Design Patterns:
Decorator

An example

Welcome to Starbuzz Coffee

Starbuzz Coffee has made a name for itself as the

fastest growing coffee shop around. If you've seen one

on your local corner, look across the street; you'll see
another one.

Because they’ve grown so quickly, they're scrambling

to update their ordering systems to match their
beverage offerings.

When they first went into business they designed their
classes like this...

https://www.youtube.com/watch?v=tzQuuoKXVq0

https://www.youtube.com/watch?v=v-jlvacpsxl

Your first idea of implementation
Peverage is an &bsjcra:-: :5135%
j] E Li!:;inbihi” ;:E}Eu Ehﬂ?. /W/

description

Beverage

The d:scr'l?ficm inskante variable

is set in eath subtlass and holds 3
d:sﬂri?'ljnn a-? the hgucvaﬁ:ﬂ]kg

“Most Excellent Davk Roast.

The 5¢£D¢5£r5?'|:'|ah” method
veturns the dﬂstv]?{inn-

DarkRoast Decaf Espresso
cost) cost])

costf) cost()

~ T 7

Each subtlass -Imlfle:rncn‘{:s tost() 4o veturn the cost of the bcvcraﬁt-

The tost() method is getDescription()

abstratt; sube|assses r-'—'---...,__________? cost)
need to dekine their

oNn '|n~1p-'|r.m¢h tation.

{f Qther useful methods

In reality

In addition to your coffee, you can also ask for several condiments like
steamed milk, soy, and mocha (otherwise known as chocolate), and have
it all topped off with whipped milk. Starbuzz charges a bit for each of
these, so they really need to get them built into their order system.

Here’s their first attempt...

Now a beverage can be mixed from different condiment to form a new
beverage

Whea!

Can you say
“class explosion?”

~°°

WithStea=edMilk
HouseBlendWithSt=amedHilk andMocka
4 andMecha andMecia wierapie —
ndCaramel
Duar kS stWittSteamedMilk ' cpssasis e
w} andCaramed andCarame ooyl EspressoWithiVhipandiocha
Da oosy) Diecafil
HouseEsne - =
andy o) DarkRcas st
con) | Tee— o — - . Decaliin oy
HoussBiendWith] cosi) DackRozstWiEhSteamedNilk Decal RSl cost)
4'—_|_.ﬁ“__|mmJIr ! T
Hoase
E - DarkRoas W= 5tea D alWithS teassedMilk || ost{] e
Hous oty M'l Decd
HouseBlendWithilhipandSoy DarkRo oot} oot}
o s} ExpreszoWithStamedMik
== DiackRo2stiWihStamedNilk ik - —
a0 el Espresso'fithWhipandSoy
Dk RozstWihWhipandSoy DecafiWithitihipandSoy
ecal)
o) s}

This is stupid; why do we need
all these classes? Can't we just use
instance variables and inheritance in
the superclass to keep track of the
condiments?

Well, let's give it a try. Let's start with the Beverage base
class and add instance variables to represent whether or
not each beverage has milk, soy, mocha and whip...

Beverage
description New boolean values 1Ealr
milk eath eondiment.
soy
quta
ik ,hll..:w wg’“]mﬂgmcnf ﬂas{:f} n Bc'u'c'ragt (instead ::u-F
getDescription() kc:?int_nr it abstract), so that it ean caleulate the
cost(] tosts assotigted with the tondiments for a Pa-.—-t'ltu]a?
hashilk() b:'ﬁﬁ\"aﬂ: instante. Euhﬂas_scs will sill a*a'c'r'r'ldc.
sethilk() tost(), but H-n:\,' will also invoke the super version so
hasSoyl] that they can caleulate the botal tost of he basie
I;'EELE'WI []I 0 beverage plus the tosts of the added condiments.
sethMochal)
hasiVhip() These aet and set Jf_el""‘ T:‘tah
setivhio() values kor the tondiments:
il Other useful methods..

Beverage

Mow let's add in the subclasses, one
for each beverage on the menu:

description
milk

soy

mocna
whip

| ealeula te +he

t-ht {:HE' 1 hd h

| 'I'l.-bf' ‘o
Al extend that Funttiona R
Tr:f-l:;l: ias{s for that 553:411];14!.

hcﬂcfaﬁ.r, 'bﬁ:-
Eath eostl) method needs to Lam?u‘l}:
+he tost of the beverage and +hen

' lmoy the
in the tondiments by €3
2?::::1355 im?lltmth'lza‘l:-mh -::vf f,m‘l.:[}.

The sv evtlass tost() wil
ﬂ-::ns'ts E

NS

getDescription)

% cosl()

hasMilk()
saltMilk()
hasSoy()
selSoy)
hasMocha()
selMochal)
has\Whipf)
selWhip()

ff Other useful mathods..

HouseBlend

Now, your turns. It is a good solution?

See, five
classes total. This is
definitely the way to go.

I'm not so sure: I can
see some potential problems
with this approach by thinking
about how the design might need
to change in the future.

@Pﬂn jur per

What requirements or other factors might change that will impact this design?

Price thanges for tondiments vill force us to alter existing tode

New tondiments will forte us £0 add new methods and alter the tost method in the supertlass. 5

v WO
We may have new bcvcragcs For some of these bcvﬂagcs (ited tea?), the tondiments Umt:‘o?& ¢
may not be appropriate, ch the Tea subtlass will still inherit methods like hasWhip(). 3 \¢

What if a customer wants a double motha?

‘{w“ ol

emini, Universita di Pisa, Dipartimento di

Informatica.

Open Closed Principle

SOLID 2: Open Closed Principle :
° Extending a class shouldn't require modification of that class.
° Software entities like classes, modules and functions should be open for extension but closed
for modifications.

°© OPCis a generic principle. You can consider it when writing your classes to make sure that when you need to extend
their behavior you don’t have to change the class but to extend it. The same principle can be applied for modules,
packages, libraries.

Design Principle

Classes should be open
for extension, but closed for
modification.

Q: How can | make every part of Q: How do | know which areas of

my design follow the ﬂpE“-EIUSEd Ehange are motre impﬂrtant?
Principle?

A: That is partly a matter of

A'.' Usually, you can't. Making OO experience in designing 00 systems and
design flexible and open to extension also a matter of the knowing the domain
without the modification of existing you are working in. Looking at other
code takes time and effort. In general, examples will help you learn to identify
we don't have the luxury of tying areas of change in your own designs.

down every part of our designs (and it
would probably be wastefu). Following
the Open-Closed Principle usually
introduces new levels of abstraction,
which adds complexity to our code.
You want to concentrate on those areas
that are most likely to change in your
designs and apply the principles there.

Decorator Pattern

The problems of two previous designs

- we get class explosions, rigid designs,

- or we add functionality to the base class that isn’t
appropriate for some of the subclasses.

Revisit the problem again

If a customer wants a Dark Roast with Mocha and

Whip
- Take a DarkRoast object
- Decorate it with a Mocha object
- Decorate it with a Whip object
- Call the cost() method and rely on delegation to add on the
condiment costs

CoNnstructing a drink oraer with
Decorators

€ We start with our DarkRoast object. aeckRoast

© The customer wants Mocha, so we create a Mocha

object and wrap it around the DarkRoast. y
The Mothd cbiett is @ dfﬂ-nfa{;&: L
p Lype mivvo¥s g\'u: a"ﬂjcl.'.{'. b s ¢ r._ : >
'ﬁ{;hﬁ Lase, d B:vcragc- (B'_f i
. . e the same ‘l‘.'ﬂ»"e--

wie medn II.E'

) method oo
Co, Moth3d has 3 f—‘?::;ms: we tan breat

\\yrn
and throvah P 1 iaeha as
an%ﬁ:‘lt‘raﬁt an'(?bzzaus.e Mﬂ'ﬂha is d

The customer also wants Whip, so we create a
Whip decorator and wrap Mocha with it.

—

Whip is a detovator, so it also
mivvors DarkRoast’s type and
intludes a cost() method.

So, a DarkRoast wrapped in Motha and Whip is still
a Beveraae and we tan do anything with it we tan do
with a BarkRaast, intluding eall its cost() method.

(4] Now it’s time to compute the cost for the customer. We do this
by calling cost() on the outermost decorator, Whip, and Whip is
going to delegate computing the cost to the objects it decorates.
Once it gets a cost, it will add on the cost of the Whip. _
(You’\\ see how "
&— a J;cw ?3?)65)

4

First, we call cost() 0"'.""“a . Mocha calls cost() on
outmost decorator, Whip. DarkRoast.

o Whip calls cost() on Mocha.

o parkRoast
returns its cost,

99 cents.

Whip adds its total, 10 cents,
to the result from Mocha, and

ocha adds its cost, 20
returns the final result—$1.29, 0 M

cents, to the result from
DarkRoast, and returns
the new total, $1.19.

The Decorator Pattern attaches additional
responsibilities to an object dynamically.
Decorators provide a flexible alternative to
subclassing for extending functionality.

The decorator pattern for Starbuzz beverages

Beverage atts as o
abs{:\rat‘l‘_ Lovn\?cmcn{: ¢lass.

\ Beverage component
description

gelDescription()
cost()
I other useful methods

7 NN A A

HouseBlend DarkRoast CondimentDecorator
cost() cosl() getDescription()
Espresso Decaf N & A
cost) oosk()
Milk Whip
L owr Lor.t"c)(’c Beverage beverage Beverage beverage
The *° ks, ONC e
ontn! cost() cost()
Lov&ec 7 |l gelDescription{) getDescription()
to

N\ 77

And heve are our tondiment decorators; notice
Jcheﬁnecd to implement not only tost() but also
getDeseription(). We'll see why in a moment..

Decorator Pattern defined

Each component can be used on its
own, or wrapped by a decorator.

: &3 component
mathodAl)
mathodBy{)
The C“’“""'I:‘C'“Tm#' i Each detovator HAS-A
is the objtf-": we e qomg (wraps) a tomponent, whith
) ap g
to dymamically add new means the detorator has an
behavior to. [extends instance variable that helds
Co-m?m'-eh'b ConcreteComponent Decorator a rcfcrtnﬁc to d £m'pm{:a
methiodAf) mathodAl)
t the
if olhes methods 1/ ot mathods \ Detovatevs im?ltmc;s-tvaf-‘h
Same _I-H{'.ET'FM o {'. &t
lass 3s the comporent T
are 9oIng to de -
ConcereteDecoratorA ConcereteDecoratorB
ﬂ Component wrappedOby Componant wrappadOb)

The Cmr:haatﬂ*itﬂ" has am methodB()

nskanee vaviable for the 'l':""""'ﬁ newBehanvion)
& detovates (4he Component if other methods

the Detovator wraps).

Detorators ean extend the
<tate o-F the ;m?thh'l'-

Detovators ean add new methods; however, new
behavior is typically added by doing tomputation
before or after an existing method in the tomponent-

Decorator: participants

= Component
= Interface of the decorated objects

= ConcreteComponent
= Base class of objects that can receive new responsibilities

= Decorator

= Defines an interface conform to the common one and maintains a
reference to one object of type component (it can be already decorated
or not)

= ConcreteDecorator
= Defines a new responsibility

Some confusion over Inheritance versus Composition

Okay, I'm a little
confused...I thought we weren't
going to use inheritance in this

pattern, but rather we were going
to rely on composition instead.

Sue: Whart do you mean’?

Mary: Look at the class diagram. The CondimentDecorator is extending the Beverage class.

That’s inheritance, nght?

Sue: True. I think the point is that it’s vital that the decorators have the same type as the
objects they are going to decorate. So here were using inheritance to achieve the type matching,

but we aren’t using inheritance to get behavior.

Mary: Okay, I can see how decorators need the same “interface” as the components they wrap
because they need to stand in place of the component. But where does the behavior come in?

Sue: When we compose a decorator with a component, we are adding new behavior. We
» are acquiring new behavior not by inheriting it from a superclass, but by composing objects

K tGZether.

Mary: Okay, so we're subclassing the abstract class Beverage in order to have the correct type,
not to inherit its behavior The behavior comes in through the compositon of decorators with
the base components as well as other decorators.

Sue: That’s right.

Mary: Ooooh, I see. And because we are using object composition, we get a whole lot more
flexability about how to mix and match condiments and beverages. Very smooth.

Sue: Yes, if we rely on inheritance, then our behavior can only be determined statically at
compile aime. In other words, we get only whatever behavior the superclass gives us or that we
override. With composition, we can mix and match decorators any way we like... at runtime.

Mary: And as I understand it, we can implement new decorators at any time to add new
behavior. If we relied on inheritance, we'd have to go in and change existing code any ame we
wanted new behavior.

Sue: Exactly

Mary: Ijust have one more quesdon. If all we need to inherit is the type of the component,
how come we didn’t use an interface instead of an abstract class for the Beverage class?

Sue: Well, remember, when we got this code, Starbuzz already /ad an abstract Beverage class.
Traditionally the Decorator Pattern does specify an abstract component, but in Java, obviously,
we could use an interface. But we always try to avoid altering existing code, so don’t “fix” 1t 1f
the abstract class will work just fine.

Let’s see the code

public abstract class Beverage { m is an abshrg,d;
String description = “Unknown Beverage”: Beverae two methods
plass with the two 0 ad st
public String getDescription() { 5;1;]3 estription

return description;
| \ :{:Dtscw?{mn IS alr:ady

public abstract double cost(); im ltmth{.ﬂd 1tnr us, bu{'bwc
! nctd to implement tost

in the subtlasses.

The abstract class of condiments

public abstract class CondimentDecorator extends Beverage |
public abstract String getDescription():

}
W:’rt also 3oin5 to ﬂ:qluirc

fhat the condiment
detovators all reimplement the
gthtsﬂri?'Einn{} method. F[&ain,

we |l see w'n?' n 3 sel...

Concrete Base Classes of Beverages

public class Espresso extends Beverage {
public Espresso() { okion, e
description = “Espresso”; < To take care of the dcsc.n?:::lan 'l::!!
} sk Lhis in the constructor Tor ¢
tlass. Remember the destription instance
public double cost() { variable is inherited from B‘C‘E"aﬁ“
return 1.99;
J We don't
} he tost of an Bspresse T° Ty
\ L rupper om0 e

adding ™ : ,
e T e e o o e 1
nee Y

A concrete Condiment class

.ﬂ“Eth.-a’Lﬂ"
Motha is a decorator, so we P Cond | b mskantiote Mothd wikh
extend CondimentDecorator. .;.’t,f-"‘ X Peverdf We rE 50:33 T Beverane vsnd
3 retere
Jf L (1) Pn inskance vavidble £ o
ni ,
public class Mocha extends CondimentDecorator { beverdye we ave wrapping:
Beverage beverage; (1) A 3 bo set this mstante
W ik
- are Wrappng
I\\;IVhehn public Mocha (Beverage beverage) { J gk ko {'nf b etk ':: e beverdse
ocha this.beverage = beverage; Here, we ve 909 L bov's
changed, wevre Wi?? "
I wTor
\r/]veeezntc))/ public String getDescription() { tonstx
change return beverage.getDescription() + “, Mocha”;
this }
oy m—t L We want our deseription to f}u{; only
intlude the bevevaae — say “Dark
return .20 + beverage.cost(): menae 9 !
] 7 { Roast™ — but also to intlude eath
7 item detorating the beverage, for
ke the tost of our beverdle instance, “Dark Roast, Motha". So

Now we need to tLompu
with Motha. First, :c

biett weve decorating
:ns’.:; hen, we 3dd the Cos

leaate the eall to the we first deleaate to the object we are
d:?l};at it tan compute the detorating to get its destription, then
_I; G'E Mﬂf.hﬂ 'tp Eh{ 'I'ESHH.'.- aP’FﬂHd 'I-'l-l Mﬂ-'ﬂa” ‘t{) {ha{, d:y:,r|Pbm

CLONSTructing new neverages rrom
decorator classes dynamically

public class StarbuzzCoffee ({ mm,.,dimﬂts
S50 £
public static void main(String args([]) { > Ovdex "‘?4:. ks deﬁb“‘?bu
Beverage beverage = new Espresso(); and T

System.out.println (beverage.getDescription()
+ ™ 5" + beverage.cost()):
Make a DarkRoast °

Beverage beverage? = new DarkRoast(); ¢ Wrap it with a Motha.
beverageZ = new Mocha (beverageZ); €— —
beverage2 = new Mocha (beverage2); & — Wrap it in 3 setond Motha.
beverage2 = new Whip (beverage2); €—— Wrap it in 3 Whip.
System.out.println(beverage2.getDescription()

+ “ 5" + beverageZ.cost()):

ettt

Beverage beverage3 = new HouseBlend(); ‘f"'__‘\

beverage? = new Soy(beveragel); Fin.all'}'. give us 3 HG“\'-B]“-:“d
beverage3 = new Mocha (beverage3): with g@p Motha, and Whip-
beverage3 = new Whip (beverage3);

System.out.println(beverage3.getDescription()
+ “ 58" + beveragel.cost()):

Be careful !

You can usually insert decorators transparently and the client never has to
know it’s dealing with a decorator

However, if you write some code is dependent on specific types -> Bad things
happen

Beverage beverage2 = new DarkRoast(); Beverage beverage2 = new DarkRoast();

beverage2 = new Mocha(beverage?2); beverage2 = new Mocha(beverage?2);
beverage2 = new Mocha(beverage?2); beverage2 = new Mocha(beverage?2);
beverage2 = new Whip(beverage2); Whip beverage3 = new Whip(beverage?2);
System.out.printin(beverage2.getDescriptio System.out.printin(beverage3.getDescripti
n() on()
+ “$” + beverage2.cost()); + “$” + beverage2.cost());

The right way The poor way

Exercise so]utions

public class Beverage {

// declare instance variables for milkCost,
// soyCost, mochaCost, and whipCost, and
// getters and setters for milk, soy, mocha public class DarkRoast extends Beverage {

// and whip.
public DarkRoast() {
public float cost() { description = "Most Excellent Dark Roast”;
float condimentCost = 0.0:)
if (hasMilk()) { public float cost() {
condimentCost += milkCost:
} return 1.99 + super.cost();
if (hasSoy()) {
condimentCost += soyCost;) }
}

if (hasMocha()) {
condimentCost += mochaCost:
}
it (hasWhip()) {
condimentCost += whipCost;
}

return condimentCost:

Decorator: Good Consequences

More Flexibility than static inheritance
. Much easier to use than multiple inheritance
. Can be used to mix and match features

. Can add the same property twice
. Allows to easily add new features incrementally

Decorator: Bad Consequences

- |f Decorator is complex, it becomes costly to use in
guantity

- A decorator and its component aren’t identical

- From an object identity point of view, a decorated
component is not identical to the component itself

- Don’t rely on object identity when using decorators

- Lots of little objects
. Often end up with systems composed of lots of

little objects
. Can be hard to learn and debug

Implementation Issues

Several issues should be considered when applying the
Decorator pattern:

1. Interface conformance:
A decorator object’s interface must conform to the interface
of the component it decorates.

2. Omitting the abstract Decorator class:

If only one responsibility is needed, don’t define abstract

Decorator. Merge Decorator’s responsibility into the
ConcreteDecorator.

Implementation Issues

3. Keeping Component classes light weight:

The Component class is inherited by components and
decorators. Component class should be dedicated to defining
an interface, no other functions. E.g.The Component class
should not be used for storing data and defining data. That
should be done in subclasses. If the Component class
becomes complex, it might make the decorators too
heavyweight and costly to use in quantities. Keep it light and
simple.

4. Changing the skin of an object versus its guts:

Decorator classes should act as a layer of skin over an object.

If there’s a need to change the object’s guts, use Strategy
pattern.

Decorator

Intent

- Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for
extending functionality.

Also Known As
- Wrapper

Motivation

- We want to add properties, such as borders or scrollbars to a
GUI component. We can do this with inheritance
(subclassing), but this limits our flexibility. A better way is to
use composition!

Structure: the TextView example

VisualComponent

Draw()

JAN

component->Draw()

- ———— - —

Decorator::Draw();
DrawBorder();

component
TextView Decorator '0
Draw() Drawl} O s T T T T T
ScrollDecorator BorderDecorator
Draw() Drawll Dpssn=mes
ScroliTo() DrawBorder()
scrollPosition borderWidth

Motivation

G appl calnes. wilkd barsh| -
TGy g ng] abEcis i el sy
aepecl al lhar fachonsily Bl

H nars dssign Saatiash wedld ba
prikibilrealy aapanse

aBorderDecorator

Far pEarmgls, awsl doasurant -
fers mepjulares Fer Bl e
Uiy ared schiereg Sacliss b somne
ualanl. Homssass, Tni) rwarakhky
g shat of s objests |
mpresanl aash chamcks: amd
graphical Eumanl B e dos o msl
Doy &< wiiubd proceess Janilly
il lhe lres) Bl s
apphsasan, Teel amd graphics
ardiks] ba lisabed urikesmdy ik

al | | [

aScrollDecoralor -

|'/ aBorderDecorator T
aScrollDecorator
L_cu:rmpunent & afextView

component 7 _J

IViotivation T1Oor the becorator pattern
in a little more detail.

Suppose we have a TextView GUlI component and we want to
add different kinds of borders and scrollbars to it.

Suppose we have three types of borders:
> Plain, 3D, Fancy

And two types of scrollbars:
> Horizontal, Vertical

Solution 1: Let’s use inheritance first. We’ll generate subclasses
of TextView for all the required cases. We’ll need the 15

subclasses: TextView-Plain TextView-Plain-Horizontal-Vertical
TextView-Fancy TextView-3D-Horizontal
TextView-3D TextView-3D-Vertical
TextView-Horizontal TextView-3D-Horizontal-Vertical
TextView-Vertical TextView-Fancy-Horizontal
TextView-Horizontal-Vertical TextView-Fancy-Vertical
TextView-Plain-Horizontal TextView-Fancy-Horizontal-Vertical

TextView-Plain-Vertical

Bad solution

We already have an explosion of subclasses. What if we add

another type of border? Or an entirely different property?
> We have to instantiate a specific subclass to get the behavior we want.

This choice is made statically and a client can't control how and
when to decorate the component.

at some point, strategy.algorithminterface() I_\l VS St ra tegy

I
| Context Strateqy
I
I
t +contextinterface): slralegy +glgotthmminterface]:
ConcreteStrat1 ConcreteStrat2
+algarithminterface: +algarithminterface:
Component
Texthiew Cecoratar
Barder
f] K Scallbar
FlainBorder 2D Border FancyBorder HorzScrollbar HvScrollbar VerScrollbar

Using Strategy

Now the TextView Class looks like this:
public class TextView extends Component {
private Border border;
private Scrollbar sb;
public TextView(Border border, Scrollbar sb) {
this.border = border;
this.sb = sb;
}
public void draw() {
border.draw();
sb.draw();
// Code to draw the TextView object itself.

e

Using Strategy: pro and cons

Pro:
we can add or change properties to the TextView
component dynamically. For example, we could have
mutators for the border and sb attributes and we could

change them at run-time.

Cons:
But note that the TextView object itself had to be modified

and it has knowledge of borders and scrollbars! If we wanted
to add another kind of property or behavior, we would have

to again modify TextView.

LeT S turn Strategy inside out to get
the Decorator pattern

Component
Textview Ciecaratar
Border
f K scallbar
PlainBorder 3DBorder FancyBorder HaorzScrallbar HvSecrallbar verScrollbar

Implementing the Decorator solution

Now the TextView class knows nothing about borders and
scrollbars:

public class TextView extends Component {

public void draw() {
// Code to draw the TextView object itself.

}

Implementing the Decorator solution
(cont’d)

But the decorators need to know about components:

public class FancyBorder extends Decorator {
private Component component;
public FancyBorder(Component component) {
this.component = component;
}
public void draw() {
component.draw();

// Code to draw the FancyBorder object itself.
}

Implementing the Decorator solution
(cont’d)

Now a client can add borders as follows:
public class Client {
public static void main(String[] args) {
TextView data = new TextView();
Component borderData = new FancyBorder(data);
Component scrolledData = new VertScrollbar(borderData);
Component borderAndScrolledData = new

HorzScrollbar(scrolledData);

Decorator: Changing the skin of an object

Strategy: Changing the guts of an object

Homework 1

Sulla falsariga dell’esempio di Starbuzz, usare Decorator
per costruire un ponce alla livornese

Homework 2

The winter holidays will be
here (again) before yvou know
it! Being the organized
individual you are, you have a
plan for next year's holiday
tree. Implement a software
system that allows you to
calculate the price of any tree
plus any combination of
decorations. The system must
be easily extendable in the
sense that whenever new
decorations are added 1n the
store you will have to at most
add one class.

Homework (cont’d)

Here are two tables representing costs of trees and decorations,
respectively

Trees Cost Decorations Cost
Fraser Fir 12 Star 4
Colorado Blue 20 Balls Red 1
Spruce Balls Silver 3
Lights 5

