
Reservoir Computing for Learning

in Structured Domains

Claudio Gallicchio

Department of Computer Science

University of Pisa

Computational Intelligence

and Machine Learning Group

gallicch@di.unipi.it

Machine Learning: Neural Networks and Advanced Models (AA2)

April 2015

Overview

• Learning in Structured Domains (trees, graphs)
• Recurrent/Recursive Neural Networks
• Reservoir Computing
• Contractivity, Markovianity
• Reservoir computing for Structures, TreeESN,

GraphESN
• Applications

Learning in Structured Domains

• In many real-world application domains the information of interest can be
naturally represented by the means of structured data representations.

• The problems of interest can be modeled as regression or classification tasks on
structured domains.

Sequences Trees Graphs

QSPR analysis of Alkanes

Boiling
Point

Predictive Toxicology Challenge MG -Chaotic Time Series Prediction

{−1,+1}

Learning in Structured Domains

Learning in domains of trees and graphs opens up a wide range of research
directions:
• Theoretical
• Experimental Analysis in interdisciplinary areas

• QSAR/QSPR
• Computational Toxicology, Cheminformatics
• Social and Web information Processing
• Document processing
• Parallel Computation
• …

 Problems

Learning in Structured Domains entails a number of open research problems,
mainly related to the increasing complexity of the data domains to treat

• Efficiency
• Generalization of class of data structures supported
• Adaptivity
• Generalization ability

Neural Networks for Structured Domains

Models

• Neural Networks for structured domains: Recurrent Neural Networks (RNNs),
Recursive Neural Networks (RecNNs), Neural Networks for Graphs (NN4Gs),
Graph Neural Networks (GNNs)

• Reservoir Computing – extension of RC to structured domain processing
Tree Echo State Networks (TreeESNs) , Graph Echo State Networks (GraphESNs)

• Kernel Methods for structures

General Framework for Processing Structured Domains

Transductions on Structured Domains

Structure-to-structure Transductions

is isomorphic to

Structure-to-element Transductions

is a vector

label input space label output space

General Framework for Processing Structured Domains

Computing Structural Transductions

Structure-to-structure Transductions

Encoding Transduction Output Transduction

General Framework for Processing Structured Domains

Computing Structural Transductions

Encoding Transduction Output Transduction

Structure-to-element Transductions

State Mapping Function

Characterizations of Structural Transductions

• Causality
the function computed in correspondence of a vertex v depends only on v and its
descendants

• Stationarity
the function computed in correspondence of a vertex v does not depend on the
particular vertex v

• Adaptivity

the function is learnt from observed data

Elman Network (Simple Recurrent Network)

• Pro: theoretically very

powerful; Universal

approximation through

training

• Con: drawbacks related to

training

• Neural networks for learning sequence transductions

• Local encoding function 𝜏 and output function 𝑔𝑜𝑢𝑡 implemented by layers of

units.

Encoding

Output

Recurrent Neural Networks

• Paradigm for efficient RNN modeling – state of the art for efficient learning in

sequential domains

• Implements dynamical system

• Conceptual separation: dynamical/recurrent non-linear part, reservoir

 feed-forward output tool, readout

• Efficiency:

• training is restricted to the linear readout

• exploits Markovian characterization resulting from (untrained) contractive

dynamics

• Includes several classes: Echo State Networks (ESNs), Liquid State Machines,

 Backpropagation Decorrelation, Evolino, ...

Reservoir Computing

inW

Ŵ

outW()nu ()ny

()nx

Input Layer Reservoir Readout

• Reservoir: untrained large, sparsely and randomly connected, non-linear layer

• Readout: trained linear layer

• linear units

• leaky-integrators

• spiking neurons

Train only the connections to the readout

encoding of the input

sequence

Input Space: Reservoir State Space: Output Space:

Echo State Networks - Architecture

Echo State Networks - Properties

Echo State Property

• A valid ESN satisfies the Echo State Property (ESP)
• The state of the network aymptotically depends on the input history only
• The influence of initial conditions gradually fades out

Initialization Conditions

Training

Solve the least squares linear regression problem:

• Moore-Penrose pseudo-inversion
• Ridge regression

Sufficient condition

Necessary condition (asymptotical stability around 0)

ESN Hyper-parametrization

Reservoir dimension, input scaling, spectral radius, readout regularization, ...

Recursive Neural Networks (RecNNs) for Structured Data

• Generalization of RNNs for processing hierarchical structures
• Bottom-up recursive encoding

Recursive Neural Networks (RecNNs) for Structured Data

• Powerful class of learning models, universal approximation for tree domains
processing (through training)

• Training RecNNs involves similar drawbacks to those encountered for RNNs
• Local minima
• Slow convergence
• Vanishing of the gradients

• Reservoir Computing represents a natural candidate for investigating efficient
approaches to RecNNs modeling

• Extension of the Reservoir Computing approach to structured domains

Tree Echo State Networks (TreeESNs)

• Extend the applicability of the RC/ESN approach to tree structured data
• Extremely efficient way of modeling RecNNs
• Architectural and experimental performance baseline for trained RecNN models

• Generalized Reservoir: bottom-up recursive encoding process (untrained)
• Readout: output computation (trained)
• State Mapping Function

Tree Echo State Networks

Reservoir

inW Ŵ

()nu 1(())ch nx

()nx

Ŵ Ŵ

(())kch nx

Reservoir

• Large, sparsely connected, untrained layer of non-linear recursive units
• Implements the local encoding function 𝜏
• Contractive state transition system on trees

Bottom-up Recursive Processing of Trees

• The same reservoir
architecture is applied
to each node

• Run only once: from
the leaves to the root

• Each reservoir unit is fed by: node label and
states already computed for children

• Connection between two reservoir units carries
all the state information for the children

Reservoir Application to an Input Node

𝜏

𝜏

𝜏

𝜏 𝜏 𝜏

𝜏

𝒙 𝑛 = tanh (𝑾𝑖𝑛𝒖 𝑛 + 𝑾 𝒙(𝑐ℎ𝑖 𝑛))

𝑘

𝑖=1

Tree Echo State Networks

State Mapping Function

Readout

()x t

Root State Mapping

Mean State Mapping

• The linear readout implements the local output function
• Training as in ESN case (e.g. off-line by pseudo-inversion or ridge regression)

• Maps the tree structured state into a fixed-size state
• Influence on the characterization of the model dynamics

Tree Echo State Networks

Markovianity

A state model on tree domains is characterized by a state space organization of a Markovian nature
whenever the states it assumes in correspondence of different input trees sharing a common
suffix, are close to each other proportionally to the height of the suffix.

A tree suffix of t of height h is denoted by 𝑆ℎ(𝒕)

𝑆ℎ(𝒕) =
𝑛𝑖𝑙, 𝑡 = 𝑛𝑖𝑙 𝑜𝑟 ℎ = 0

 𝑛(𝑆ℎ−1(𝒕 𝑐ℎ1 𝑛), … , 𝑆ℎ−1 𝒕 𝑐ℎ𝑘 𝑛), 𝒕 = 𝑛(𝒕(𝑐ℎ1 𝑛),… , 𝒕 𝑐ℎ𝑘 𝑛)

Tree Echo State Networks

Contractivity

The node-wise encoding function τ is a contraction with respect to the state space ℝ𝑁𝑅

∃ 𝐶 ∈ ℝ, 0 ≤ 𝐶 < 1
∀𝒖 ∈ ℝ𝑁𝑈 , ∀𝒙1, … , 𝒙𝑘 , 𝒙𝟏

′, … , 𝒙𝒌
′ ∈ ℝ𝑁𝑅

τ 𝒖, 𝒙1, … , 𝒙𝑘 − τ(𝒖, 𝒙1
′, … , 𝒙𝑘

′) ≤ 𝐶 max
𝑖=1,…,𝑘

𝒙𝑖 − 𝒙𝑖
′

Contractivity + Bounded state space: Markovian characterization of TreeESN dynamics

Tree Echo State Networks

Markovianity

• Inherited from ESN for sequences
• Ensures stability of the encoding process
• Markovian organization of TreeESN state space

Contractivity of Reservoir Dynamics

sharing a common suffix of height h

Markovian Characterization of TreeESN Dynamics

• Implies a tree version of the Echo State Property
• The reservoir of TreeESN is able to discriminate among

input trees in a Markovian tree suffix –based way
without any training

• Suitable for tasks with target functions compatible with
Markovianity

Contractive Initialization

Assuming Euclidean distance as metric in the reservoir space

Tree Echo State Networks

Computational Complexity

Extremely efficient RC approach: only the linear readout parameters are trained

Encoding Process

For each tree t

• Scales linearly with the number of nodes and the reservoir dimension
• The same cost for training and test
• Compares well with state of art methods for trees:

• RecNNs: extra cost (time + memory) for gradient computations
• Kernel methods: higher cost of encoding (e.g. Quadratic in PT kernels)

number of nodes max degree number of reservoir units degree of
connectivity

Output Computation

• Depends on the method used (e.g. Direct using SVD or iterative)
• The cost of training the linear TreeESN readout is generally inferior to the cost

of training MLPs or SVMs (used in RecNNs and Kernels)

Tree Echo State Networks

Experiments
Markovian/anti-Markovian Tasks

• Target functions with Markovian/anti-Markovian characterization (tight control on Markovianity)
• Relevant influence of the choice of the state mapping function

Markovian task Anti-Markovian task

• Better than mean state mapping on Markovian
task (independently on the degree of
contractivity)

• Worse than null model on the anti-Markovian
task

• Outperforms TreeESN with root state mapping
on anti-Markovian Task (but not sufficient to
solve it)

• Almost the same performance on the two tasks
(prefixes and suffixes are merged together)

Root State Mapping Mean State Mapping

Tree Echo State Networks

Experiments
QSPR Analysis of Alkanes
• Predict the boiling point of alkanes
• Target is related to global properties of the molecules (num of carbons + branching pattern): non Markovian

• Performance is sensible to
the choice of state
mapping function

• Though analysis aim:
reasonable results respect
to state-of-the-art

Root State Mapping

Mean State Mapping

Dealing with Cycles and Undirected Graphs

• Dealing with cyclic/undirected structures represents an issue due to the causal
assumption

• Two approaches: explicitly treat the cycles constraining state dynamics (GraphESN,
GNN), or contextual non-recursive approach (NN4Gs)

• In case of undirected graphs, the state
computed for each vertex depends on
the state computed for its neighbors

• Mutual dependencies among the states

• RecNNs traditionally unsuitable for processing cyclic and undirected graphs

Neural Networks for Graphs (NN4Gs)

• Recently proposed model for processing general classes of graphs
• Encoding transduction implemented by a non-recursive state transition function
• The encoding process is non-recursive and can be computed without stability issues
• Overcome the causal assumption: directly deal with cyclic/acyclic,

directed/undirected graphs
• Contextual, constructive approach

• The context window is incrementally
extended when the number of hidden units
is increased

• The output function is implemented by a
layer of linear units

• For structure-to-element transduction a
state-mapping-function is used

Kernel Methods for Graphs

• Extension of kernel methods for dealing with structured data directly
• Idea is to define a kernel function on the product space of the structured input domain

• Corresponds to the definition of a similarity measure on couples of instances in the
structured input space

• The encoding transduction is implicitly computed by the kernel function, the output
transduction is computed by a SVM

Examples: Marginalized Kernel, Optimal Assignment Kernel, EM Kernel, ….

Graph Echo State Networks

• GraphESN extends the applicability of RC to general graphs
• Dealing with general graphs brings expressive potential but possible explosion of

computational cost with respect to the size of input

• Generalized Reservoir: contractive encoding process (untrained)
• Readout: output computation (trained)
• State Mapping Function

𝜏 𝜏

𝜏
𝜏 𝜏

𝜏
𝜏

𝜏

𝜏

𝜏

𝜏
𝜏

𝜏
𝜏

Graph Echo State Networks

Reservoir
• Implements the local encoding function on graph patterns

v

• Inherited from ESNs and TreeESNs
• Guarantees stability of the encoding process (Banach Th.)
• Extends applicability to cyclic/undirected graphs
• Markovian nature of reservoir space organization
• Iterative encoding process

Initialization

Contractivity of Reservoir Dynamics

State transition system on graphs

Standard ESN GraphESN

Graph Echo State Networks

Markovianity

e.g. d = 2

• Contractivity of the state transition function implies reservoir dynamics with Markovian
flavour

• Suffix: the concept is extended to the set of d-neighbors of a vertex v, i.e. 𝑁 𝑑 (𝑣)

such that

Markovian Characterization of GraphESN Dynamics

• Ability to discriminate among graph patterns in a suffix-based Markovian way without
learning of the recursive connections (untrained reservoir)

• Architectural baseline
• Tasks within Markovian characterization can be approached very efficiently by

GraphESNs
• Limit of the model, unsuitableness for tasks with no Markovian assumptions

𝒙 𝑣 − 𝒙(𝑣′) 2 ≤ 𝐶𝑑𝑑𝑖𝑎𝑚

Graph Echo State Networks

Computational Complexity

Exploits extreme efficiency of RC approach

Encoding Process
For each graph g,
for each pass of the encoding process

• Scales linearly with the number of nodes and the reservoir dimension
• The same cost for training and testing
• Compares well with state of art methods for graph domains:

• GNN: (as in GraphESN + learning) x number of epochs
• Kernel methods: quadratic (e.g. EM Kernel), cubic (e.g. OA Kernel)

number of nodes max degree number of reservoir units degree of
connectivity

Output Computation

• Depends on the method used
• Inferior to the cost of training MLPs or SVMs (used in RecNNs and Kernels)

Graph Neural Networks (GNNs)

• Stability of the recursive encoding process is guaranteed by resorting to
contractive state dynamics (like in GraphESN)

• The error function in the gradient descent learning algorithm includes a
penalty term (to penalize non-contractive state transition functions)

• State relaxation – gradient computation phases are alternated
• Reduced efficiency with respect to GraphESNs

Predictive Toxicology Challenge (PTC) Dataset

• Carcinogenicity information for 417 molecules
• Data concerns 4 classes of rodents: Male Rats (MR), Female Rats (FR), Male Mice (MM), Female

Mice (FM)
• Classificaton Task (carcinogenic molecule +1, non-carcinogenic molecule -1)
• Molecules are represented as undirected graphs

Tetrachloroethylene

[1 0 0 0 0 0 0 … 0 0]

atom type

global properties

vertices

edges

toxic

non toxic

+1

-1

Structure-to-element

transductions

PTC Dataset– SDF Format

WItclserve11290013443D 0 0.00000 0.00000cramer

 25 26 0 0 0 0 0 0 0 0 2 V2000

 0.7143 0.6231 -0.1367 C 0 0 0 0 0 0 0 0 0 0 0 0
 1.6445 1.6447 -0.1115 C 0 0 0 0 0 0 0 0 0 0 0 0
 ...
 3.2657 0.0876 2.1403 H 0 0 0 0 0 0 0 0 0 0 0 0
 -1.0455 -0.9737 2.0776 H 0 0 0 0 0 0 0 0 0 0 0 0

 1 2 1 0 0 0 0
 2 3 2 0 0 0 0
 3 4 1 0 0 0 0
 ...
 15 25 1 0 0 0 0

M CHG 2 16 1 18 -1
M END

> <RecNN.name>
TR026

> <PTC.CLASS.FR>
+1

> <PTC.CLASS.MM>
+1

> <PTC.CLASS.FM>
+1

Atom block

Bond block

Property Block

Additional Information

Atom element

Edges information

Global information for the atom label

Target Information

Molecule Name

Graph Echo State Networks

Experiments
Predictive Toxicology Challenge (PTC) Dataset

FR MM

• Model selection on GraphESN hyper-parameters (by cross fold validation)

Graph Echo State Networks

Experiments
Mutagenesis Dataset

Model AB AB+C AB+C+PS

RDBC 83% 82%

TILDE 77% 82%

1nn(dm) 81% 88%

GNN 86%

GraphESN Average 72%(±4%) 82%(±7%) 82%(±7%)

Supersource S.M. Best 81%(±3%) 89%(±7%) 88%(±8%)

GraphESN Average 76%(±9%) 80%(±6%) 80%(±6%)

Mean S.M. Best 86%(±7%) 88%(±8%) 87%(±6%)

• Mutagenicity of nitroaromatic compounds
• Classificaton Task
• Different descriptions of the molecules are available (AB, C, PS)

• State-of-the-art results
within the range of
GraphESN performance

• Relevance of the
contractive assumption

Adaptivity of State Mappings for GraphESN

Motivations
• State transition systems naturally unsuitable for graph-to-element transductions

?

• Extract the relavant information from structured state spaces
• Weight the relevance of each vertex on the output
• Deal with general graphs with variable size and topology (no vertices alignments)

State Mapping Function

• Relevant effect
• Critical role in applications (in

relation to the target properties)

• Flexible/adaptive state
mapping functions

Adaptivity of State Mappings for GraphESN

GraphESN-wnn

Reservoir State Space

K-NN

K-NN

K-NN

K-NN

Standard

GraphESN

• Readout implemented using distance-
weighted K-neares neighbor

• Weights the contribution of each vertex
according to a fixed scheme

• Flexible/supervised extraction of
information from the reservoir state
space

• Stronger influence of vertices whose
states are in regions corresponding to
more uniform target information

PTC Dataset

Model selection on reservoir parameters, K, readout reg. Best reservoir setting after model selection on the readout

Adaptivity of State Mappings for GraphESN

GraphESN-NG

• Fully adaptively weight (through readout learning) the relevance of the states of
each vertex in the state mapping computation

• Neural Gas (NG) clustering algorithm is used to cluster the reservoir space
• For each graph g, average the state information locally to each cluster and then

combined with free parameters for the output computation

• Supervised approach for the adaptation of the
state mapping computation

• For K = 1 GraphESN is obtained

Adaptivity of State Mappings for GraphESN

GraphESN-NG - Experiments

PTC Dataset

Model selection on the hyper-parameters by double cross fold validation

Bursi Dataset

Effectiveness of the adaptive approach for state mapping functon computation

Performance comparable to MG and OA kernels

GraphESN-NG outperforms competitive state-of-the-art methods (lazar, Benigni/Bossa
structural alerts)

Mutagenicity of chemicals. Large, high quality dataset.

• Learning in Structured Domains: opens up a wide range of research directions,

 applications + research issues

• Transductions on trees and graphs

• Extension of the Reservoir Computing paradigm for trees: TreeESN

• Extension of the Reservoir Computing paradigm for graphs: GraphESN

• Reservoir: non-linear dynamic component, untrained after contractive initialization

 used ot implement the vertex-wise encoding function

• Readout: linear feed-forward component, trained

 used to implement the vertex-wise output function

• State Mapping Function: influences the organization of the resulting state space

• Markovian flavour of reservoir state dynamics

 extended to the case of state transition systems on trees and graphs

• Successful applications

• Model Selection: many hyper-parameters to be set

Conclusions

• Tree Echo State Networks

• C. Gallicchio, A. Micheli, Tree echo state networks,

Neurocomputing, vol.101, pag. 319-337, 2013

• Graph Echo State Networks

• C. Gallicchio, A. Micheli, Graph echo state networks, International Joint

Conference on Neural Networks (IJCNN), IEEE, pag. 1-8, 2010

• C. Gallicchio, A. Micheli, Supervised State Mapping of Clustered GraphESN

States, Proceedings of the 21st Italian Workshop on Neural Nets (Wirn), Vol.

234, pag. 28-35. IOS Press, 2011

• Neural Network for Graphs

• A. Micheli, Neural network for graphs: a contextual constructive

approach,IEEE Transactions on Neural Networks, vol. 20 (3), pag. 498-511,

doi: 10.1109/TNN.2008.2010350, 2009.

References

