
14 May 2020

Testing Automation and Methodologies

Only for internal usage of UniPI - Ingegneria del Software 1

Agenda

Specification by example & ATDD

From Requirements to User Stories

Specification by Example

Acceptance Test Driven Development

Writing tests in ION

Testing against asynchronous systems

Kinds of validations

Robot Framework

What is

Architecture & libraries

Testing styles and formats

Reports

Continuous Integration and Testing Automation

Problems that we want to address

What is Continuous Integration

Testing Automation with Jenkins and Robot Framework

Only for internal usage of UniPI - Ingegneria del Software 2

Specification by example

&

ATDD

Only for internal usage of UniPI - Ingegneria del Software 3

Spec by example & ATDD
Software Development Life cycle (classic)

Analyze User
Requirements

Define Software
Specifications

Software Design

Implementation

Testing and
Documentation

Maintenance

Are the requirements clear

and reasonable?

Are we sure we didn’t lose any

details from the beginning?

Will the

documentation be

kept aligned as the

software evolves

over time?

What / Who

guarantees that

we’re testing the

right thing?

Only for internal usage of UniPI - Ingegneria del Software 4

Spec by example & ATDD
Software Development – Possible outcomes

Build the thing right

B
u

ild
 th

e
 rig

h
t th

in
g

SUCCESS
Business

Failure

Useless

Crap

Maintenance

Nightmare

Only for internal usage of UniPI - Ingegneria del Software 5

Business goals

Scope

Key examples

Specification

Executable
specification

Living
Documentation

Spec by example & ATDD
Reviewed development workflow

Deriving scope

from goals

Illustrating using

examples, collaboratively

Refining the

examples

Automating

validation

Validating

frequently

Specification by Example

Acceptance Tests

User Stories

Only for internal usage of UniPI - Ingegneria del Software 6

Spec by example & ATDD
Deriving the scope from the goals

F-16 design team was asked to do the impossible: a cheap 2.5 Mach airplane!

When asked why they need Mach 2 - 2.5, the answer was “to be able to escape from combat.”

The solution was providing acceleration and maneuverability, not maximum speed.

Refuse requirements that are a solution to an unknown problem!

Only for internal usage of UniPI - Ingegneria del Software 7

Spec by example & ATDD
Defining the scope

User Stories
A user story is an informal, natural language description of one or more features of a software system.

Writing a user story is a good starting point to identify the business goals and their scope

A user story must specify the actor and the reason of a feature

“As a ..…… I want ………………. in order to ……………”

As a Risk Manager, I want to limit the quantity traded by junior

traders in order to avoid an excessive exposure.

Only for internal usage of UniPI - Ingegneria del Software 8

Spec by example & ATDD
Illustrating using examples, collaboratively

Evaluate how long it takes to understand the following:

Use a yellow circle

Divide in two sections, top and bottom

In the top section, there are two black filled circles,

equally distant from the center

In the bottom section, there is a curved arc equally

distant from the outer circle, with two smaller arcs at the end

Only for internal usage of UniPI - Ingegneria del Software 9

Spec by example & ATDD
Illustrating using examples, collaboratively

Specification by example

Set of collaborative process patterns that

facilitate changes in software products,

to ensure that the right product is

delivered effectively.

Only for internal usage of UniPI - Ingegneria del Software 10

Spec by example & ATDD
Specification by example

Use simple, concrete and concise examples

Use real data and avoid abstract descriptions

Examples must be easy to understand

⚫ They should trigger a discussion in the team!

RM: “Jeff is a junior trader, he should not create

order with a quantity greater than 10k”.
As a risk manager, I want to limit the quantity

traded by junior traders in order to avoid an

excessive exposure. RM: “Paul instead is a senior trader, he’d be

allowed to do it”.

User Story

Examples

Only for internal usage of UniPI - Ingegneria del Software 11

Spec by example & ATDD
Specification by example

The specification by example is the result of a discussion among the team members

Together with the stakeholders, the team members distill some key examples

Additional examples can be added if considered relevant for the feature

Standard formats to express the samples ease the process of making them executable (e.g. tabular format)

This table can easily

become a true

Acceptance Test!

Only for internal usage of UniPI - Ingegneria del Software 12

Spec by example & ATDD
Collaboration model

Specifications (and tests) should be produced by a team composed of different skills.

Possible models are:

Large workshop, such as a PBR

Three amigos

⚫ Business Analyst

⚫ Developer

⚫ Tester

Quick discussion, offline reviews

Note: developers and testers are often the same people!

Only for internal usage of UniPI - Ingegneria del Software 13

Spec by example & ATDD
Make the examples executable documentation

A non-trivial system needs some level of documentation to be maintained and used properly

Usual paper documentation can become old pretty soon, thus unable to properly describe the system behaviors

An authoritative source of truth for everybody is required

Only for internal usage of UniPI - Ingegneria del Software 14

Spec by example & ATDD
Acceptance Test Driven Development

ATDD
Software development process that involves team members with different perspectives

(customer, development, testing)

collaborating to write Acceptance Tests in advance of implementing the corresponding functionality.

Only for internal usage of UniPI - Ingegneria del Software 15

Spec by example & ATDD
What is an Acceptance Test?

An Acceptance Test is a procedure aimed to validate a feature respecting to the requirements

Acceptance Tests:

can be easily derived from the specifications by example

describe a specific behavior of the system (they are the effective documentation of a feature)

are a live specification between the Dev Team and the Product Owner

are readable and writable also by non-technical people

Price Quantity Verb Outcome ExpPrice ExpQuantity ExpVerb

Adding a valid Trade 100 10 BUY TRADE BOOKED 100 10 BUY

Adding an invalid Trade

because Quantity is negative.

100 -10 BUY FAILURE - - -

Tabular format: the

one preferred in ION

A testing framework can parse this table and execute the test.

Example: Robot Framework.

The expectations

contain only details

relevant for the

feature

Only

relevant

cases are

tested

Only for internal usage of UniPI - Ingegneria del Software 16

Spec by example & ATDD
Pyramid of tests

Acceptance
tests

Integration tests

Unit tests

C
o

m
p

le
xi

ty
 /

 E
xe

cu
ti

o
n

 T
im

e
 /

 C
u

st
o

m
e

r
re

le
va

n
ce

L
e

ve
l o

f d
e

ta
ils / N

u
m

b
e

r o
f te

sts

• Only valuable (face-saving)
features are tested

• Are black-box tests
• Executed in overnight, or

before release

Only for internal usage of UniPI - Ingegneria del Software 17

Writing tests in ION

Only for internal usage of UniPI - Ingegneria del Software 18

Spec by example & ATDD
Writing tests in ION – The ION Platform

UBS Platform

Router

Router

Components

Connection

Communication patterns

Publish \ Subscribe

Request \ Reply

Message Queues

Special

components, called

Daemons,

administer the

whole Platform.

Only for internal usage of UniPI - Ingegneria del Software 19

Spec by example & ATDD
ION example of Acceptance Test

Only for internal usage of UniPI - Ingegneria del Software 20

Spec by example & ATDD
Writing tests in ION

Under the hood, in ION it’s always a matter of stimulating an asynchronous system and waiting for a feedback

Example: processes interacting using the publish \ subscribe over a network connection

When the system is perturbed, you’ll possibly get a feedback after a certain amount of time

Publisher Subscriber

T
im

e

T
im

e

Entity under test Driver of the test

check

check

check
(*): Technical step to start the test

execution (e.g. launch the publisher

application).

Only for internal usage of UniPI - Ingegneria del Software 21

Spec by example & ATDD
Writing tests in ION

Example

Suppose a Trade Server component that, when a trade is made, should publish a record containing the trade data.

⚫ We want to verify the creation of the trade record with the expected data.

⚫ As soon as we see the condition satisfied, we can proceed further in our test.

Trade Server

T
im

e

Test

OK
End

Trade Server

T
im

e

Test

Timeout

Trade Server

T
im

e

Test

NOK

Success case

Timeout

Incorrect data No data

Only for internal usage of UniPI - Ingegneria del Software 24

Spec by example & ATDD
Writing tests in ION

Writing tests against asynchronous environments

Testing strategies should be carefully chosen

⚫ to avoid writing complicated code to interact with the environment (maintainability)

⚫ to avoid the usage of anti-patterns

⚫ Sleeps (let me sleep for enough time before making the check)

⚫ Polls (repeat until passes {check!})

The timeout is a first class citizen

⚫ e.g.: the halting problem, some real cases:

⚫ Infinite loops

⚫ Deadlocks

⚫ Crashes

Choosing the right timeout to be used is critical

⚫ Too short -> possible premature failures -> the test is unstable

⚫ Too long -> waste of time, but only in case of unmet expectations..

⚫ Quite annoying, expecially when adopting the Test Driven Development

Only for internal usage of UniPI - Ingegneria del Software 25

Robot Framework

Only for internal usage of UniPI - Ingegneria del Software 26

What is it?

Robot Framework is a generic open source test automation framework for acceptance testing and acceptance test-driven

development (ATDD).

Who does maintain it?

Initially developed by Pekka Klarck at Nokia Networks in 2005, it is now maintained by the Robot Framework Foundation, a

non-profit consortium with the focus on developing, fixing bugs and managing community requests for Robot Framework.

Robot Framework
Introduction

Only for internal usage of UniPI - Ingegneria del Software 27

Which license?

Robot Framework is released under the Apache License 2.0.

What kind of technology?

The core framework was implemented using Python, but runs also in Jython (JVM) and IronPython (.NET).

Why?

Native support to different testing syntaxes

Modular system, it can be extended through test libraries

Easy to read reports and logs in HTML format

Robot Framework
Introduction

Only for internal usage of UniPI - Ingegneria del Software 28

Robot Framework
Architecture

Test Data

Robot Framework

Test Libraries

System Under Test

Test Data Syntax

Test Library API

Application interfaces

Only for internal usage of UniPI - Ingegneria del Software 29

Robot Framework
Workflow

Robot Framework does not know anything about the system under test.

The test libraries act as a driver between Robot Framework and the system under test.

Only for internal usage of UniPI - Ingegneria del Software 30

Libraries are officially maintained and distributed by the Robot Framework foundation

Robot Framework
Standard Testing Libraries

BuiltIn

Generic kewyords,
always imported

Collections

To handle lists and
collections

DateTime

To handle date and
time values

Operating
System

Basic OS activity,
such as copy file

Process

Support for process
execution

Strings

Manipulations of
strings

XML

To verify and modify
XML documents

Telnet

Telnet connection
and commands
over connection

Only for internal usage of UniPI - Ingegneria del Software 31

External libraries maintained by the community

Robot Framework
External Testing Libraries

Only for internal usage of UniPI - Ingegneria del Software 32

Test case

Single unit of testing

Usually defined from a Specification by Example (SBE), covers a user story

Test suite

Collection of test cases

Every file containing a test case is considered a test suite

Folders are considered test suites

Keyword

Single unit of execution

Keyword are the basic building blocks of test cases

Keywords can be composed together to create higher-level keywords

Library

Collection of keywords

Robot Framework
Key concepts

Only for internal usage of UniPI - Ingegneria del Software 33

Robot Framework
Supported test data formats: HTML

Test Cases

My first test [Documentation] This is a very simple test

Log This is a log message

Send Trade With Qty 100

My second test [Documentation] This is another very simple test

Check DB table INSTRUMENT

Sections are identified by the text contained in

the first cell of a table

Table cells are used to naturally separate

values

Pros

Nice to read

Cons

Requires HTML editor

Not SCM-friendly

Only for internal usage of UniPI - Ingegneria del Software 34

Robot Framework
Supported test data formats: Plain text

Pros

Easy to edit with any editor

SCM friendly

Cons

Readability not excellent

*** Test Cases ***

My first test

[Documentation] This is a very simple test

Log This is a log message

Send Trade With Qty 100

My second test

[Documentation] This is another very simple test

Check DB table INSTRUMENT

Sections are identified by one (or more) asterisk

At least two spaces are used as a separator

Test name

Keyword

Keyword argument

Only for internal usage of UniPI - Ingegneria del Software 35

Robot Framework
Testing styles
Keyword driven (it can be used to describe a flow)

Test Cases Action Argument Argument

User cannot login with a bad pwd Create Valid User Fred 12345

Login With Credentials Fred 6789

Status Should Be Access Denied

Test Cases Action Argument Argument

User cannot login with a bad pwd Given a Valid User Fred 12345

When He Logins With Credentials Fred 6789

Then The Status Should Be Access Denied

Behavior driven (a.k.a. Given-When-Then or Gherkin style, good fit for SBEs)

Test Cases

User cannot login with a bad pwd [Template] Do login and verify status

Existing user Login credentials Expected status

Fred : 12345 Fred : 6789 Access denied

Fred : 12345 Fred : 12345 Ok

Data driven (another good fit for SBEs) Output columnsInput columns

Given/When/Then terms are ignored

Only for internal usage of UniPI - Ingegneria del Software 38

Robot Framework
Reports

Automatically drilled-down

to the steps that caused

the test failure

Passing tests are

collapsed by default,

allowing anyway

manual drill down

Only for internal usage of UniPI - Ingegneria del Software 39

Robot Framework can be extended with a custom library of keywords to interact with a specific domain

Easiest and simplest way: set of user keywords in different files, loaded as resources

Ok for simple keywords and as a first step

Not recommended for more complex activities (Robot Framework is not a programming language)

More advanced way: keywords defined in Java, C#, or Python, using the APIs offered by Robot Framework

Perfect choice to hide complex technical activities

Proper developing effort is required (library code is like production code!)

ION has created its own Robot Framework library that allows to interact with the ION domain

The library is used both internally and by ION clients to perform end to end tests on the ION domain alone or integrated with third party

systems.

Robot Framework
Creating a testing library

Only for internal usage of UniPI - Ingegneria del Software 40

Continuous Integration

Only for internal usage of UniPI - Ingegneria del Software 41

Typical integration scenario

You created or changed the code of a project

To make it usable, you need to integrate it with a bigger solution

Integration here means building the whole solution: compile, package, test

The build is the ultimate artifact of the integration process

When does it happen?

Testing for QA

Demo for business

New release

Continuous Integration and Testing Automation
What problems we want to address?

Only for internal usage of UniPI - Ingegneria del Software 42

Typical issues

Conflicts with code committed by other developers

The project does not build

The program does not work as expected

The program does not work on some platforms (Operating System, Database, ...)

Issues grow together with the solution complexity

Bigger dev teams, more coordination issues

More supported platforms, more portability issues

More modules working together, more integration issues

Continuous Integration and Testing Automation
What problems we want to address?

Only for internal usage of UniPI - Ingegneria del Software 43

And when the release deadline comes…

"It doesn't compile!"

"The library is old!"

"Who did commit that #$%^&!?"

"Sorry Dear, we have to release! I will come home tomorrow.."

Continuous Integration and Testing Automation
When integration goes wrong

Only for internal usage of UniPI - Ingegneria del Software 44

Key facts to avoid such problems

Commit code frequently

Deploy and test frequently

Fix bugs promptly

Make it a flow

Automate

⚫ Build

⚫ Testing

⚫ Reporting

How can we achieve this?

The answer is Continuous Integration

Continuous Integration and Testing Automation
How to avoid the typical integration issues

Only for internal usage of UniPI - Ingegneria del Software 45

Continuous Integration (CI)
It’s a development practice that requires developers to integrate code into a shared repository several times a day.

Each check-in is then verified by an automated build, allowing teams to detect problems early.

By integrating regularly, you can detect errors quickly, and locate them more easily.

Continuous integration is a necessity on complex projects and frequent releases.

Continuous Integration and Testing Automation
What is Continuous Integration?

Only for internal usage of UniPI - Ingegneria del Software 46

Continuous Integration and Testing Automation
Continuous Integration Cycles

CI Server Build Cycle

CI Development Cycle

Only for internal usage of UniPI - Ingegneria del Software 47

Version Control Systems

Git, SVN

Continuous Build Systems

Jenkins

Artifact Repositories

Nexus

Code quality inspectors

Sonar

Testing Frameworks

Junit, CppUnit, Robot Framework

Deployment Tools

Docker, Ansible

Continuous Integration and Testing Automation
C.I. Tools

Only for internal usage of UniPI - Ingegneria del Software 48

Jenkins
Open source tool aimed to perform Continuous Integration and build automation.

The basic functionality of Jenkins is to execute a predefined list of steps, called jobs.

Jenkins job: sequence of tasks or steps in your build process, example:

⚫ Build the application

⚫ Verify the code quality

⚫ Run a shell script

⚫ Package the build result

⚫ Execute the integration and acceptance tests

⚫ Deploy / Release

The jobs can be triggered in various ways, and chained together

⚫ e.g. of triggers: every day, after a commit, after another job execution

Continuous Integration and Testing Automation
Jenkins Continuous Build System

Only for internal usage of UniPI - Ingegneria del Software 50

Continuous Integration and Testing Automation
A Jenkins pipeline

Start triggered (e.g.

commit) or scheduled
Parallel execution of steps

Artifacts produced by the

pipeline (e.g. package, test

results, reports)

Tight integration with SCMs.

E.g. pipeline automatically created when a branch is created

Only for internal usage of UniPI - Ingegneria del Software 51

The Jenkins monitor displays in real-time the progress of the jobs being executed
Usually, every development team has its own dedicated screens to monitor the status of the team’s projects.

Continuous Integration and Testing Automation
Jenkins Monitor

Red monitor??

No release!

Only for internal usage of UniPI - Ingegneria del Software 52

Continuous Integration and Testing Automation
Jenkins Monitor – ION Core Architecture Team – Builds

Only for internal usage of UniPI - Ingegneria del Software 53

Continuous Integration and Testing Automation
Code quality checks – ION Web Server

Static

Analysis

Dynamic

Analysis

Only for internal usage of UniPI - Ingegneria del Software 54

Testing Automation

&

Continuous Testing

Only for internal usage of UniPI - Ingegneria del Software 55

What is testing automation?
It’s the use of software separate from the software being tested to control the execution of tests and the comparison of actual outcomes

with predicted outcomes.

What is continuous testing?
It’s the process of executing automated tests as part of the software delivery pipeline to obtain immediate feedback on the business

risks associated with a software release candidate.

Testing Automation and Continuous Testing

Only for internal usage of UniPI - Ingegneria del Software 56

Jenkins allows to execute Robot Framework tests

The Jenkins job sets up the test environment and triggers the tests

The outcome of tests is reflected in the job status

Test reports are automatically attached and accessible on the Jenkins job

Advanced testing environments can be easily setup

⚫ The slaves executing the tests can be dynamically allocated (e.g. cloud resources)

⚫ Containerization (e.g. Docker) is natively supported, allowing to spawn containers on demand for testing purposes

Testing Automation and Continuous Testing
Continuous Testing with Jenkins and Robot Framework

Only for internal usage of UniPI - Ingegneria del Software 57

ION uses Jenkins and Robot Framework to automate the execution of tests

Tens of thousands of tests executed automatically every day

Several teams, geographically distant, share the same C.I. environment

Heavy usage of the cloud and containerization to allocate the required hardware resources

Typically one Jenkins instance per development area

Testing Automation and Continuous Testing
Testing Automation in ION

Pisa

New York Delhi

Only for internal usage of UniPI - Ingegneria del Software 58

Testing Automation and Continuous Testing
Jenkins Monitor – ION Core Architecture Team – Acceptance Tests

Only for internal usage of UniPI - Ingegneria del Software 59

Like the production code, the testing code requires maintenance

Real team scenario: several developers possibly changing the production code or adding new tests every day.

The probability of affecting negatively the C.I. is not negligible, some examples:

On purpose backward incompatible changes in the production code

⚫ Luckily, they are very rare

Regressions in the production code!

Bugs in the tests

⚫ Instabilities

⚫ Not educated tests

Performance issues

⚫ Not trivial tests often require a lot of time and resources to execute

⚫ Over the years, this can become a serious issue

What does maintenance mean

Few supervisors check the status of the C.I. daily

⚫ For minor issues, they apply or delegate to other team members the required action points

⚫ For bigger issues, the team stops working on the production code (No tests?!? No developments are possible!)

Testing Automation and Continuous Testing
Maintenance

DebuggingDebugging required

Click here to apply

https://forms.office.com/Pages/ResponsePage.aspx?id=1OePdu7rp0GYUdWCXs3Tlofx42XLtwpIr1QWLf38MjFUNFdIVDVEN1dKRDBMWTlGNElSUzhXUkwxVC4u

