comparable to other classification techniques
for many simple data sets

| Robust to noise (especially when methods to avoid
overfitting are employed)

| Can easily handle redundant or irrelevant attributes
| Inexpensive to construct

| Extremely fast at classifying unknown record
| Handle Missing Values



Irrelevant Attributes

0 lrrelevant attributes are poorly associated with the target
class labels, so they have little or no gain in purity

0 In case of a large number of irrelevant attributes, some
of them may be accidentally chosen during the tree-
growing process

0 Feature selection techniques can help to eliminate the
irrelevant attributes during preprocessing
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Redundant Attributes

0 Decision trees can handle the presence of
redundant attributes

0 An attribute is redundant if it is strongly
correlated with another attribute in the data

0 Since redundant attributes show similar gains in
purity if they are selected for splitting, only one of
them will be selected as an attribute test
condition in the decision tree algorithm.
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Advantages of Decision Tree

| Easy to interpret for small-sized trees

| Accuracy is comparable to other classification techniques
for many simple data sets

| Robust to noise (especially when methods to avoid
overfitting are employed)

| Can easily handle redundant or irrelevant attributes
I Inexpensive to construct

| Extremely fast at classifying unknown record

| Handle Missing Values



Computational Complexity

0 Finding an optimal decision tree is NP-hard

0 Hunt's Algorithm uses a greedy, top-down, recursive
partitioning strategy for growing a decision tree

0 Such techniques quickly construct a reasonably good
decision tree even when the training set size is very large.

0 Construction DT Complexity: O(M N log N) where M=n.
attributes, N=n. instances

0 Once a decision tree has been built, classifying a test
record is extremely fast, with a worst-case complexity of
O(w), where w is the maximum depth of the tree.
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Advantages of Decision Tree

| Easy to interpret for small-sized trees

| Accuracy is comparable to other classification techniques
for many simple data sets

| Robust to noise (especially when methods to avoid
overfitting are employed)

| Can easily handle redundant or irrelevant attributes
| Inexpensive to construct

| Extremely fast at classifying unknown record

| Handle Missing Values



Handling Missing Attribute Values

| Missing values affect decision tree construction in
three different ways:

— Affects how impurity measures are computed

— Affects how to distribute instance with missing
value to child nodes

— Affects how a test instance with missing value
Is classified



Handling missing values in training

Home Marital Annual

Home Marital Annual
Owner Status Income

Home Marital Annual

Owner Status Income Owner Status Income

? Single 79K ? Single 79K

Home Owner Home Owner Home Owner

Yes Yes Yes ? (missing)

Marital Status = {Single, Divorced}

Home Marital Annual Home Marital Annual Home Marital Annual Home Marital Annual
Owner Status Income Owner Status Income Owner Status Income Owner Status Income
? Single 79K ? Single 79K
(a) Probabilistic Split Method (b) Surrogate Split Method (c) Separate Class Method
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Computing Impurity Measure

Tid Refund Marital

© o0 N o o b~ 0 N -

—
(@)

Yes
No
No
Yes
No
No
Yes
No
No

Status

Single
Married
Single
Married
Divorced
Married
Divorced
Single
Married

Single

Taxable
Income Class

125K
100K
70K
120K
95K
60K
220K
85K
75K
90K

No
No
No
No
Yes
No
No
Yes
No

Yes

\ Missing

value

Before Splitting:
Entropy(Parent)
=-0.3 log(0.3)-(0.7)log(0.7) = 0.8813

Class || Class

= Yes| = No
Refund=Yes 0 3
Refund=No 2 4
Refund=" 1 0

Split on Refund:
Entropy(Refund=Yes) =0

Entropy(Refund=No)
= -(2/6)log(2/6) — (4/6)log(4/6) = 0.9183

E Q Chilo
e o one3) = 0,551

Gain = 0.8813 — 0.551 = 0.3303



Distribute Instances

Tid Refund

Marital
Status

Taxable

Income Class

10 |?

Single

90K

Yes

Refund

Y(iy

\l:lo

Class=Yes

0+ 3/9

Class=Yes

2+ 6/9

Class=No 3

Tid Refund Marital Taxable
Status Income Class
1 Yes Single 125K No
2 |No Married | 100K No
3 [No Single 70K No
4 |Yes Married | 120K No
5 [No Divorced 95K Yes
6 [No Married |60K No
7 |Yes Divorced | 220K No
8 |No Single 85K Yes
9 |No Married |75K No
Refund
ny \lilo
Class=Yes 0 Cheat=Yes
Class=No 3 Cheat=No

Class=No

Probability that Refund=Yes is 3/9
Probability that Refund=No is 6/9

Assign record to the left child with
weight = 3/9 and to the right child
with weight = 6/9




Classify Instances

New record:

Tid Refund Marital Taxable
Status Income Class

Married | Single Divorced | Total

Class=No 3 1 0 4
Class=Yes 6/9 1 1 2.67
Total

(\3.69 Q ) 6.67

e
nn®
wn®
-------
s
(LA
un®

'
un®
------
.
wen®

NO

o*
o*
o*
.

us

[ .
[ LA .
.....

g
un®
-------
.
we®

“““““ Probabilistic split method (C4.5)

Probability that Marital Status
= Married is 3.67/6.67

Probability that Marital Status
={Single,Divorced} is 3/6.67



Algorithms: ID3, C4.5, C5.0, CART

0 ID3 uses the Hunt's algorithm with information
gain criterion and gain ratio

0 C4.5 improves ID3
— Needs entire data to fit in memory
— Handles missing attributes and continuous attributes
— Performs tree post-pruning
— C€5.0 is the current commercial successor of C4.5
— Unsuitable for Large Datasets

0 CART builds multivariate decision (binary) trees
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Disadvantages

0 Space of possible decision trees is exponentially large.

0 Greedy approaches are often unable to find the best tree.

0 Does not take into account interactions between
attributes

0 Each decision boundary involves only a single attribute
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Handling interactions

Interacting attributes: able to distinguish between classes when
used together, but individually they provide little or no information.

m

+ : 1000 instances

Fa 4o o : 1000 instances
\"2 ‘ .' Test Condition:

X<10andY <10

Entropy (X) : 0.99
Entropy (Y) : 0.99

No reduction in the
impurity measure when
used individually
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Handling interactions

11/6/2025
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+ : 1000 instances
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Adding Z as a noisy
attribute generated
from a uniform
distribution
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Entropy (Z) : 0.98

Attribute Z will be
chosen for splitting!
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Decision Boundary

>os5p © /y < 0_47?\\ /y < 0.33?\,
! @)
%2r v i vi4d | v:0| v:0|| v:4
b vV io 0:0 °:4 ©:3 c:0
|
00 0.I1 O.IZ O.I3 0.I4 | O.IS 0.I6 0.I7 O.IB O.IQ 1
X

« Border line between two neighboring regions of different
classes is known as decision boundary

« Decision boundary is parallel to axes because test
condition involves a single attribute at-a-time



Oblique Decision Trees

09

0.5

0.7

0.6

0.5
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0.3

0.2

0.1
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Lty

» Test condition may involve multiple attributes

* More expressive representation

* Finding optimal test condition is computationally expensive

Class =+

Class= @




Limitations of single attribute-based decision boundaries

ED ! ] ]
o ) g@&“ e 8 o © Both positive (+) and
e oL - -
' G@C’O%f%o@ ° f;@o negative (o) classes
16— NP B 2% o 1 generated from
o R B SO skewed Gaussians
Rt b L 0 s | with centers at (8,8)
W NS =g and (12,12)
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I+ + " I
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Other Issues

| Data Fragmentation
| Tree Replication



Data Fragmentation

| Number of instances gets smaller as you traverse
down the tree

. Number of instances at the leaf nodes could be
too small to make any statistically significant
decision



Tree Replication
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Same subtree appears in multiple branches



Practical Issues of Classification

| Underfitting and Overfitting

| Costs of Classification



Classification Errors

0 Training errors (apparent errors)
— Errors committed on the training set

0 Test errors
— Errors committed on the test set

0 Generalization errors

— Expected error of a model over random
selection of records from same distribution



Underfitting and Overfitting

(I)verfittilng

——

-—_

-~

— Training set
— - - Testset

— o o O o o T o

0 S0 100 150 200 250 300

Mumber of nodes

Underfitting: when model is too simple, both training and test errors are large



Example Data Set

Two class problem:

+ : 5200 instances

20

18 * 5000 instances generated

from a Gaussian centered at
(10,10)

16

14

* 200 noisy instances added

o : 5200 instances

* Generated from a uniform
distribution

L) ; T b (@;
2 gy T o ! 10 % of the data used for
. @ﬁ@%ﬁ‘g“%@g&&% training and 90% of the

. data used for testing



Error

Increasing number of nodes in Decision Trees
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Error

Decision Tree with 4 nodes
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Error

Decision Tree with 50 nodes
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Which tree is better?
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Model Overfitting
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Underfitting: when model is too simple, both training and test errors are large

Overfitting: when model is too complex, training error is small but test error is large



Error

Model Overfitting
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« Iftraining data is under-representative, testing errors increase and training errors
decrease on increasing number of nodes

* Increasing the size of training data reduces the difference between training and

testing errors at a given number of nodes



Error

Model Overfitting
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Using twice the number of data instances
If training data is under-representative, testing errors increase and training errors
decrease on increasing number of nodes

Increasing the size of training data reduces the difference between training and
testing errors at a given number of nodes



Overfitting due to Insufficient Examples

4
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- Lack of data points in the lower half of the diagram makes it difficult to
predict correctly the class labels of that region

- Insufficient number of training records in the region causes the decision
tree to predict the test examples using other training records that are
irrelevant to the classification task



Overfitting due to Noise
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Notes on Overfitting

| Overfitting results in decision trees that are more
complex than necessary

| Training error no longer provides a good estimate
of how well the tree will perform on previously
unseen records

| Need new ways for estimating errors



Model Selection

0 Performed during model building

0 Purpose is to ensure that model is not overly
complex (to avoid overfitting)

0 Need to estimate generalization error
— Using Validation Set

— Incorporating Model Complexity

— Estimating Statistical Bounds



Model Selection Using Validation Set

0 Divide training data into two parts:
— Training set:
+ use for model building

— Validation set:

+ use for estimating generalization error
¢ Note: validation set is not the same as test set

0 Drawback:
— Less data available for training



Model Selection Incorporating Model Complexity

0 Rationale: Occam’s Razor

— Given two models of similar generalization errors,
one should prefer the simpler model over the more
complex model

— A complex model has a greater chance of being fitted
accidentally by errors in data

— Therefore, one should include model complexity when
evaluating a model

Gen. Error(Model) = Train. Error(Model, Train. Data) +
@ x Complexity(Model)



Estimating Generalization Errors

0 Re-substitution errors: error on training (Z err(t))

0 Generalization errors: error on testing (= err’ (t))

0 Methods for estimating generalization errors:
— Pessimistic approach
— Optimistic approach
— Reduced error pruning (REP): uses validation data
set to estimate generalization error



Estimating the Complexity of Decision Trees

Pessimistic Error Estimate of decision tree 7 with
k leaf nodes:

k

errgen(T) = err(T) + Q) X ,
Nt'raz'n

— err(T): error rate on all training records
— Q: Relative cost of adding a leaf node
— k: number of leaf nodes

— Ny, total number of training records



Estimating the Complexity of Decision Trees: Example

e(T.) =4/24

e(TR) = 6/24

Decision Tree, T, Decision Tree, T,

€gen(TL) =4/24 + 177/24 = 11/24 = 0.458
errgen(T) = err(T) + Q X

€gen(TR) = 6/24 + 1*4/24 = 10/24 = 0.417



Estimating the Complexity of Decision Trees

Re-substitution Estimate:

— Using training error as an optimistic estimate of
generalization error

— Referred to as optimistic error estimate

e(T,) = 4/24

e(TR) = 6/24

Decision Tree, T, Decision Tree, Ty



Occam’ s Razor

| Given two models of similar generalization errors,
one should prefer the simpler model over the
more complex model

| For complex models, there is a greater chance
that it was fitted accidentally by errors in data

| Therefore, one should include model complexity
when evaluating a model



Minimum Description Length (MDL)

X y ny - No X y
Xq | 1 0 B? Xi | ?
X | 0 °) \? X, | 2
X3 0 C? X3 o
Xy | 1 X, ,?
Xn | 1 i -_— i x. | >

| Cost(Model,Data) = Cost(Data|Model) + Cost(Model)
— Cost is the number of bits needed for encoding.
— Search for the least costly model.

| Cost(Data|Model) encodes the misclassification errors.

| Cost(Model) uses node encoding (number of children)
plus splitting condition encoding.



Estimating Statistical Bounds

Apply a statistical correction to the training error rate of the model

that is indicative of its model complexity.

* Need probability distribution of training error: available or assumed.

« The number of errors committed by a leaf node in a decision tree can be
assumed to follow a binomial distribution.

+: 5
- 2

3 +:2
1 -1
Zi/z
e+ +z
N

Before splitting: e =2/7, e’(7, 2/7,0.25) =0.503
e’(T)=7 x 0.503 = 3.521

After splitting:

e(T,) =1/4, e’(4,1/4,0.25) = 0.537
e(Tgr) =1/3, e’(3, 1/3,0.25) = 0.650
e’(T)=4x0.537 + 3 x 0.650 = 4.098

Therefore, do not split



How to Address Overfitting...

0 Pre-Pruning (Early Stopping Rule)
— Stop the algorithm before it becomes a fully-grown tree

— Typical stopping conditions for a node:
+ Stop if all instances belong to the same class
+ Stop if all the attribute values are the same

— More restrictive conditions:

+ Stop if number of instances is less than some user-specified
threshold

+Stop if expanding the current node does not improve impurity
measures (e.g., Gini or information gain).

+ Stop if estimated generalization error falls below certain threshold



How to Address Overfitting...

| Post-pruning
— Grow decision tree to its entirety

— Trim the nodes of the decision tree in a
bottom-up fashion

— If generalization error improves after trimming,
replace sub-tree by a leaf node.

— Class label of leaf node is determined from
majority class of instances in the sub-tree

— Can use MDL for post-pruning



Example of Post-Pruning

Class = Yes | 20

Class=No | 10

Error = 10/30

Training Error (Before splitting) = 10/30
Pessimistic error = (10 + 0.5)/30 = 10.5/30
Training Error (After splitting) = 9/30
Pessimistic error (After splitting)

= (9 +4 x0.5)/30 = 11/30

A1 A4
A2 A3
Class = Yes Class = Yes Class=Yes | 4 Class=Yes | 5
Class = No Class = No Class = No 1 Class = No
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