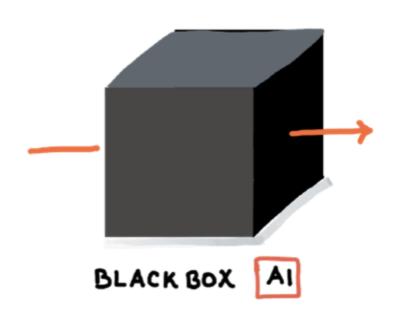
Privacy, Explainable Al

Francesca Naretto, Anna Monreale University of Pisa francesca.naretto@unipi.it

Context



We want to explain the global behavior by using *Global Explainers*

We want to explain the decision on a, instance by using Local Explainers

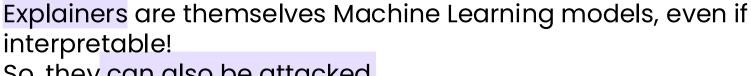
A *Machine Learning* model whose internals are either *unknown* to the observer or they are known but **uninterpretable** by humans.

Potential Risk

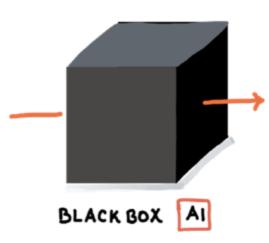
Machine Learning models may enable privacy risks

There are several privacy attacks design to attack Machine Learning models, such as:

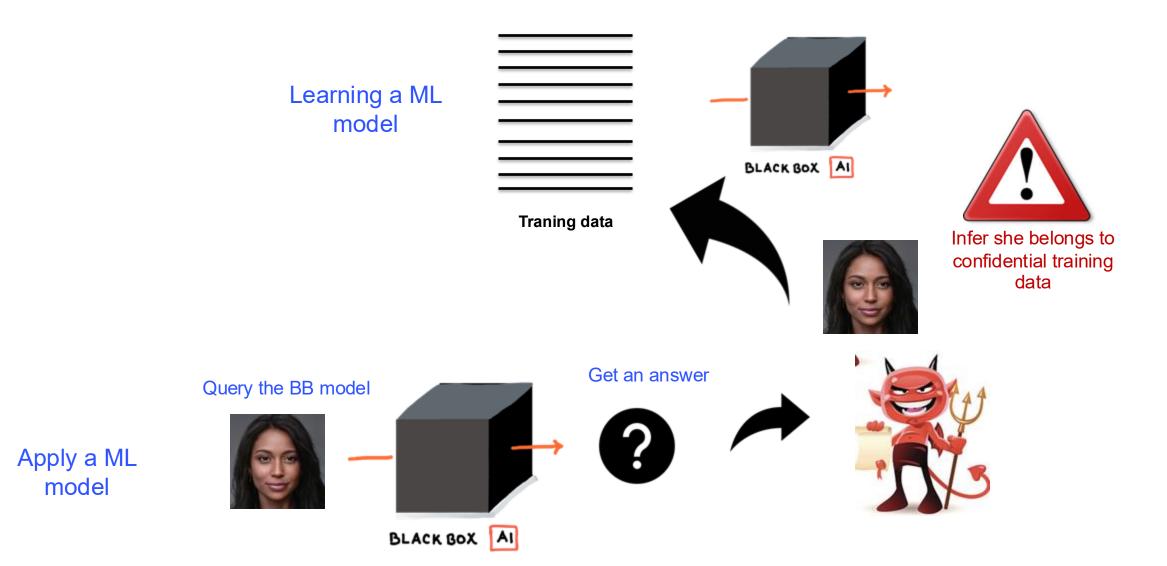
- Membership Inference attack
- Reconstruction attack
- Property inference attack 3.



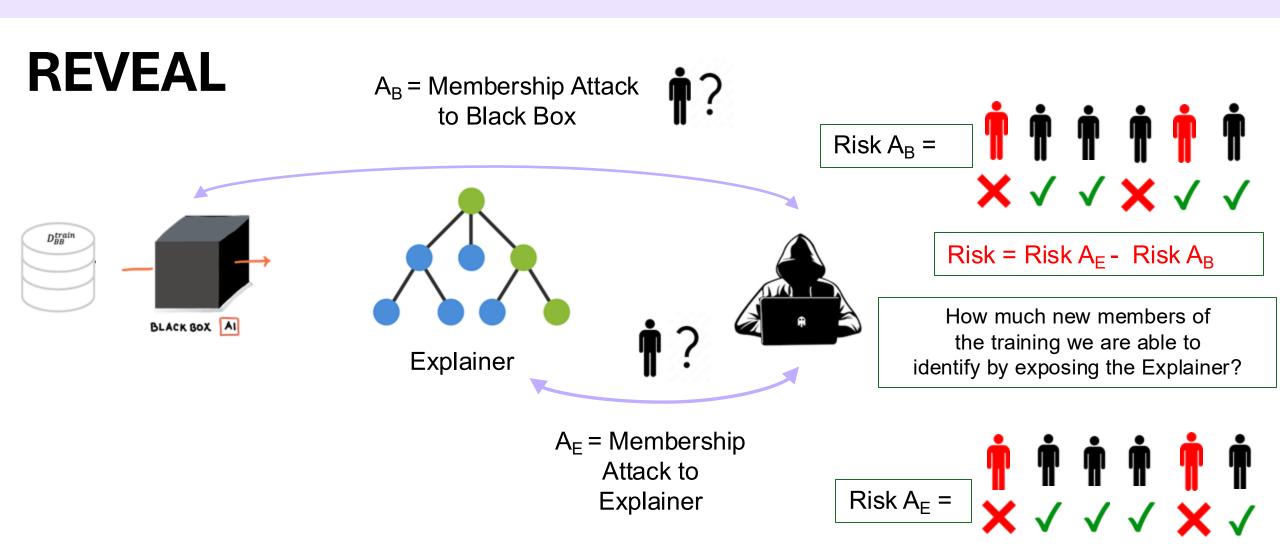
So, they can also be attacked.



Privacy Risk Assessment



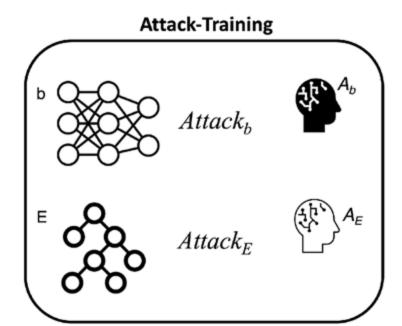
What about Explainers and privacy risks?

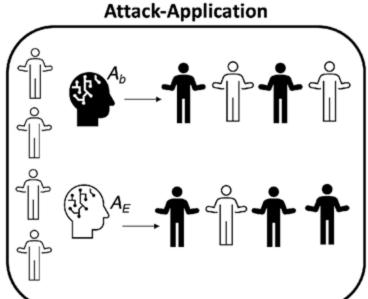


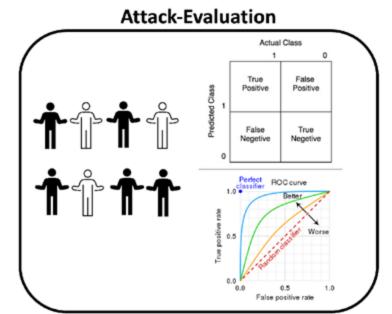
F. Naretto, A. Monreale, F. Giannotti: Evaluating the Privacy Exposure of Interpretable Global and Local Explainers.

<u>Trans. Data Priv. 18(2)</u>: 67-93 (2025)

REVEAL: privacy exposure of explainers

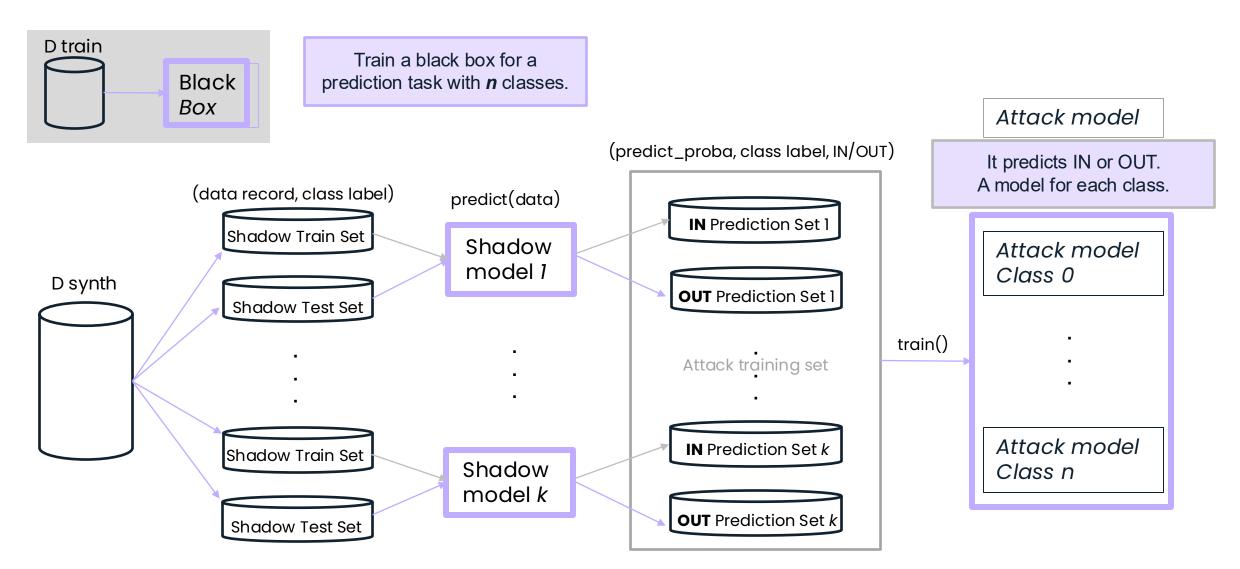






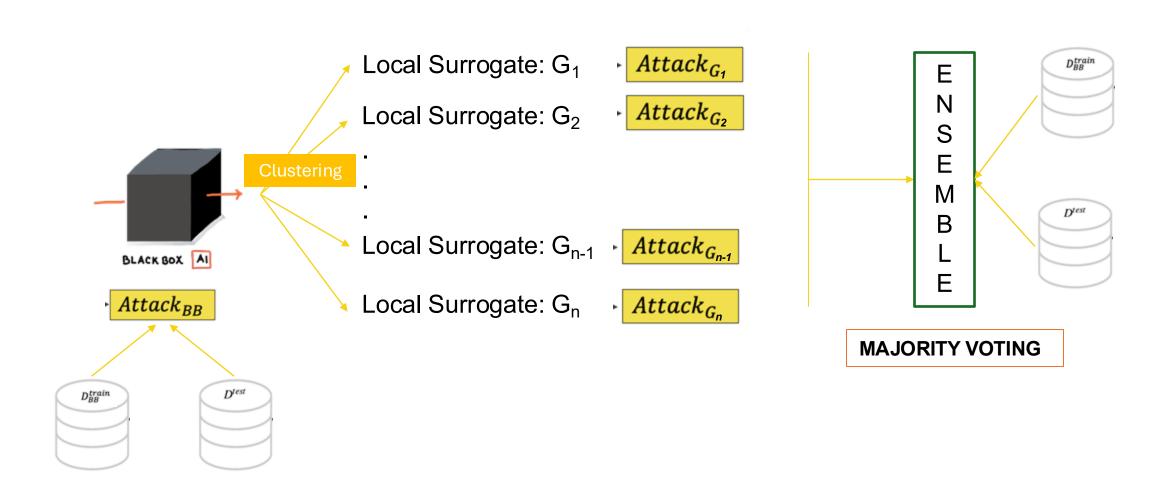
 $\Delta_{Acc}, \Delta_{P}, \Delta_{R}, \Delta_{F_1}$

The privacy attack: MIA



Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy

What about Local Explainers?



FastSHAP ++ A federated private explainer end-to-end

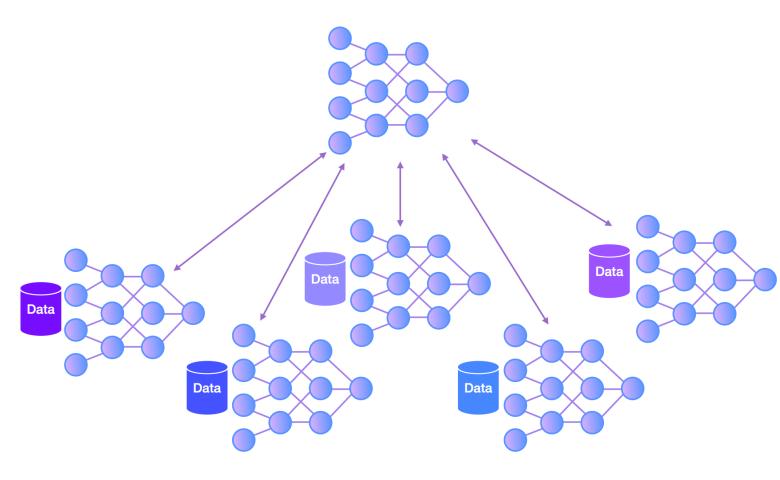
Valerio Bonsignori, Luca Corbucci, Francesca Naretto, Anna Monreale

Is it possible to explain Federated Learning models while preserving privacy and Federated Learning constraints?

Is it possible to explain Federated Learning models while preserving privacy and Federated Learning constraints?

Federated Learning

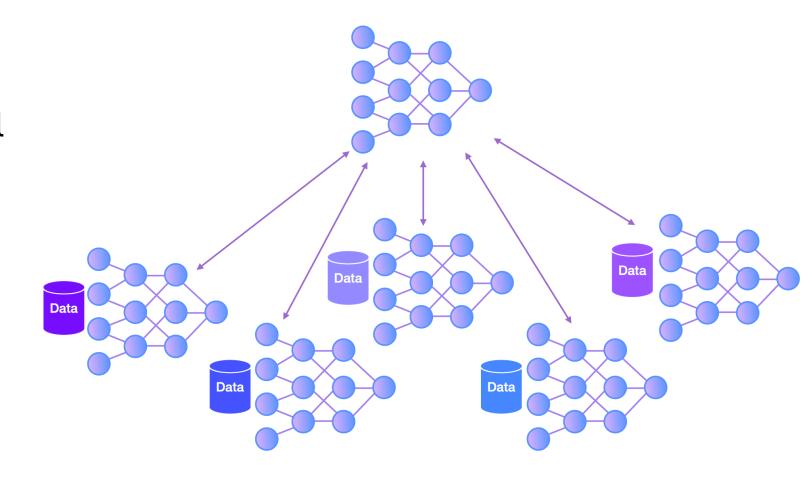
Clients don't share their data, they only exchange model updates.



Federated Learning

FedAvg

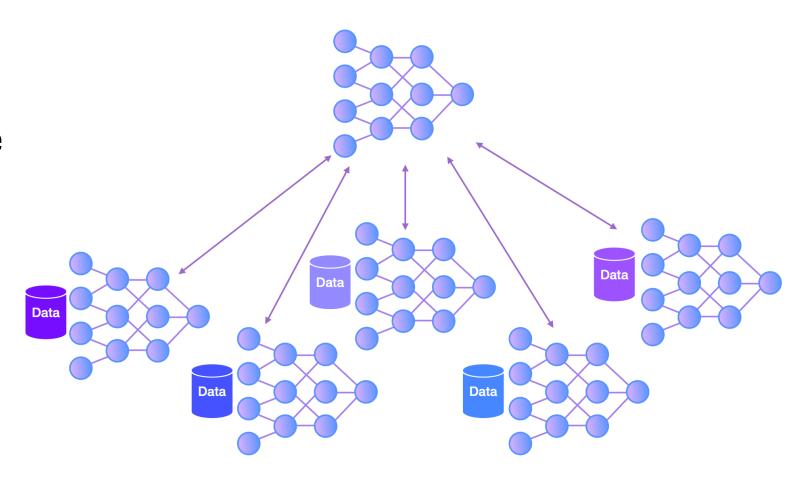
The server updates the global model by computing an average of the local parameter vectors returned by the participating clients after their local optimization steps.



Federated Learning

Clients don't share their data, they only exchange model updates.

Good generalization capabilities.



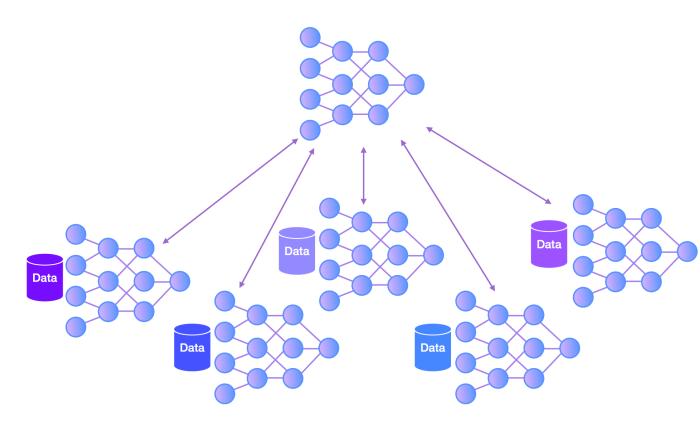
Is it possible to explain Federated Learning models while preserving privacy and Federated Learning constraints?

Federated Learning & Privacy

Privacy attacks are still possible.

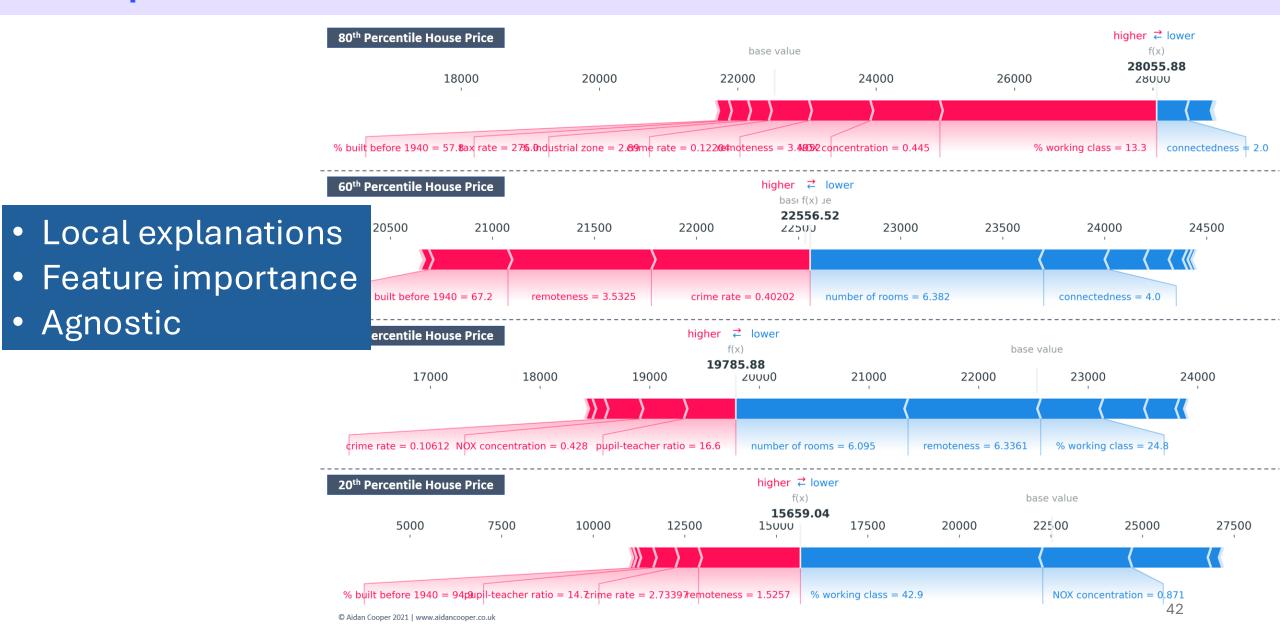
- Inverting gradients attacks
- Membership Inference Attacks
- Property Inference Attacks

Differential private learning of ML model can support privacy protection



Is it possible to explain Federated Learning models while preserving privacy and Federated Learning constraints?

Explainable AI - SHAP



We would like to:

Work in a Federated Learning scenario

Have local explanations

Preserve the privacy during all the steps of the pipeline

43

Limits

SHAP can be slow

Federated Learning VS explanations

- SHAP requires data to be trained on
- We don't have them on the server side
- Problems with privacy

Overall... Limited privacy protection

FastSHAP

A possible solution is to use FastSHAP

- An explainer Neural Network
- Principles of SHAP values are still respected
- Good trade off between accuracy and speed up

FastSHAP

A possible solution is to use FastSHAP

- Not tailored for Federated Learning settings
- No privacy protection
- It uses original data for training

Federated Learning

No exchange of data.

Fast Explanations

FastSHAP Explainer generates explanations in a forward step.

Local Explanation

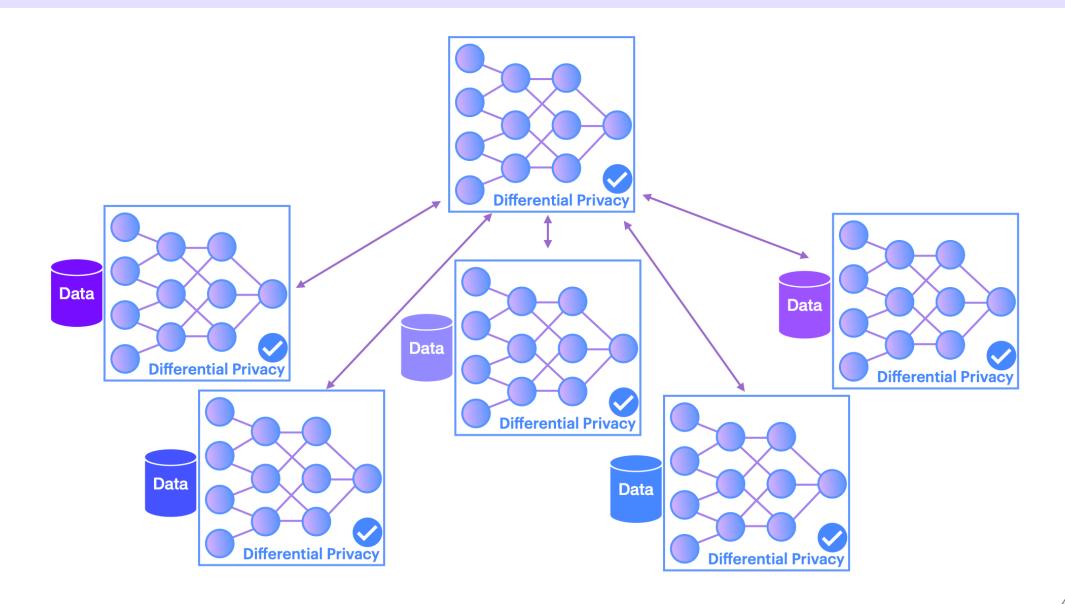
Feature Importance Explanations using FastSHAP.

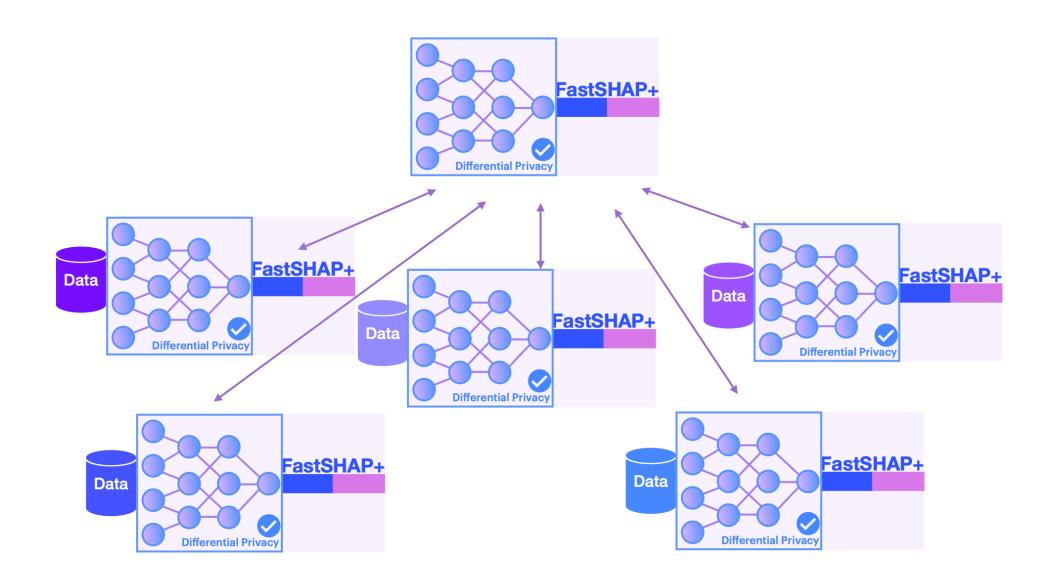
Distributed Explainer Training

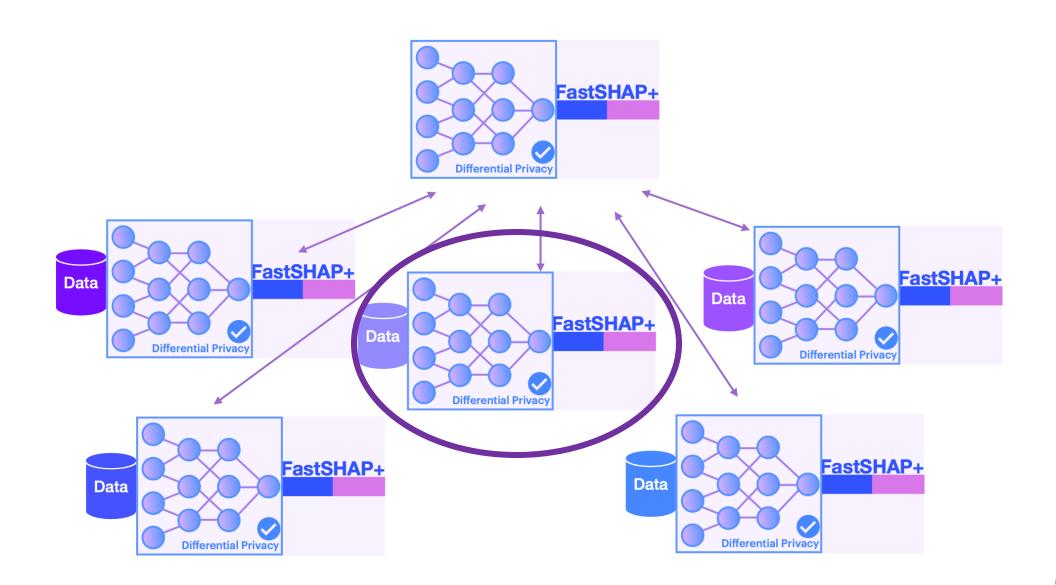
Explainer complies with Federated Learning constraints.

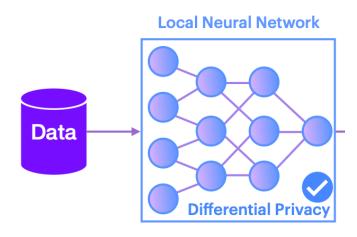
Privacy Protection

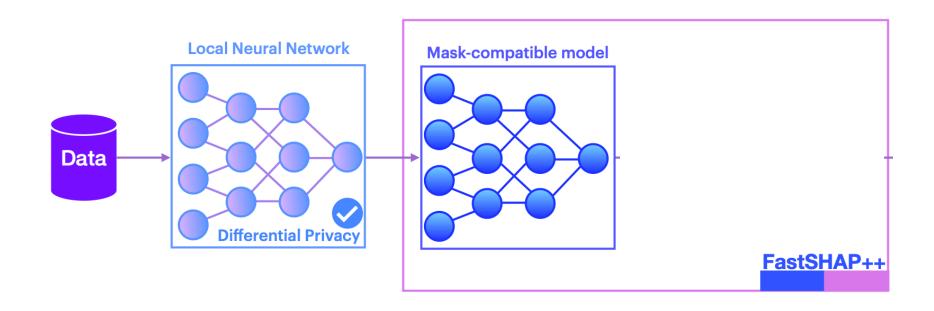
A fully protected pipeline for privacy-guarantee explanations.

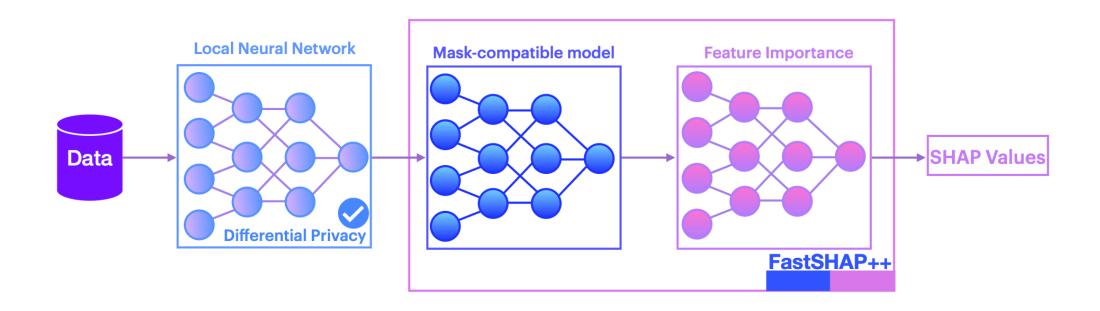


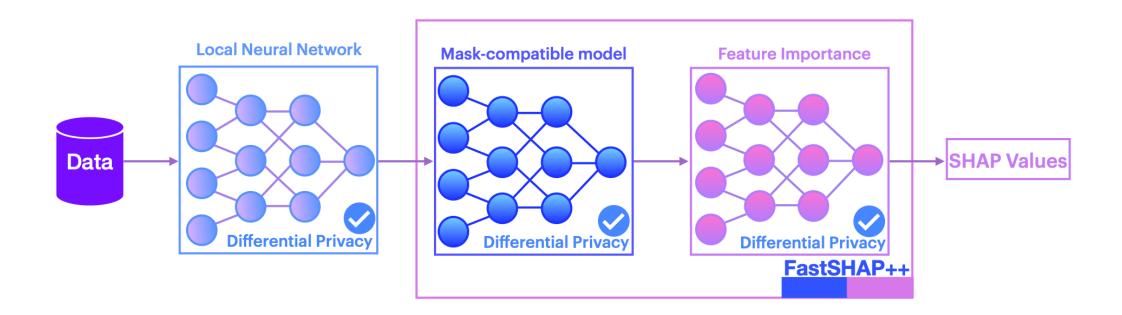




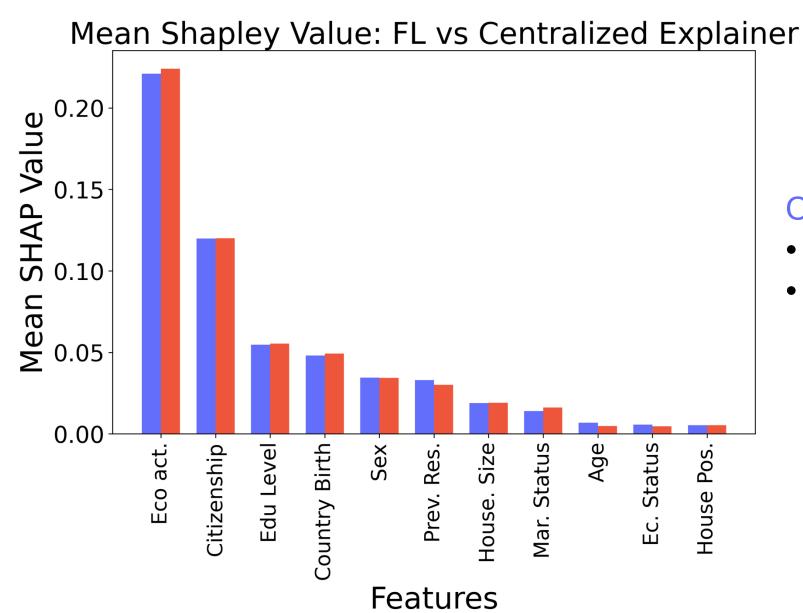








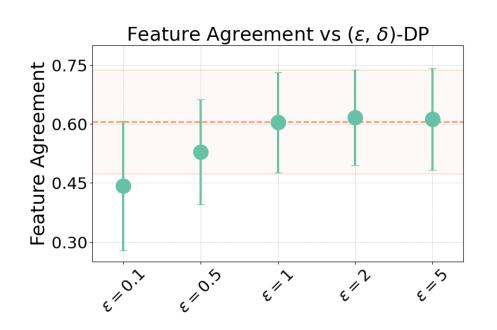
Are the explanations matching the centralized?

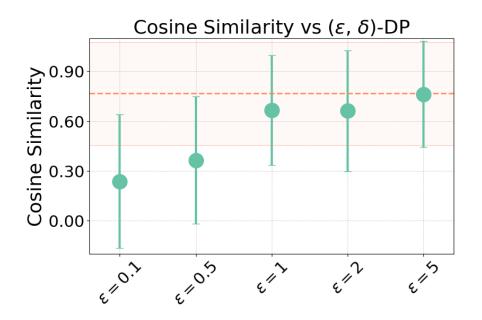


Centralized VS Federated

- Same direction of importance
- Similar magnitudes

Evaluation on Privacy





FastSHAP++ no privacy VS FastSHAP++ with privacy

The quality of the explanations is good with $\varepsilon \geq 1$.

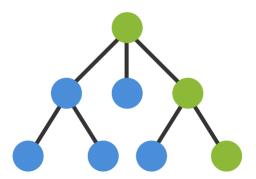
FastSHAP** achieves centralized-level explanation quality while preserving clients' data privacy.

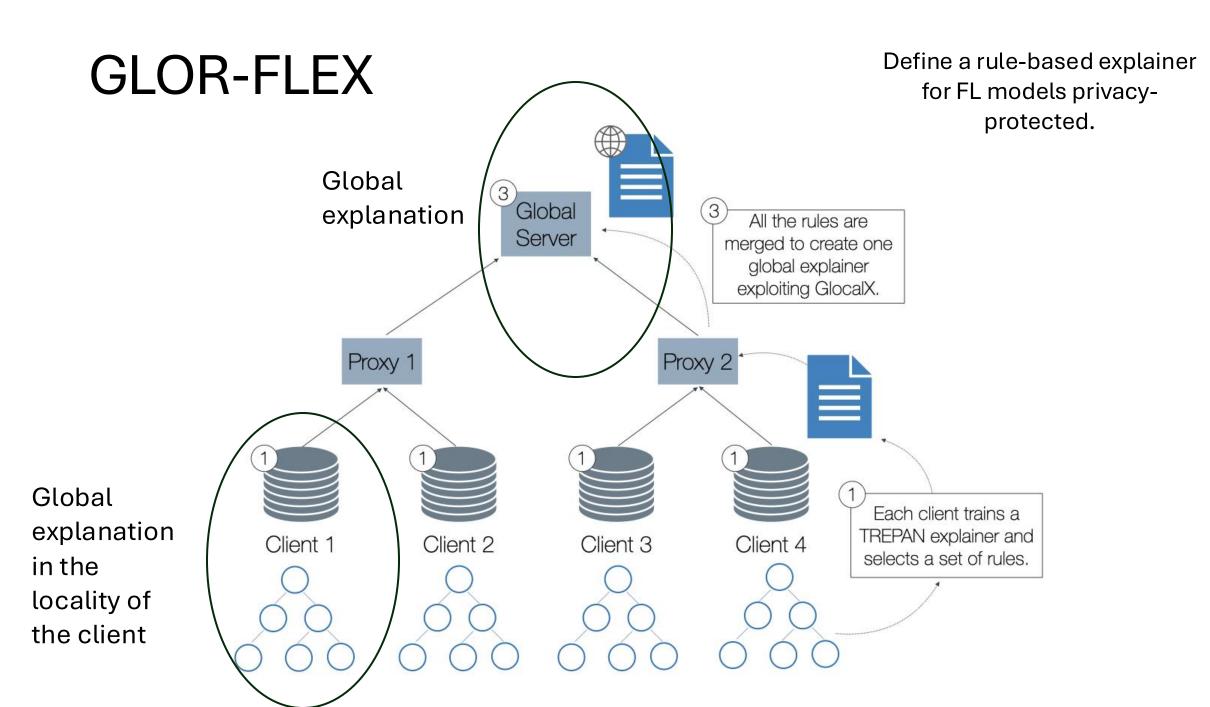
It achieves privacy without degrading the explanation quality too much, particularly when $\varepsilon \geq 1$.

Global Explainer: TREPAN

```
1 T = root_of_the_tree()
2Q = \langle T, X, \{ \} \rangle
3 while Q not empty & size(T) < limit
       N, X_N, C_N = pop(Q)
      Z_N = \mathbf{random}(XN, CN)
       y_Z = b(Z), y = b(XN)
      if same_class(y \cup y_Z)
8
            continue
       S = \mathbf{best\_split}(X_N \cup Z_N, y \cup y_Z)
       S^1 = best_m-of-n_split(S)
       N = update_with_split(N, S^1)
       for each condition c in S^1
            C = new_child_of(N)
            C_C = C_N \cup \{c\}
14
            X_C = select_with_constraints(X_N, C_N)
            put(Q, \langle C, X_C, C_C \rangle)
```

- Enriches the training data
- Labels the data by using the BB
- Train a DT (surrogate model)





How to merge rules

```
Input: \mathbb{E} explanation theories, \alpha filter threshold
Output: E explanation theory
 1: E \leftarrow \emptyset
 2: repeat
        \mathbb{Q} \leftarrow \text{sort}(\mathbb{E})
                                                                                                                           ▷ sort pairs of theories by similarity
        merged \leftarrow False
       X' \leftarrow \text{batch}(X)
        while \neg merged \land \mathbb{Q} \neq \emptyset do
            E_i, E_i \leftarrow POP(\mathbb{Q})
                                                                                                                                        ⊳ select most similar theories
            E_{i+j} \leftarrow \text{MERGE}(E_i, E_j, X')
                                                                                                                                                                ▷ merge theories
 9:
            if BIC(E_{i+j}) \leq BIC(E_i \cup E_j) then
                                                                                                                                                         ▷ verify improvement
10:
                merged \leftarrow True
11:
                break
12:
         if merged then
                                                                                                                                                                ⊳ merge occurred
13:
             \mathbb{E} \leftarrow \text{UPDATE}(E_i, E_i, E_{i+i})

    □ update hierarchy

14: until \mid E \mid > 1 \land merged
                                                                                                                                       ▶ until the merge is successful
15: E \leftarrow \text{FILTER}(E, \alpha)
                                                                                                                                                        ⊳ Filter final theory
16: return E
```

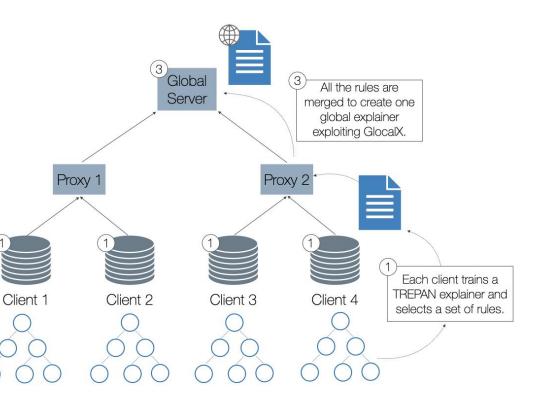
GLObal to loCAL eXplainer (**GlocalX**)
It hierarchically merges local explanations.
Explanations with lower fidelity are filtered out.

How to merge rules: drawback

GlocalX needs data to perform its tasks.

 But if we use real data outside the clients, we are no longer respecting privacy

Solution: generate synthetic data that resemble the original ones



Conclusion

GLOR-FLEX: A local-to-global post-hoc explanation method which generates rules for Federated Learning approaches.

- It uses TREPAN to generated global explanations at the client side;
- It uses GlocalX to merge the rules.

WRAP-UP:

- No private data exploited in the procedure
- Interpretability enhanced

