Design Patterns:
Proxy

UNIVERSITA DI P1sA

Proxy: modello statico

, <<Interface>>
Client i
+task() SCTVIC® [Servicelnterface
+doQOperation()
1 ~
E S < refersTo JA\
> |
: h ~ r--"--"=-—"=-"-"=-=-"=-"=-=-=-=== 1
' ™ o I I
task(){... service.doOperation} A : :
Proxy .. OriginalService
- original =
+doOperation() +doOperation()
|
I
|
doOperation(){

\\preprocessing
original.doOperation
\\postprocessing

}

Proxy: modello dinamico

c : Client p : Proxy o : OriginalService

1: task()

2: doOperation()

’J_
2.1: pre-processing

Ep

2.2: doOperation()

2.4: post-processing

I
I
I
I
I
I
I
I
I
I
I
2.3
,<_ _______________
I
I
I
I
I
I
I
I

Osservazioni

- Proxy fornisce un surrogato (o segnaposto) per
un altro oggetto, per controllarne I'accesso

- Simile ad Adapter in quanto si introduce un
intermediario.

- Sono diversi perché

1. Proxy e oggetto originale hanno la stessa
interfaccia, Adapter e Adaptee no
>. Il Proxy puo eseguire pre- e posr-elaborazioni

Diversi usi/tipi di Proxy

= Remote Proxy
Il Proxy permette |'accesso a un oggetto remoto
Usato per esempio in RMI e in Corba

= Protection Proxy
= |l Proxy implementa un controllo sugli accessi

= Cache Proxy
= |l Proxy mantiene coppie richiesta-risposta sgravando il server

= Synchronization Proxy
= Gestisce gli accessi concorrenti a un servizio

= Virtual Proxy
= |l proxy si comporta come l'originale mentre I'originale viene
costruito, ppi passa le richieste a quest’ultimo

Case study: Gumball machine example

We want to add some
monitor to a collection of
Gumball machines

Remote Proxy

Remote Proxy

With Remote Proxy, the proxy
acts as a local representative

for an object that lives ina
different JVM. A method call

on the proxy results in the call
being transferred over the wire,
invoked remotely, and the result
being returned back to the proxy
and then to the Client.

We know this dlatjram
F!rcH:.y well b*r ROW. .

Gumball Class

public class GumballMachine ({ A location i’jﬁfi S{Winﬁ.

‘location, int count) {

N The lotation is passed intso the

tonsteuttor and stored in the
instance variable.

Leb's also add a getter method '{‘-ﬂ
// other methods here 5rab the lotation when we need it

Gumball Monitor

public class GumballMonitor {

GumballMachine machine; P The monitor £akes the machine in its
]

tonstruttor and assians |
public GumballMonitor (GumballMachine machine) { mathine im’ca::: :::5.111 o
IdDie.

this.machine = machine;

}

public void report() |{
System.out.println(“Gumball Machine: “ + machine.getLocation());
System.out.println(“Current inventory: “ + machine.getCount() + “ gumballs”);
System.out.println(®Current state: “ + machine.getState());

Role of the remote Proxy

's desktop
CED The pro*y pretends to R_i"'a'f:c oo "
&) p— be the remote ob“}:t.tf i o
but it's Jusf 3 stand in
fov the Real Thing

Remote Heap

obi
{,.‘jkmg to the Real
umball mathing 'Ou{;
1{.‘5 rca“\li' ju5£ Jc,allkmg
Lo the prory; whith
then talks fo the . =
Real gqumball mathine ﬂ o::j " o
over the network. o i

Remote Methods

“his should look Familiar--
o Client helper pretends

Lo be the servicts bu

ﬂCIienf heap it's st 3 prony o
Rtﬁl T]hmlj-

the

Client ob'jcﬂje Fhinks
ulc,'s Jc.allk’.na to the
Real Servite. It

hinks the client k1S

helper is the ‘l‘.htllnt_', Service I“*Ff"' 5:&: the The S.c‘r‘:l‘fs;ﬂic_ l.}_"sjto:

that tan actually This is going request from the tlient the i 4 the meth

dﬂ th: \"’Hll 'Ili.'ﬂ'k' lm b: oue hf'f'f\", “hFﬂﬂki 1{’ ihd abj:ilaa:{’ﬁ“ dﬂs JC:'l’\t
pron oo e method on the 3 ok

How the method call happens
1) Client calls method doBigThing()

EB Client heap

h
1%

i

2) Client Helper forwards to service helper

@) Client helper packages up information about the call
(arguments, method name, etc.) and ships it over the
network to the service helper.

|l Client heap

"client wants to call a method"

3) Service helper calls the real object

(8) Service helper unpacks the information from the client helper,
finds out which method to call (and on which object) and
invokes the real method on the real service object.

]. Client heap
e

“client wants to call a method"

doBigThing() >
J '... ‘-‘1“' s 'r" . I {hﬂ
Remembey) his 1s

obiett with the REAL

method logit: The ont !
khat does the veal work

4) Real object returns result

The method is invoked on the service object, which returns

& some result to the service helper. D =

e
-
e,

5) Service helper forwards result to client
helper

Service helper packages up information returned from the
call and ships it back over the network to the client helper.

e S k]
1 T

A (B
A =

| *

AR

Q paiiiong l Server heap) |
packaged up result : R\

: Q"';E'nf E\Qﬂ'f

D) ClHICTIL ﬂEIpEF ICLUrlrisS reSuit Lo
client

Client helper unpackages the returned values and returns
them to the client object. To the client object, this was all
fransparent.

| {l Client heap
o

Remote Proxy with RMI

The client helper is called stub

The server helper is called skeleton

This is going

: to att as our
}' Client heap g W“"‘T? |

NEWCr Versions

N S e dony
Fequire 3y, explicit

skeleton objeet,

bu something o
Now let’s go through all the steps needed to make an object into a the servey sid
service that can accept remote calls and also the steps needed to ;. stil handling
allow a client to make remote calls. skeleton bek SVior

You might want to make Sure your seat belt is fastened; there are

a lot of steps and a few bumps and curves - but nothing to be too
worried about.

Hooking up client and server objects

Client

How it works...

0 Client does a lookup on the RMI registry
Naming. lookup (“rmi://127.0.0.1/RemoteHello”) ;

. RMI registry returns the stub object
(as the return value of the lookup method) and RMI deserializes the stub
automatically. You MUST have the stub class (that rmic generated for you)
on the client or the stub won't be desertalized,

. Client invokes a method on the stub, as if the
stub IS the real service

Back to Gumball machine problem

This is owr .
Mﬂh-"w tode,
uses 3 provy 1o
Lalk ko vemote

5%"53“ mathines:

The stvb is 3 pro*y Remote Qumball Machine

to the rtmoﬂ
ﬁmbiﬂMaLHntv

with a3 Jum

The skeleton atcepts the ?:,.ba“r«’\an'ﬂma *
remote £alls and makes o Y€ wm:-;g
everything work on the X's gownd s F ate
servite Sidf. ‘a T:ﬂuﬂjc" “ﬁw

The CEO runs the monitor, which first grabs the proxies to the remote

gumball machines and then calls getState() on each one (along with
getCount() and getLocation()).

Remote Gumball Mach;
with 3 Y Mathine

Making the call

© getState()is called on the proxy, which forwards the call to the remote
seice. The skeleton receives the request and then forwards it to the
gunball machine.

9 GumballMachine returns the state to the skeleton, which serializes it and

transfers it back over the wire to the proxy. The proxy deserializes it and
returns it as an object to the monitor.

t all Likewise, the QumballMathine
The monitor hasnt chanded ah -; implements another interfate and
extept it knows it TE ;ﬁ":ﬂs the may throw a remote exteption in its
cemote exteptions: 1LC Levbate vather tonstruttor, but other than that, the
GuwballachineRemete WU e kil ERip
emen

than @ :,um‘..lrt‘{:l 1““?"

We also have a small bit of code to register and lotate stubs using the
RMI vegistry. But no matter what, it we were writing something to
work over the [nternet, we'd need some kind of locator service.

Virtual Proxy

Virtual Proxy

Virtual Proxy acts as a
representative for an object that
may be expensive to create. The
Virtual Proxy often defers the
creation of the object until it

Is needed; the Virtual Proxy

also acts as a surrogate for

the object before and while it

is being created. After that, the
proxy delegates requests directly to
the RealSubject.

Choose the album cover of 860

: Favorite CDs

Buddha Bar

Selected Ambient Works, Vol. 2
MNorthern Exposure

Ima

MOCMXC AD.
Karma
Ambient: Music for Alrports

?Dur “klhﬂ oe x

Playing CD Covers

.. . . RR GRS L
';Fu'fmu:e_d:m 5= =

Wi‘lilt‘! {:ht CD Cover

6/ T Iﬂﬂdihﬁj {',.h{: Fra-,pr
“Loading CD cover, please wait...”. displays a meEssdge

% 5T
| Favariie CDs
1

oo OO Crvuy Wl

Playing CD Cover Proxy

This is the Swihr_-'}

_ R <<interface>
lton interface used {m:i;,m P
to diSFIET imﬂﬁﬁ n 3 getleonWidth()
user interface. geticonHeight()
pairticon()

= - subject :
Imagelcon ImageProxy
geticonWidth() getlconWidthi()
/‘ getlconHeight() ' | getlconHeight()
paintlcany) paintlcon()

Thlis Is Jﬂvax_swinﬁ_fmaﬂckﬂnj
a ¢tlass that di C
SPI&ys an ‘m&ﬂt. This is our P'rmt.y, whith -Firs{:
disﬂa'}fs a rntsiﬂgt and Jchr:h when
the image is loaded, delegates to

Imageleon to disilai the imaic.

ImageProxy process

© ImageProxy first creates an Imagelcon and starts
loading it from a network URL.

© While the bytes of the image are being retrieved,
ImageProxy displays “Loading CD cover, please
wait...”.

© When the image is fully loaded, ImageProxy del-
egates all method calls to the image icon, including
painticon(), getWidth() and getHeight().

© If the user requests a new image, we'll create a
new proxy and start the process over.

ImageProxy process

What did we do?

€) We created an ImageProxy for the display. The paintIcon()

Behind

method is called and ImageProxy fires of f a thread to ﬂ-‘e Scems
refrieve the image and create the ImageIcon.
tes @
a P-r,a'j,‘f f.;'rcﬂ .
I-;;fr%;d _Lo -Iﬁ{‘anbﬂ'tﬁ 'Eh:
paintIcon() | 35”' ton, Whith starts Some image
Lyieving the image: server on
- re ; the Internet
o get image
:L'*_ T LI
oo o™ e
Lol

displays loading
message

6 At some point the image is returned and
the ImageIcon fully instantiated,

%ﬂgﬂcﬂ“

Q After the ImageIcon is created, the next time paintIcon() is
called, the proxy delegates to the Imagelcon.

paintIcon()

paintIcon()

displays the real image

class ImageProxy implements Icon {
ImageIcon imagelcon;
URL imageURL;
Thread retrievalThread;
boolean retrieving = false;

public ImageProxy (URL url) { imageURL = url; }

public int getIconWidth () {
if (imagelIcon != null) return imagelcon.getIconWidth () ;
else return 800; }
public int getlIconHeight () {
1f (imagelcon != null)return imagelcon.getIconHeight ()
else return 600;}
public void paintIcon (final Component ¢, Graphics g, int x, 1nt y) {

1if (imagelIcon != null) imagelcon.paintlIcon(c, g, %X, VY);
else{ g.drawString("Loading CD cover, please wait...", x+300, y+190);
if (!retrieving) {
retrieving = true;
retrievalThread = new Thread(new Runnable () {
public void run() {
try A
imagelcon new Imagelcon (imageURL, "CD Cover");

c.repaint () ;
} catch (Exception e) { e.printStackTrace();}

}

Design patterns, Laura Semini, Universita di Pisa,
Dipartimento di Informatica.

java.lang.reflect package can be used

—tocreate-aproxy-class-dinamically.—

ccinterdacess
Subject

+ request()

.

Extends

RealSubject

+ request()

L]
n
Lt
[

Extends

cciterfacess
InvocationHandler

+ invoke()

Frc:r,r

/\

Extends

+ request()

InvocationHandler

+ invoke()

Homework

Consider your phone being the subject.

Build a firewall proxy that filters sms and
phone calls to block those of stalkers .
- The blacklist must be updatable

