Probabilistic Learning and Graphical Models

Davide Bacciu

Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it

Machine Learning: Neural Networks and Advanced Models (AA2)

Protein Secondary Structure Prediction

Document Understanding

Image Understanding

Probabilistic Learning Models

- Learning models that represent knowledge inferred from data under the form of probabilities
 - Supervised, unsupervised, weakly supervised learning tasks
 - Describes how data is generated (interpretation)
 - Allow to incorporate prior knowledge on the data and on the task
- The majority of the modern task comprises large numbers of variables
 - Modeling the joint distribution of all variables can become impractical
 - Exponential size of the parameter space
 - Computationally impractical to train and predict

The Graphical Models Framework

Representation

- Graphical models are a compact way to represent exponentially large probability distributions
- Encode conditional independence assumptions
- Different classes of graph structures imply different assumptions/capabilities

Inference

- How to guery (predict with) a graphical model?
- Probability of unknown X given observations \mathbf{d} , $P(X|\mathbf{d})$
- Most likely hypothesis

Learning

- Find the right model parameter (Parameter Learning)
- Find the right model structure (Structure Learning)
- An inference problem after all

Graphical Model Representation

A graph whose nodes (vertices) are random variables whose edges (links) represent probabilistic relationships between the variables

Different classes of graphs

Directed Models

Directed edges express causal relationships

Undirected Models

Undirected edges express soft constraints

Dynamic Models

Structure changes

to reflet dynamic processes

Graphical Models in this Module

Representation

- Directed graphical models: Bayesian Networks
- Undirected graphical models: Markov random fields
- Dynamic graphical models: Hidden Markov Models

Inference

- Exact inference: message passing, junction tree algorithms
- Approximate Inference: loopy belief propagation, sampling, variational inference

Learning

- Parameter learning: Expectation-Maximization algorithm
- Structure learning: PC algorithm, search-and-score

Generative Models Module

Models

Plan of the Lectures

```
Lesson 1 Introduction to Probabilistic and Graphical Models
Lesson 2 Directed and Undirected Graphical Models
Lesson 3 Inference in Graphical Models
Lesson 4 Dynamic Approaches: The Hidden Markov Model
Lesson 5 Graphical models for Structured Data
Lesson 6 Exact and Approximate Learning: Latent Variable
```

Lesson 7 Bridging Probabilistic and Neural: Deep Learning

Lecture Outline

- Introduction
- A probabilistic refresher
 - Probability theory
 - Conditional independence
 - Learning in probabilistic models
- Directed graphical models
 - Bayesian Networks
 - Representation
 - Conditional independence
 - Inference and Learning
- Applications and conclusions

Random Variables

- A Random Variable (RV) is a function describing the outcome of a random process by assigning unique values to all possible outcomes of the experiment
- A RV models an attribute of our data (e.g. age, speech sample,...)
- Use uppercase to denote a RV, e.g. X, and lowercase to denote a value (observation), e.g. x
- A discrete (categorical) RV is defined on a finite or countable list of values Ω
- A continuous RV can take infinitely many values

Probability Functions

- Discrete Random Variables
 - A probability function $P(X = x) \in [0, 1]$ measures the probability of a RV X attaining the value x
 - Subject to sum-rule $\sum_{x \in \Omega} P(X = x) = 1$
- Continuous Random Variables
 - A density function p(t) describes the relative likelihood of a RV to take on a value t
 - Subject to sum-rule $\int_{\Omega} p(t)dt = 1$
 - Defines a probability distribution, e.g.

$$P(X \le x) = \int_{-\infty}^{x} p(t)dt$$

• Shorthand P(x) for P(X = x) or $P(X \le x)$

Joint and Conditional Probabilities

If a discrete random process is described by a set of RVs X_1, \ldots, X_N , then the joint probability writes

$$P(X_1 = x_1, \ldots, X_N = x_n) = P(x_1 \wedge \cdots \wedge x_n)$$

The joint conditional probability of x_1, \ldots, x_n given y

$$P(x_1,\ldots,x_n|y)$$

measures the effect of the realization of an event y on the occurrence of x_1, \ldots, x_n

A conditional distribution P(x|y) is actually a family of distributions

• For each y, there is a distribution P(x|y)

Chain Rule

Definition (Product Rule a.k.a. Chain Rule)

$$P(x_1,...,x_i,...,x_n|y) = \prod_{i=1}^N P(x_i|x_1,...,x_{i-1},y)$$

Definition (Marginalization)

Using the sum and product rules together yield to the complete probability

$$P(X_1 = x_1) = \sum_{X_2} P(X_1 = x_1 | X_2 = x_2) P(X_2 = x_2)$$

Bayes Rule

Given hypothesis $h_i \in H$ and observations **d**

$$P(h_i|\mathbf{d}) = \frac{P(\mathbf{d}|h_i)P(h_i)}{P(\mathbf{d})} = \frac{P(\mathbf{d}|h_i)P(h_i)}{\sum_j P(\mathbf{d}|h_j)P(h_j)}$$

- $P(h_i)$ is the prior probability of h_i
- $P(\mathbf{d}|h_i)$ is the conditional probability of observing **d** given that hypothesis h_i is true (likelihood).
- P(d) is the marginal probability of d
- $P(h_i|\mathbf{d})$ is the posterior probability that hypothesis is true given the data and the previous belief about the hypothesis.

Independence and Conditional Independence

 Two RV X and Y are independent if knowledge about X does not change the uncertainty about Y and vice versa

$$I(X, Y) \Leftrightarrow P(X, Y) = P(X|Y)P(Y)$$

= $P(Y|X)P(X) = P(X)P(Y)$

 Two RV X and Y are conditionally independent given Z if the realization of X and Y is an independent event of their conditional probability distribution given Z

$$I(X, Y|Z) \Leftrightarrow P(X, Y|Z) = P(X|Y, Z)P(Y|Z)$$

= $P(Y|X, Z)P(X|Z) = P(X|Z)P(Y|Z)$

• Shorthand $X \perp Y$ for I(X, Y) and $X \perp Y \mid Z$ for $I(X, Y \mid Z)$

Inference and Learning in Probabilistic Models

Inference - How can one determine the distribution of the values of one/several RV, given the observed values of others?

$$P(graduate|exam_1,...,exam_n)$$

Machine Learning view - Given a set of observations (data) **d** and a set of hypotheses $\{h_i\}_{i=1}^K$, how can I use them to predict the distribution of a RV X?

Learning - A very specific inference problem!

- Given a set of observations **d** and a probabilistic model of a given structure, how do I find the parameters θ of its distribution?
- Amounts to determining the best hypothesis h_{θ} regulated by a (set of) parameters θ

3 Approaches to Inference

Bayesian Consider all hypotheses weighted by their probabilities

$$P(X|\mathbf{d}) = \sum_{i} P(X|h_i)P(h_i|\mathbf{d})$$

MAP Infer X from $P(X|h_{MAP})$ where h_{MAP} is the Maximum a-Posteriori hypothesis given **d**

$$h_{MAP} = \arg\max_{h \in H} P(h|\mathbf{d}) = \arg\max_{h \in H} P(\mathbf{d}|h)P(h)$$

ML Assuming uniform priors $P(h_i) = P(h_j)$, yields the Maximum Likelihood (ML) estimate $P(X|h_{ML})$

$$h_{ML} = \arg\max_{h \in H} P(\mathbf{d}|h)$$

Considerations About Bayesian Inference

 The Bayesian approach is optimal but poses computational and analytical tractability issues

$$P(X|\mathbf{d}) = \int_{H} P(X|h)P(h|\mathbf{d})dh$$

- ML and MAP are point estimates of the Bayesian since they infer based only on one most likely hypothesis
- MAP and Bayesian predictions become closer as more data gets available
- MAP is a regularization of the ML estimation
 - Hypothesis prior P(h) embodies trade-off between complexity and degree of fit
 - Well-suited to working with small datasets and/or large parameter spaces

Maximum-Likelihood (ML) Learning

Find the model θ that is most likely to have generated the data **d**

$$\theta_{ML} = \arg\max_{\theta \in \Theta} P(\mathbf{d}|\theta)$$

from a family of parameterized distributions $P(x|\theta)$.

Optimization problem that considers the Likelihood function

$$\mathcal{L}(\theta|\mathbf{x}) = P(\mathbf{x}|\theta)$$

to be a function of θ .

Can be addressed by solving

$$\frac{\partial \mathcal{L}(\theta|\mathbf{x})}{\partial \theta} = \mathbf{0}$$

ML Learning with Hidden Variables

What if my probabilistic models contains both

- Observed random variables X (i.e. for which we have training data)
- Unobserved (hidden/latent) variables Z (e.g. data clusters)

ML learning can still be used to estimate model parameters

 The Expectation-Maximization algorithm which optimizes the complete likelihood

$$\mathcal{L}_{c}(\theta|\mathbf{X},\mathbf{Z}) = P(\mathbf{X},\mathbf{Z}|\theta) = P(\mathbf{Z}|\mathbf{X},\theta)P(\mathbf{X}|\theta)$$

A 2-step iterative process

$$\theta^{(k+1)} = \arg\max_{\theta} \sum_{\mathbf{z}} P(\mathbf{Z} = \mathbf{z} | \mathbf{X}, \theta^{(k)}) \log \mathcal{L}_c(\theta | \mathbf{X}, \mathbf{Z} = \mathbf{z})$$

Joint Probabilities and Exponential Complexity

Discrete Joint Probability Distribution as a Table

$$X_1 \quad \dots \quad X_i \quad \dots \quad X_n \quad P(X_1, \dots, X_n)$$
 $X_1' \quad \dots \quad X_i' \quad \dots \quad X_n' \quad P(X_1', \dots, X_n')$
 $X_1' \quad \dots \quad X_i' \quad \dots \quad X_n' \quad P(X_1', \dots, X_n')$

- Describes $P(X_1, \ldots, X_n)$ for all the RV instantiations
- For n binary RV X_i the table has 2ⁿ entries!

Any probability can be obtained from the Joint Probability Distribution $P(X_1, ..., X_n)$ by marginalization but again at an exponential cost (e.g. 2^{n-1} for a marginal distribution from binary RV).

Directed Graphical Models

- Compact graphical representation for exponentially large joint distributions
- Simplifies marginalization and inference algorithms
- Allow to incorporate prior knowledge concerning causal relationships between RV

- Directed Graphical Models a.k.a.
 Bayesian Networks
- Describe conditional independence between subsets of RV by a graphical model

$$P(H|P,S,E) = P(H|P,S)$$

Bayesian Network

- Directed Acyclic Graph (DAG) $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Nodes v ∈ V represent random variables
 - Shaded ⇒ observed
 - Empty ⇒ un-observed
- Edges $e \in \mathcal{E}$ describe the conditional independence relationships

Conditional Probability Tables (CPT) local to each node describe the probability distribution given its parents

$$P(Y_1,\ldots,Y_N)=\prod_{i=1}^N P(Y_i|pa(Y_i))$$

A Simple Example

- Assume N discrete RV Y_i who can take k distinct values
- How many parameters in the joint probability distribution?
 k^N 1 independent parameters

How many independent parameters if all N variables are independent? N*(k-1)

$$P(Y_1,\ldots,Y_N)=\prod_{i=1}^N P(Y_i)$$

What if only part of the variables are (conditionally) independent?

If the *N* nodes have a maximum of *L* children $\Rightarrow (k-1)^L \times N$ independent parameters

A Compact Representation of Replication

If the same causal relationship is replicated for a number of variables, we can compactly represent it by plate notation

The Naive Bayes Classifier

Replication for *L* attributes

Replication for *N* data samples

Full Plate Notation

Gaussian Mixture Model

- Boxes denote replication for a number of times denoted by the letter in the corner
- Shaded nodes are observed variables
- Empty nodes denote un-observed latent variables
- Black seeds (optional) identify model parameters
 - ullet πo multinomial prior distribution
 - $\mu \rightarrow$ means of the *C* Gaussians
 - $\sigma \rightarrow \text{std}$ of the C Gaussians

Local Markov Property

Definition (Local Markov property)

Each node / random variable is conditionally independent of all its non-descendants given a joint state of its parents

$$Y_v \perp Y_{V \setminus ch(v)} | Y_{pa(v)}$$
 for all $v \in \mathcal{V}$

$$P(Y_1, Y_3, Y_5, Y_6 | Y_2, Y_4) = P(Y_6 | Y_2, Y_4) \times P(Y_1, Y_3, Y_5 | Y_2, Y_4)$$

Markov Blanket

- The Markov Blanket Mb(A) of a node A is the minimal set of vertices that shield the node from the rest of Bayesian Network
- The behavior of a node can be completely determined and predicted from the knowledge of its Markov blanket

$$P(A|Mb(A), Z) = P(A|Mb(A)) \ \forall Z \notin Mb(A)$$

- The Markov blanket of A contains
 - Its parents pa(A)
 - Its children ch(A)
 - Its children's parents pa(ch(A))

Why Using Bayesian Network?

Compacting parameter space

Reducing inference costs

- Variable elimination: e.g. compute P(Y₄|Y₃)
- Inference algorithms exploiting sparse graph structure

Learning in Bayesian Networks

Parameter learning

Infer the θ parameters of each conditional probability from data

 Includes hidden random variables (e.g. Y₂)

Learning network structure

<i>Y</i> ₁	Y ₂	<i>Y</i> ₃	Y_4	Y ₅
1	2	1	0	3
4	0	0	0	1
0	0	1	3	2

Determine edge presence and orientation from data

Infer causal relationships

Learning to Segment Image Parts

Latent Topics Network

Yuan et al, A novel topic-level random walk framework for scene image co-segmentation, ECCV 2014

Discovering Gene Interaction Networks

Gene Expression Data

Assessing Influenza Virulence

Inferred Gene Bayesian Graphical Model for H5N1 Virulence

http://hiv.bio.ed.ac.uk/samLycett/research.html

Take Home Messages

- Graphical models provide a compact representation for probabilistic models with a large number of variables
 - Use conditional independence to simplyfy joint probability
 - Efficient inference methods that exploit the sparse graph structure
 - Learning is a special-case of inference performed on the parameters of the probability functions in the graphical model
- Directed graphical models (Bayesian Networks)
 - Directed edges Provide a representation of the causal relationships between variables
 - Parameter learning Estimate the conditional probabilities associated with the nodes (visible or unobserved)
 - Structure learning Use data to determine edge presence and orientation

Next Lecture

- Directed graphical models
 - Bayesian Networks
 - Determining conditional independence (d-separation)
 - Structure learning
- Undirected graphical models
 - Markov Random Fields
 - Joint probability factorization
 - Ising model