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Introduction Generative Machine Learning Models

Probabilistic Learning Models

@ Learning models that inferred from
data
e Supervised, unsupervised, weakly supervised learning
tasks
e Describes how data is generated ( )
o Allow to on the data and on the
task

@ The majority of the modern task comprises

e Modeling the of all variables can become
impractical

° of the parameter space

° to train and predict



Introduction Generative Machine Learning Models

The Graphical Models Framework

Representation

@ Graphical models are a compact way to
distributions

@ Encode assumptions

@ Different classes of imply different
assumptions/capabilities

Inference
@ How to (predict with) a graphical model?
@ Probability of unknown X given observations d, P(X|d)
@ Most likely

Learning
@ Find the right model parameter ( )
@ Find the right model structure ( )
@ An inference problem after all



Introduction Generative Machine Learning Models

Graphical Model Representation

A graph whose (vertices) are whose
(links) represent between the
variables

Different classes of graphs

Directed Models Undirected Models Dynamic Models

: f?i%ff 586

_ to reflet dynamic
Directed edges Undirected edges processes
express express




Introduction

Module Outline

Graphical Models in this Module

Representation
@ Directed graphical models:
@ Undirected graphical models: Markov random fields
@ Dynamic graphical models:
Inference
@ Exact inference: , junction tree algorithms
@ Approximate Inference: loopy belief propagation, sampling,

Learning
@ Parameter learning: algorithm
@ Structure learning: , search-and-score



Introduction

Module Outline

Generative Models Module

Plan of the Lectures

Lesson 1 Introduction to Probabilistic and Graphical Models
Lesson 2 Directed and Undirected Graphical Models
Lesson 3 Inference in Graphical Models

Lesson 4 Dynamic Approaches: The Hidden Markov Model
Lesson 5 Graphical models for Structured Data

Lesson 6 Exact and Approximate Learning: Latent Variable
Models

Lesson 7 Bridging Probabilistic and Neural: Deep Learning



Introduction

Module Outline

Lecture Outline

@ Introduction

@ A probabilistic refresher

e Probability theory

e Conditional independence

e Learning in probabilistic models
@ Directed graphical models

o Bayesian Networks

o Representation

e Conditional independence

e Inference and Learning

@ Applications and conclusions



Probability Theory
Probability and Learning Refresher

Random Variables

oA (RV) is a function describing the
outcome of a by assigning unique values
to all possible outcomes of the experiment

@ A RV models an attribute of our data (e.g. age, speech

sample,...)

@ Use to denote a RV, e.g. X, and to
denote a value (observation), e.g. x

oA (categorical) RV is defined on a

Q
A RV can take



Probability Theory
Probability and Learning Refresher

Probability Functions

@ Discrete Random Variables

o A P(X = x) € [0,1] measures the
probability of a RV X attaining the value x
o Subject to Y P(X=x)=1
xXeN
@ Continuous Random Variables
o A p(t) describes the relative likelihood of a
RV to take on a value t
e Subject to /p(t)dt:1
Q
o Defines a , e.g.

P(X < x) :/ p(t)dt
@ Shorthand P(x) for P(X = x) or P(X < x)



Probability Theory
Probability and Learning Refresher

Joint and Conditional Probabilities

If a discrete random process is described by a set of RVs
Xi,..., Xy, then the writes

P(X1 :X17"'7XN:XI7):P(X1/\"'/\Xn)

The joint of X1,...,Xp y
P(x1,...,Xnly)

measures the effect of the y on the

occurrence of xq,..., xp

A conditional distribution P(x|y) is actually a of

distributions
@ For each y, there is a distribution P(x|y)



Probability Theory
Probability and Learning Refresher Co

Chain Rule

Definition (Marginalization)
Using the sum and product rules together yield to the

P(Xi =x1) =Y P(Xi = x1|Xo = X2)P(Xz = %)
X2




Probability Theory
Probability and Learning Refresher

Bayes Rule

Given hypothesis h; € H and observations d

P(d|h;)P(h;)
B 5 P(dlhy)P(hy)

@ P(h))is the probability of h;
@ P(d|h;) is the conditional probability of observing d given

that hypothesis h; is true ( )-

@ P(d) is the probability of d

@ P(h;|d) is the probability that hypothesis is true
given the data and the about the

hypothesis.



Probability and Learning Refresher Conditional Independence

Independence and Conditional Independence

@ Two RV XandY are if knowledge about X
does not change the uncertainty about Y and vice versa
I(X,Y)< P(X,Y)=P(X|Y)P(Y)
= P(Y|X)P(X) = P(X)P(Y)
@ Two RV Xand Y are given Z if
the realization of X and Y is an independent event of their
conditional probability distribution given Z
I(X,Y|Z)= P(X,Y|Z)=P(X|Y,2)P(Y|2)
= P(Y|X,Z)P(X|2) = P(X|Z)P(Y|2)

@ Shorthand X_LY for /(X, Y)and X_LY|Z for I(X, Y|2)



Probability and Learning Refresher
Inference and Learning

Inference and Learning in Probabilistic Models

- How can one determine the distribution of the
values of one/several RV, given the observed values of others?

P(graduate|examy, ..., examp)

- Given a set of observations (data) d
and a set of hypotheses {h;}X ,, how can | use them to predict
the distribution of a RV X?

- A very specific problem!

@ Given a set of observations d and a probabilistic model of
a given structure, how do | find the parameters 6 of its
distribution?

@ Amounts to determining the best regulated
by a (set of)



Probability and Learning Refresher
Inference and Learning

3 Approaches to Inference

Bayesian Consider weighted by their
probabilities

P(XId) = 3 P(X|n)P(hd)

MAP Infer X from P(X|hyap) Where hyap is the
hypothesis given d

hyap = arg rpeaﬁl( P(h|d) = arg rpea’zf P(d|h)P(h)

ML Assuming P(hj) = P(h;), yields the
(ML) estimate P(X|hm)

= P(d|h
hu = argmax P(d|h)



Probability and Learning Refresher
Inference and Learning

Considerations About Bayesian Inference

@ The Bayesian approach is but poses computational
and analytical tractability issues

P(X|d) = /H P(X|h)P(h|d)dh

@ ML and MAP are of the Bayesian since
they infer based only on most likely hypothesis

@ MAP and Bayesian predictions become closer as more
data gets available
@ MAPis a of the ML estimation

e Hypothesis prior P(h) embodies trade-off between
complexity and degree of fit

e Well-suited to working with small datasets and/or large
parameter spaces



Probability and Learning Refresher
Inference and Learning

Maximum-Likelihood (ML) Learning

Find the model 6 that is most likely to have the data d

- P
OmL arg max (d|6)

from a family of P(x|0).
Optimization problem that considers the

L(0]x) = P(x|0)
to be a
Can be addressed by solving

aL(0]x)

o9 °




Probability and Learning Refresher
Inference and Learning

ML Learning with Hidden Variables

What if my probabilistic models contains both

@ Observed random variables X (i.e. for which we have
training data)

@ Unobserved ( / ) variables Z (e.g. data clusters)
ML learning can still be used to estimate model parameters
@ The algorithm which optimizes
the

Lc(0]X,Z) = P(X,Z]0) = P(Z|X,0)P(X|0)
oA process

0+ = arg mgxz P(Z = z|X,0%))log L:(0|X,Z = 2)
z



Representation

Bayesian Networks

Joint Probabilities and Exponential Complexity

Discrete Joint Probability Distribution as a Table

X [ TX [ T X | PO, Xn)
Xp | oo | X || Xp | P(Xq,..0,Xp)
i x| x| PO, xE)

@ Describes P(Xj, ..., Xy) for all the RV instantiations
@ For nbinary RV X; the table has 2" entries!

Any probability can be obtained from the
P(Xi,...,Xn) by but again at an
exponential cost (e.g. 2"~ for a marginal distribution from
binary RV).




Representation

Bayesian Networks

Directed Graphical Models

@ Compact graphical representation for exponentially large
joint distributions

@ Simplifies marginalization and inference algorithms

@ Allow to incorporate prior knowledge concerning causal
relationships between RV

@ Directed Graphical Models a.k.a.
Bayesian Networks

@ Describe conditional independence
between subseis of BV by a graphical
model

P(H|P,S,E) = P(H|P,S)




Representation

Bayesian Networks

Bayesian Network

@ Directed Acyclic Graph (DAG)
g= (Vv 5)
0 v € V represent

parents of Y3

o Shaded = observed
o Empty = un-observed

o e ¢ £ describe the

children of ¥3

(CPT) local to each node
describe the probability distribution

N
P(Yi...., Yu) = [[ P(Yilpa( i)

i=1



Representation

Bayesian Networks

A Simple Example

@ Assume N discrete RV Y, who can take k distinct values
@ How many parameters in the ?
independent parameters

How many independent What if only part of the variables
parameters if 2/l N variables are are (conditionally) independent?
?
P(Yy,...,YnN) = HP(Y,) .\ /.

If the N nodes have a maximum of L children = (k — 1)t x N
independent parameters




Representation

Bayesian Networks

A Compact Representation of Replication

If the same for a number of
variables, we can compactly represent it by

AN\

N
The ~—
Classifier

Replication for L

: Replication for N
attributes

data samples



Bayesian Networks

Full Plate Notation

()
N

Gaussian Mixture Model

Representation

Boxes denote for a
number of times denoted by the

Shaded nodes are
variables

Empty nodes denote un-observed
variables

Black seeds (optional) identify

e 7 — multinomial prior distribution
e 1 — means of the C Gaussians
e o — std of the C Gaussians



Conditional Independence
Bayesian Networks

Local Markov Property

Definition (Local Markov property)

Each node / random variable is conditionally independent of
given a

Y, L YV\ch(v)| Ypa(v) forallv eV

P(Y1,Ys, Y5, Y| Yo, Ys) =
P(Ys|Y2, Ys)x
P(Yi1,Ys, Ys5| Y2, Ya)




Conditional Independence
Bayesian Networks

Markov Blanket

@ The Mb(A) of a node Ais
the minimal set of vertices that
from the rest of Bayesian Network

@ The behavior of a node can be

from the
knowledge of its Markov blanket

P(AIMb(A), Z) = P(A|Mb(A)) ¥Z ¢ Mb(A)

@ The Markov blanket of A contains

o lIts parents pa(A)
e [ts children ch(A)
e lts children’s parents pa(ch(A))




Why Using Bayesian Network?

Bayesian Networks Concluding Remarks

Compacting parameter space

P(YLY2Y3Y,Ys) ————
O O

Reducing inference costs

;
\

Q @ Variable elimination: e.g.
R

compute P(Yy|Y3)
GD\\ @ Inference al?]ortithrr;s exploiting
sparse graph structure
~®




learning

P(Y2[Y4)
P(Ys]Y,)

P(Y4lY2)
P(Ys] Y3:Y4

Infer the 6 parameters of each

from data
@ Includes hidden random
variables (e.g. Y2)

Bayesian Networks

Learning in Bayesian Networks

Concluding

Remarks

Learning network

Y4 Yo Y3 Ya Ys
1 2 1 0 8
4 0 0 0 1
P30 [RSPIR (NSPR (O Iy
—
Determine and
from data

@ Infer



Bayesian Networks Concluding Remarks

Learning to Segment Image Parts

Latent Topics Network

Yuan et al, A novel topic-level random walk framework for scene image co-segmentation, ECCV 2014



Gene Expression Data
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Bayesian Networks

Discovering Gene Interaction Networks
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Concluding Remarks




Bayesian Networks Concluding Remarks

Assessing Influenza Virulence

Inferred Gene Bayesian Graphical Model for H5SN1 Virulence

http://hiv.bio.ed.ac.uk/samLycett/research.html


http://hiv.bio.ed.ac.uk/samLycett/research.html

Bayesian Networks Concluding Remarks

Take Home Messages

@ Graphical models provide a
with a large number of variables
e Use to simplyfy joint probability
° methods that exploit the sparse graph
structure
e Learning is a special-case of
in the graphical
model
@ Directed graphical models ( )

° - Provide a representation of the causal
relationships between variables

° - Estimate the conditional probabilities
associated with the nodes (visible or unobserved)

° - Use data to determine edge presence
and orientation



Bayesian Networks Concluding Remarks

Next Lecture

@ Directed graphical models
e Bayesian Networks
e Determining conditional independence (d-separation)
e Structure learning
@ Undirected graphical models
e Markov Random Fields
e Joint probability factorization
e Ising model
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