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Overview 

• Learning in Structured Domains (trees, graphs) 
• Recurrent/Recursive Neural Networks 
• Reservoir Computing 
• Contractivity, Markovianity 
• Reservoir computing for Structures, TreeESN, 

GraphESN 
• Applications 

 



Learning in Structured Domains 

• In many real-world application domains the information of interest can be 
naturally represented by the means of structured data representations. 

• The problems of interest can be modeled as regression or classification tasks on 
structured domains. 

Sequences Trees Graphs 

QSPR analysis of Alkanes 

Boiling 
Point 

Predictive Toxicology  Challenge MG -Chaotic Time Series Prediction 

{−1,+1} 



Learning in Structured Domains 

Learning in domains of trees and graphs opens up a wide range of research 
directions: 
• Theoretical 
• Experimental Analysis in interdisciplinary areas 

• QSAR/QSPR 
• Computational Toxicology, Cheminformatics 
• Social and Web information Processing 
• Document processing 
• Parallel Computation 
• … 

 
 Problems 

Learning in Structured Domains entails a number of open research problems, 
mainly related to the increasing complexity  of the data domains to treat 

•  Efficiency 
•  Generalization of class of data structures supported 
•  Adaptivity 
•  Generalization ability 



Neural Networks for Structured Domains 

Models 

• Neural Networks for structured domains: Recurrent Neural Networks (RNNs), 
Recursive Neural Networks (RecNNs), Neural Networks for Graphs (NN4Gs), 
Graph Neural Networks (GNNs) 

• Reservoir Computing – extension of RC to structured domain processing 
Tree Echo State Networks (TreeESNs) , Graph Echo State Networks (GraphESNs) 
 

• Kernel Methods for structures 
 



General Framework for Processing Structured Domains 

Transductions on Structured Domains 

Structure-to-structure Transductions 

is isomorphic to 

Structure-to-element Transductions 

is a vector 

label input space label output space 



General Framework for Processing Structured Domains 

Computing Structural Transductions 

Structure-to-structure Transductions 

Encoding Transduction Output Transduction 



General Framework for Processing Structured Domains 

Computing Structural Transductions 

Encoding Transduction Output Transduction 

Structure-to-element Transductions 

State Mapping Function 



Characterizations of Structural Transductions 

• Causality 
the function computed in correspondence of a vertex v depends only on v and its 
descendants 
 

• Stationarity 
the function computed in correspondence of a vertex v does not depend on the 
particular vertex v 

 
• Adaptivity 

the function is learnt from observed data 



Elman Network (Simple Recurrent Network) 

• Pro: theoretically very 

powerful; Universal 

approximation through 

training 

• Con: drawbacks related to 

training 

• Neural networks for learning sequence transductions 

• Local encoding function 𝜏 and output function 𝑔𝑜𝑢𝑡 implemented by layers of 

units. 

Encoding 

Output 

Recurrent Neural Networks 



• Paradigm for efficient RNN modeling – state of the art for efficient learning in 

sequential domains 

• Implements dynamical system 

• Conceptual separation: dynamical/recurrent non-linear part, reservoir 

                                        feed-forward output tool, readout 

• Efficiency:  

• training is restricted to the linear readout 

• exploits Markovian characterization resulting from (untrained) contractive 

dynamics 

• Includes several classes: Echo State Networks (ESNs), Liquid State Machines, 

  Backpropagation Decorrelation, Evolino, ... 

Reservoir Computing 
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Input Layer Reservoir Readout 

• Reservoir: untrained large, sparsely and randomly connected, non-linear layer 

• Readout: trained linear layer 

• linear units 

• leaky-integrators 

• spiking neurons 

Train only the connections to the readout 

encoding of the input 

sequence 

Input Space:  Reservoir State Space:  Output Space: 

Echo State Networks - Architecture 



Echo State Networks - Properties 

Echo State Property 

• A valid ESN satisfies the Echo State Property (ESP) 
• The state of the network aymptotically depends on the input history only 
• The influence of initial conditions gradually fades out 

Initialization Conditions 

Training 

Solve the least squares linear regression problem: 

• Moore-Penrose pseudo-inversion 
• Ridge regression 

Sufficient condition 

Necessary condition (asymptotical stability around 0) 

ESN Hyper-parametrization 

Reservoir dimension, input scaling, spectral radius, readout regularization, ... 



Recursive Neural Networks (RecNNs) for Structured Data 

• Generalization of RNNs for processing hierarchical structures 
• Bottom-up recursive encoding 



Recursive Neural Networks (RecNNs) for Structured Data 

• Powerful class of learning models, universal approximation for tree domains 
processing (through training) 

• Training RecNNs involves similar drawbacks to those encountered for RNNs 
• Local minima 
• Slow convergence 
• Vanishing of the gradients 

• Reservoir Computing represents a natural candidate for investigating efficient 
approaches to RecNNs modeling 

• Extension of the Reservoir Computing approach to structured domains 



Tree Echo State Networks (TreeESNs) 

• Extend the applicability of the RC/ESN approach to tree structured data 
• Extremely efficient way of modeling RecNNs 
• Architectural and experimental performance baseline for trained RecNN models 

• Generalized Reservoir: bottom-up recursive encoding process (untrained) 
• Readout: output computation (trained) 
• State Mapping Function 



Tree Echo State Networks 

Reservoir 
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Ŵ Ŵ

( ( ))kch nx

Reservoir 

• Large, sparsely connected, untrained layer of non-linear recursive units 
• Implements the local encoding function 𝜏 
• Contractive state transition system on trees 

Bottom-up Recursive Processing of Trees 

• The same reservoir 
architecture is applied 
to each node 

• Run only once: from 
the leaves to the root 

• Each reservoir unit is fed by: node label and 
states already computed for children 

• Connection between two reservoir units carries 
all the state information for the children 

Reservoir Application to an Input Node 

𝜏 

𝜏 

𝜏 

𝜏 𝜏 𝜏 

𝜏 

𝒙 𝑛 = tanh (𝑾𝑖𝑛𝒖 𝑛 +  𝑾 𝒙(𝑐ℎ𝑖 𝑛 ))

𝑘

𝑖=1

 



Tree Echo State Networks 

State Mapping Function 

Readout 

( )x t

Root State Mapping 

Mean State Mapping 

• The linear readout implements the local output function 
• Training as in ESN case (e.g. off-line by pseudo-inversion or ridge regression) 

• Maps the tree structured state into a fixed-size state 
• Influence on the characterization of the model dynamics 



Tree Echo State Networks 

Markovianity 

A state model on tree domains is characterized by a state space organization of a Markovian nature 
whenever the states it assumes in correspondence of different input trees sharing a common 
suffix, are close to each other proportionally to the height of the suffix. 

A tree suffix of t of height h is denoted by 𝑆ℎ(𝒕) 

𝑆ℎ(𝒕) =  
𝑛𝑖𝑙, 𝑡 = 𝑛𝑖𝑙 𝑜𝑟 ℎ = 0

 𝑛(𝑆ℎ−1(𝒕 𝑐ℎ1 𝑛 ), … , 𝑆ℎ−1 𝒕 𝑐ℎ𝑘 𝑛 ), 𝒕 = 𝑛(𝒕(𝑐ℎ1 𝑛 ),… , 𝒕 𝑐ℎ𝑘 𝑛 )
  



Tree Echo State Networks 

Contractivity 

The node-wise encoding function τ is a contraction with respect to the state space ℝ𝑁𝑅  

∃ 𝐶 ∈ ℝ, 0 ≤ 𝐶 < 1 
∀𝒖 ∈ ℝ𝑁𝑈 , ∀𝒙1, … , 𝒙𝑘 , 𝒙𝟏

′, … , 𝒙𝒌
′ ∈ ℝ𝑁𝑅 

τ 𝒖, 𝒙1, … , 𝒙𝑘 − τ(𝒖, 𝒙1
′, … , 𝒙𝑘

′) ≤ 𝐶 max
𝑖=1,…,𝑘

𝒙𝑖 − 𝒙𝑖
′  

Contractivity + Bounded state space: Markovian characterization of TreeESN dynamics 



Tree Echo State Networks 

Markovianity 

• Inherited from ESN for sequences 
• Ensures stability of the encoding process 
• Markovian organization of TreeESN state space 

Contractivity of Reservoir Dynamics 

sharing a common suffix of height h 

Markovian Characterization of TreeESN Dynamics 

• Implies a tree version of the Echo State Property 
• The reservoir of TreeESN is able to discriminate among 

input trees in a Markovian tree suffix –based way 
without any training 

• Suitable for tasks with target functions compatible with 
Markovianity 

Contractive Initialization 

Assuming Euclidean distance as metric in the reservoir space 



Tree Echo State Networks 

Computational Complexity 

Extremely efficient RC approach: only the linear readout parameters are trained 

Encoding Process 

For each tree t 

• Scales linearly with the number of nodes and the reservoir dimension 
• The same cost for training and test 
• Compares well with state of art methods for trees: 

• RecNNs: extra cost (time + memory) for gradient computations 
• Kernel methods: higher cost of encoding (e.g. Quadratic in PT kernels) 

number of nodes max degree number of reservoir units degree of 
connectivity 

Output Computation 

• Depends on the method used (e.g.  Direct using SVD or iterative) 
• The cost of training the linear TreeESN readout is generally inferior to the cost 

of training MLPs or SVMs (used in RecNNs and Kernels) 



Tree Echo State Networks 

Experiments 
Markovian/anti-Markovian Tasks 

• Target functions with Markovian/anti-Markovian characterization (tight control on Markovianity) 
• Relevant influence of the choice of the state mapping function 

Markovian task Anti-Markovian task 

• Better than mean state mapping on Markovian 
task (independently on the degree of 
contractivity) 

• Worse than null model on the anti-Markovian 
task 

• Outperforms TreeESN with root state mapping 
on anti-Markovian Task (but not sufficient to 
solve it) 

• Almost the same performance on the two tasks 
(prefixes and suffixes are merged together) 

Root State Mapping Mean State Mapping 



Tree Echo State Networks 

Experiments 
QSPR Analysis of Alkanes 
• Predict the boiling point of alkanes 
• Target is related to global properties of the molecules (num of carbons + branching pattern): non Markovian 

• Performance is sensible to 
the choice of state 
mapping function 

• Though analysis aim: 
reasonable results respect 
to state-of-the-art 

Root State Mapping 

Mean State Mapping 



Dealing with Cycles and Undirected Graphs 

• Dealing with cyclic/undirected structures represents an issue due to the causal 
assumption 

• Two approaches: explicitly treat the cycles constraining state dynamics (GraphESN, 
GNN), or contextual non-recursive approach (NN4Gs)  

• In case of undirected graphs, the state 
computed for each vertex depends on 
the state computed for its neighbors 

• Mutual dependencies among the states 

• RecNNs traditionally unsuitable for processing cyclic and undirected graphs 



Neural Networks for Graphs (NN4Gs) 

• Recently proposed model for processing general classes of graphs 
• Encoding transduction implemented by a non-recursive state transition function 
• The encoding process is non-recursive and can be computed without stability issues 
• Overcome the causal assumption: directly deal with cyclic/acyclic, 

directed/undirected graphs 
• Contextual, constructive approach 

• The context window is incrementally 
extended when the number of hidden units 
is increased 

• The output function is implemented by a 
layer of linear units 

• For structure-to-element transduction a 
state-mapping-function is used 



Kernel Methods for Graphs 

• Extension of kernel methods for dealing with structured data directly 
• Idea is to define a kernel function on the product space of the structured input domain 

 
 

• Corresponds to the definition of a similarity measure on couples of instances in the 
structured input space 

• The encoding transduction is implicitly computed by the kernel function, the output 
transduction is computed by a SVM 

 

Examples: Marginalized Kernel, Optimal Assignment Kernel, EM Kernel, …. 



Graph Echo State Networks 

• GraphESN extends the applicability of RC to general graphs 
• Dealing with general graphs brings expressive potential but possible explosion of 

computational cost with respect to the size of input 

• Generalized Reservoir: contractive encoding process (untrained) 
• Readout: output computation (trained) 
• State Mapping Function 
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Graph Echo State Networks 

Reservoir 
• Implements the local encoding function on graph patterns 

v 

• Inherited from ESNs and TreeESNs 
• Guarantees stability of the encoding process (Banach Th.) 
• Extends applicability to cyclic/undirected graphs 
• Markovian nature of reservoir space organization 
• Iterative encoding process 

 

Initialization 

Contractivity of Reservoir Dynamics 

State transition system on graphs 

Standard ESN GraphESN 



Graph Echo State Networks 

Markovianity 

e.g. d = 2 

• Contractivity of the state transition function implies reservoir dynamics with Markovian 
flavour 

• Suffix: the concept is extended to the set of d-neighbors of a vertex v, i.e. 𝑁 𝑑 (𝑣) 

such that 

Markovian Characterization of GraphESN Dynamics 

• Ability to discriminate among graph patterns in a suffix-based Markovian way without 
learning of the recursive connections (untrained reservoir) 

• Architectural baseline 
• Tasks within Markovian characterization can be approached very efficiently by 

GraphESNs 
• Limit of the model, unsuitableness for tasks with no Markovian assumptions 

𝒙 𝑣 − 𝒙(𝑣′) 2 ≤ 𝐶𝑑𝑑𝑖𝑎𝑚 



Graph Echo State Networks 

Computational Complexity 

Exploits extreme efficiency of RC approach 

Encoding Process 
For each graph g, 
for each pass of  the encoding process 

• Scales linearly with the number of nodes and the reservoir dimension 
• The same cost for training and testing 
• Compares well with state of art methods for graph domains: 

• GNN:  (as in GraphESN + learning) x number of epochs 
• Kernel methods: quadratic (e.g. EM Kernel), cubic (e.g. OA Kernel) 

number of nodes max degree number of reservoir units degree of 
connectivity 

Output Computation 

• Depends on the method used  
• Inferior to the cost of training MLPs or SVMs (used in RecNNs and Kernels) 



Graph Neural Networks (GNNs) 

• Stability of the recursive encoding process is guaranteed by resorting to 
contractive state dynamics (like in GraphESN) 

• The error function in the gradient descent learning algorithm includes a 
penalty term (to penalize non-contractive state transition functions) 

• State relaxation – gradient computation phases are alternated 
• Reduced efficiency with respect to GraphESNs 



Predictive Toxicology Challenge (PTC) Dataset  

• Carcinogenicity information for 417 molecules 
• Data concerns 4 classes of rodents: Male Rats (MR), Female Rats (FR), Male Mice (MM), Female 

Mice (FM) 
• Classificaton Task (carcinogenic molecule +1, non-carcinogenic molecule -1) 
• Molecules are represented as undirected graphs 

Tetrachloroethylene 

[1 0 0 0 0 0 0 … 0 0] 

atom type 

global properties 

vertices 

edges 

toxic 

non toxic 

+1 

-1 

Structure-to-element 

transductions 



PTC Dataset– SDF Format 

WItclserve11290013443D 0   0.00000     0.00000cramer 
  
 25 26  0  0  0  0  0  0  0  0  2 V2000 
 
 0.7143    0.6231   -0.1367 C   0  0  0  0  0  0  0  0  0  0  0  0 
 1.6445    1.6447   -0.1115 C   0  0  0  0  0  0  0  0  0  0  0  0 
   ... 
  3.2657    0.0876    2.1403 H   0  0  0  0  0  0  0  0  0  0  0  0 
 -1.0455   -0.9737    2.0776 H   0  0  0  0  0  0  0  0  0  0  0  0 
 
  1  2  1  0  0  0  0 
  2  3  2  0  0  0  0 
  3  4  1  0  0  0  0 
     ... 
 15 25  1  0  0  0  0 
 
M  CHG  2  16   1  18  -1 
M  END 
 
> <RecNN.name> 
TR026 
 
> <PTC.CLASS.FR> 
+1 
 
> <PTC.CLASS.MM> 
+1 
 
> <PTC.CLASS.FM> 
+1 

Atom block 

Bond block 

Property Block 

Additional Information 

Atom element 

Edges information 

Global information for the atom label 

Target Information 

Molecule Name 



Graph Echo State Networks 

Experiments 
Predictive Toxicology Challenge (PTC) Dataset 

FR MM 

• Model selection on GraphESN hyper-parameters (by cross fold validation)  



Graph Echo State Networks 

Experiments 
Mutagenesis Dataset 

Model AB AB+C AB+C+PS 

RDBC 83% 82% 

TILDE 77% 82% 

1nn(dm) 81% 88% 

GNN 86% 

GraphESN Average 72%(±4%) 82%(±7%) 82%(±7%) 

Supersource S.M. Best 81%(±3%) 89%(±7%) 88%(±8%) 

GraphESN Average 76%(±9%) 80%(±6%) 80%(±6%) 

Mean S.M. Best 86%(±7%) 88%(±8%) 87%(±6%) 

• Mutagenicity of nitroaromatic compounds 
• Classificaton Task 
• Different descriptions of the molecules are available (AB, C, PS) 

• State-of-the-art results 
within the range of 
GraphESN performance 

• Relevance of the 
contractive assumption 
 



Adaptivity of State Mappings for GraphESN 

Motivations 
• State transition systems naturally unsuitable for graph-to-element transductions 

? 

• Extract the relavant information from structured state spaces 
• Weight the relevance of each vertex on the output 
• Deal with general graphs with variable size and topology (no vertices alignments) 

State Mapping Function 

• Relevant effect 
• Critical role in applications (in 

relation to the target properties) 

• Flexible/adaptive state 
mapping functions 



Adaptivity of State Mappings for GraphESN 

GraphESN-wnn 

Reservoir State Space 

K-NN 

K-NN 

K-NN 

K-NN 

Standard 

GraphESN 

• Readout implemented using distance-
weighted K-neares neighbor 

• Weights the contribution of each vertex 
according to a fixed scheme 

• Flexible/supervised extraction of 
information from the reservoir state 
space 

• Stronger influence of vertices whose 
states are in regions corresponding to 
more uniform target information 

PTC Dataset 

Model selection on reservoir parameters, K, readout reg. Best reservoir setting after model selection on the readout 



Adaptivity of State Mappings for GraphESN 

GraphESN-NG 

• Fully adaptively weight (through readout learning) the relevance of the states of 
each vertex in the state mapping computation 

• Neural Gas (NG) clustering algorithm is used to cluster the reservoir space 
• For each graph g, average the state information locally to each cluster and then 

combined with free parameters for the output computation 

• Supervised approach for the adaptation of the 
state mapping computation 

• For K = 1 GraphESN is obtained 



Adaptivity of State Mappings for GraphESN 

GraphESN-NG    -    Experiments 

PTC Dataset 

Model selection on the hyper-parameters by double cross fold validation 

Bursi Dataset 

Effectiveness of the adaptive approach for state mapping functon computation 

Performance comparable to MG and OA kernels 

GraphESN-NG outperforms competitive state-of-the-art methods (lazar, Benigni/Bossa  
structural alerts) 

Mutagenicity of chemicals. Large, high quality dataset. 



• Learning in Structured Domains: opens up a wide range of research directions, 

  applications + research issues 

• Transductions on trees and graphs 

• Extension of the Reservoir Computing paradigm for trees: TreeESN 

• Extension of the Reservoir Computing paradigm for graphs: GraphESN 

• Reservoir: non-linear dynamic component, untrained after contractive initialization 

   used ot implement the vertex-wise encoding function 

• Readout: linear feed-forward component, trained 

  used to implement the vertex-wise output function  

• State Mapping Function: influences the organization of the resulting state space 

• Markovian flavour of reservoir state dynamics 

   extended to the case of state transition systems on trees and graphs 

• Successful applications  

• Model Selection: many hyper-parameters to be set 

Conclusions 
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