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Outline 

• Focus: Supervised learning in domain of sequences 

• Recurrent Neural networks for supervised learning in domains of 

sequences 

• Reservoir Computing: paradigm for efficient training of Recurrent 

Neural Networks 

• Echo State Network model theory and applications 

 



Notation used for Tasks on Sequence Domains (Supervised Learning) 

Input Sequence → Output Sequence 

One output vector for each input vector 

E.g. Sequence Transdution, Next Step Prediction 

Input Sequence → Output Vector 

One output vector for each input sequence 

E.g. Sequence classification 

time 

Example or sample: 

Example or sample: 

Sequence Processing 

Notation: in the following slides, the variable n denotes the time step. 



• NN for processing temporal data exploit the idea of representing (more or 

less explicitely) the past input context in which new input information is 

observed 

• Basic approaches: windowing strategies, feedback connections. 

 

Neural Networks for Learning in Sequence Domains 
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Input Delay Neural Networks (IDNN) 

𝒚 𝑛 = 𝑓(𝒖 𝑛 − 𝐷𝑈 , … , 𝒖 𝑛 − 1 , 𝒖 𝑛 ), 

• Pro: simplicity, training using 

Back-propagation 

• Con: fixed window size. 

Temporal context represented using feed-forward neural networks + input windowing 

 



Recurrent Neural Networks (RNNs) 

Elman Network (Simple Recurrent Network) 

• Pro: theoretically very 

powerful; Universal 

approximation through 

training 

• Con: drawbacks related to 

training 

• Neural network architectures with explicit recurrent connections 

• Feedback allows the representation of temporal context of state information (neural 

memory) – implement dynamical  systems 

• Potentially maintain input history information for arbitrary periods of time 

 

𝒚 𝑛 = 𝑓𝑌 𝒙 𝑛  

𝒙 𝑛 =  𝑓𝐻 𝒖 𝑛 , 𝒄 𝑛  
𝒄 𝑛 = 𝒙(𝑛 − 1) 



Learning with RNNs 

• Universal approximation of RNNs (e.g. Elman, NARX) through learning 

• However, training algorithms for RNNs involve some known drawbacks: 

• High computational training costs and slow convergence 

• Local minima (error function is generally a non convex function) 

• Vanishing of the gradient and problem in learning long-term dependencies 



Markovian Bias of RNNs 

• Properties of RNNs state dynamics in the early stages of training 

• RNNs initialized with small weights result in contractive state transition functions 

and can discriminate among different input histories even prior to learning 

• Markovian characterization of the state dynamics is a bias for RNN architectures 

• Computational tasks with characterization compatible to such Markovian 

characterization can be approached by RNNs in which recurrent connections are not 

trained 

• Reservoir Computation paradigm exploits this fixed Markovian characterization 



Reservoir Computing (RC) 

• Paradigm for efficient RNN modeling – state of the art for efficient learning in 

sequential domains 

• Implements dynamical system 

• Conceptual separation: dynamical/recurrent non-linear part (reservoir) 

                                        feed-forward output tool (readout) 

• Efficiency:  

• training is restricted to the linear readout 

• exploits Markovian characterization resulting from (untrained) contractive 

dynamics 

• Includes several classes: Echo State Networks (ESNs), Liquid State Machines, 

  Backpropagation Decorrelation, Evolino, ... 



Echo State Networks 
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Input Layer Reservoir Readout 

• Reservoir: untrained large, sparsely and randomly connected, non-linear layer 

• Readout: trained linear layer 

• linear units 

• leaky-integrators 

• spiking neurons 

Train only the connections to the readout 

encoding of the input 

sequence 

Input Space:  Reservoir State Space:  Output Space: 



Reservoir Computation 

The reservoir implements the state transition function: 

Iterated version of the state transition function (application of the reservoir to an input 

sequence): 

initial state 



Echo State Property (ESP) 

Echo State Property 

• Holds if the state of the network is determined uniquely by the left-inifinite input 

  history 

• State contractive, state forgetting, input forgetting  

• The state of the network asymptotically depends only on the driving input signal 

• Dependencies on the initial conditions are progressively lost 



Conditions for the Echo State Property 

Conditions on  

Sufficient: maximum singular value is less than 1 

Necessary: spectral radius is less than 1 

(contractive dynamics) 

(asymptotically stable around the 0 state) 



How to Initialize ESNs 

Reservoir Initialization 

•            initialized randomly in  

• Start with a randomly generated matrix  

• Scale to meet the condition for the ESP 

•            initialization procedure: 
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Input Layer Reservoir Readout 



Training ESNs 

• Discard an initial transient  (washout) 

• Collect the reservoir states and target values for each n 

 

•Train the linear readout: 

 

Training Phase 
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Input Layer Reservoir Readout 



Training the Readout 

Moore-Penrose pseudo-inversion 

Ridge Regression 

(possible regularization using random noise) 

• Off-line training: standard in most applications 

is the regularization coefficient (tipically < 1) 

• On-line training 

• Least Mean Squares typically not suitable (ill posed problem) 

• Recursive Least Squares more suitable 



Training the Readout 

• Other readouts:  

• MLPs, SVMs, kNN, etc... 

• Multiple readouts for the same reservoir: solving more tasks with the 

same reservoir dynamics 



Easy, Efficient, but many fixed hyper-parameters to set... 

ESN Hyper-parametrization (Model Selection) 

• Reservoir dimension 

• Spectral radius 

• Input Scaling 

• Reservoir sparsity 

• Non-linearity of reservoir activation function 

• Input bias 

• Architectural design 

• Length of the transient (settling time) 

• Readout Regularization 

 ESN hyper-parametrization should be chosen carefully  through an 

appropriate model selection procedure 



ESN Architectural Variants 

• direct input-to-readout connections 

• output feedback connections (stability issues) 
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Input Layer Reservoir Readout 

back
W

properly initialized to guarantee 

convergence of the encoding 



Memory Capacity 

How long is the effective short-term memory of ESNs? 

Some results: 

The MC is bounded by the reservoir dimension 

The MC is maximum for linear reservoirs 

• Longer delays cannot be learnt better than short delays (“fading memory”) 

• It is impossible to train ESNs on tasks which require unbounded-time memory 

Squared correlation 

coefficient 

Dilemma: memory capacity VS non-linearity 

𝑀𝐶 =   𝜌2(𝒖 𝑛 − 𝑘 , 𝒚𝑘 𝑛 )

∞

𝑘=1

 



Applications of ESNs 

• Several hundreds of relevant applications of ESNs are reported in literature 

• (Chaotic) Time series prediction 

• Non-linear system identification 

• Speech recognition 

• Sentiment analysis 

• Robot localization & control 

• Financial forecasting 

• Bio-medical applications 

• Ambient Assited Living 

• Human Activity Recognition 

• ... 



Applications of ESN – Examples/1 

Mackey-Glass time series 

contraction coefficient 

reservoir dimension 

Extremely good approximation performance! 



• Generalization of predictive performance to unseen 
environments 
 

Training 

Applications of ESN – Examples/2 

Forecasting of user movements 



Applications of ESN – Examples/3 

• Input from heterogeneous sensor sources (data fusion) 

• Predicting event occurrence and confidence 

• Effectiveness in learning a variety of HAR tasks 

• Training  on new events 

• Average test accuracy is 91.32%(±0.80) 
 

Human Activity Recognition and Localization 



Applications of ESN – Examples/4 

Robotics 

• Indoor localization estimation in 
critical environment (Stella Maris 
Hospital) 

• Precise robot  localization estimation 
using noisy RSSI data (35 cm) 

• Recalibration in case of environmental 
alterations or sensor malfunctions 



Applications of ESN – Examples/5 

Prediction of Electricity Price on the Italian Market 

Accurate prediction of hourly electricity price (less than 10% MAPE error) 



Applications of ESN – Examples/6 

Waveform of speech signal Average reservoir state Emotion Class 

EVALITA 2014  - Emotion Recognition Track (Sentiment Analysis) 

• Challenge: the reservoir encodes the temporal input signals avoiding the 

need of explicitly resorting to fixed-size feature extraction 

• Promising performances already in line with the state of the art 

Speech and Text Processing 



Markovianity 

• Markovian nature: states assumed in correspondence of different input sequences 

  sharing a common suffix are close to each other proportionally to the length of the 

  common suffix 

Contractivity 



Markovianity 

• Markovianity and contractivity: Iterated Function Systems, fractal theory,  

  architectural bias of RNNs 

  RNNs initialized with small weigths (with contractive state transition function) 

  and bounded state space implement (approximate arbitrarily well) definite memory 

  machines 

• RNN dynamics constrained in region of state space with Markovian characterization 

• Contractivity (in any norm) of state transition function impies Echo States (next slide) 

• ESNs featured by fixed contractive dynamics 

• Relations with the universality of RC for bounded memory computation 



Contractivity and ESP 

A contractive setting of the state transition function τ (in any norm) implies the ESP. 

Assumption: τ is contractive with parameter C. 

Approaches 0 as n goes to infinity 



Contractivity and Reservoir Initialization 

Reservoir is initialized to implement a contractive state transition function, so that the 

ESP is guaranteed. 

Assumption: Euclidean distance as metric in the reservoir space, tanh as reservoir 

activation function 

(sufficient condition for the ESN) 

This leads to the formulation of the sufficient condition on the maximum singular value 

of the recurrent reservoir weight matrix: 



Markovianity 
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Influence on the state 

• Input sequences sharing a common suffix drive the ESN into close states, proportionally 

   to the length of the suffix 

• Ability to intrinsically discriminate among different input sequences in a suffix-based 

  fashion without adaptation of the reservoir parameters 

• Target task should match Markovianity of reservoir state space 



Markovianity 

σ = 0.3 

1st  PC:  last input symbol 

2nd PC:  next-to-last input symbol 
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j g h e e g h 



Conclusions 

• Reservoir Computing: paradigm for efficient modeling of RNNs  

• Reservoir: non-linear dynamic component, untrained after contractive initialization 

• Readout: linear feed-forward component, trained 

• Easy to implement, fast to train 

• Markovian flavour of reservoir state dynamics 

• Successful applications (tasks compatible with Markovian characterization) 

• Model Selection: many hyper-parameters to be set 



Research Issues 

• Optimization of reservoirs: supervised or unsupervised reservoir adaptation  

   (e.g. Intrinsic Plasticity) 

• Architectural Studies: e.g. Minimum complexity ESNs, φ-ESNs, ... 

• Non-linearity vs memory capacity 

• Stability analysis in case of output feedbacks 

• Reservoir Computing for Learning in Structured Domains 

  TreeESN, GraphESN  

• Applications, applications, applications, applications ...   


