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Data Preprocessing

It is common knowledge in data analytics that virtually all data sources come
with issues and limitations that the wise analysts should consider before starting
their work. Mobility data is no exception to this rule, and indeed there is an
extensive set of operations that we can apply to improve the quality of the
data and its usability. In this chapter we will introduce some of the simplest
and most common operations aimed to this task, mainly focusing on GPS
trajectories: identifying and/or correcting error points, removing redundant data,
reconstructing portions of movement, inferring information from the context.

Finally, we will complete the discussion with notes on mobile phone data,
which can benefit from most of the techniques mentioned above, and yet has its
own specific issues and methods.

4.1 Filtering noisy points from trajectories

The most common issue in trajectory data is the presence of points with position
errors. In some cases the error can be moderate, for instance due to a partial
occlusion of GPS satellites in some areas of the city, resulting in deviations of
a few dozen meters from reality that are hard for a human to identify at first
sight if the trajectory is simply plotted; in other cases the position is completely
wrong, due to malfunctioning or cold-start issues that generate basically random
coordinates. In both cases we need algorithms able to detect the potentially
incorrect points in the data, which are usually simply removed.
We can devise two general approaches to the problem:

o Context-based filtering assesses the reliability of each single point separately
from the others, by looking at the geographical context around it, such as
comparing against a map or similar background knowledge.
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34 Data Preprocessing

e Movement-based filtering, instead, considers the sequence of points (not
single ones isolated) and identify unlikely movements.

We briefly discuss each of them in rest of this section through examples and
reviewing some simple practical algorithms.

Context-based filtering. Let start with an example taken from a rather common
public dataset, namely the S.F. taxi trajectories. Figure 4.1 below shows a sample
of points plotted beside a map of the same area. Teal circles A, B and C highlight
three specific points in the data.
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Figure 4.1 The San Francisco Bay. On the top, a sample of points from the S.F.

taxi open dataset, plotted over a blank background. On the bottom, a map of the
area (taken from OpenStreetMap, MapTiler OMT layer).

With a bit of knowledge of the city we can immediately appreciate that the
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points distribution looks very reasonable, showing dense areas in the city center
(NE coast of S.F. peninsula) and in residential areas (NW coast), and clearly
highlighting the main roads. Notice that points are plotted against a completely
blank background. A visual comparison with the map allows us to spot (at least)
three types of points that could be errors to filter, exemplified by the three teal
circles in the plot:

e Type A: these are isolated points located in the middle of water, which is
physically impossible (for a working taxi). They clearly represent wrong
locations and can be discarded;

e Type B: these points are located on the ground, yet they are isolated from the
others and also far from any road. Considering that taxis cannot drive outside
the road network, these points are clearly incorrect;

e Type C: these points are not isolated, and indeed the data plot might suggest
that they are following a road crossing the bay. However, the map shows
that there is no bridge there. While this might call for investigation about
how is that possible (and indeed, the reader is invited to think about possible
explanations), that represents clearly some exceptional behaviour that in most
cases we do not want to consider and/or affect our analyses, thus we probably
want to remove them as well.

The cases seen above suggest us a very simple approach to filter out prob-
lematic points by checking each of them against the set of legit places, in our
example represented by the road network. Algorithm 4.1 synthesizes the process,
also allowing a tolerance 0, representing how far a point can be from a road to
accept it.

Algorithm 4.1: Context-based points filtering

Input: Trajectory T = [p1, p2, ..., Pn], Road network R, Distance
threshold ¢
Output: Filtered trajectory 7’
17— [
2 foreach point p in T do
3 d <« min_distance(p, R); // Dist. from closest road
4 if d < 6 then
5 L Append p to T’;

6 return7’;

The key operation of the algorithm is min_distance(p,R), which finds the
road segment closer to the point p and computes their distance. Notice that
this operation can be very expensive if implemented in a naive way, such as
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scanning all the segments for each point. On large road networks efficient data
representations and algorithms are recommended.

Can we apply the approach above in different contexts, like ships navigating the
sea or pedestrians free-roaming or hiking in a park? The answer is ’ Yes’, of course.
Yet, the legit places need to be represented by an appropriate geographical entity
that replaces the road network R of our example. For instance, legit places for
boats might be all waterways, usually represented as sets of polygons; and legit
places for hikers might be the area accessible to visitors, again represented as
polygons. Consequently, the min_distance(p,.) function needs to be adapted,
e.g. computing points-to-polygon distances.

Movement-based filtering. When the legit places for points are very dense, for
instance in city centers crowded with streets, it can happen that noisy points
still fall on apparently correct places, thus making the context-based filtering
not a definitive solution to the problem. A different angle from which to face it
consists in ensuring that the sequence of points of a trajectory, now seen as a
whole, respects physical movement constraints, for instance by checking that the
estimated speed of the moving object never exceeds some reasonable thresholds.

Figure 4.2 provides an example that illustrates the idea. The sequence of (teal)
points that form the trajectory all lie on or close to the road network. Yet, we
can recognize the presence of some strange jumps at points 4 and 8, most likely
due to a location error.

There are several ways to formalize our intuition and make it an algorithm for
automatic detection of potential noisy points, the simplest and most convenient
being to simply check the average speed between two consecutive points. Indeed,
a side effect of a wrong point location is that the distance from the previous point
in the trajectory is most likely disproportionate to the elapsed time. For instance,
assuming that a constant sampling rate is adopted, the distance between point 4
and point 3 in Figure 4.2 is almost six times the distance between any other pair
of consecutive points (excepted point 8, another candidate), which translates
into a much higher average speed. Notice that we are currently assuming that
objects can travel along a straight line, which can significantly lower the speed
estimates, thus our speed checks in some cases are still rather conservative.

These considerations suggest us a simple and efficient filtering strategy,
summarized in Algorithm 4.2.
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Figure 4.2 Sample trajectory with some points affected by large errors. Notice that

noisy points are not recognizable through context-based methods. (Background
map taken from OpenStreetMap, MapTiler OMT layer)

Algorithm 4.2: Speed-based points filtering

Input: Trajectory T = [p1, p2, ..., Pn], Maximum speed o
Output: Filtered trajectory 7’

1T« [p1];
2 DPlast < P15
3fori=2,...,ndo

4 d « distance(piast Pi) ; // Euclidean or Haversine
5 t — time_diff(piase, Pi);

6 if d/t < o then // Check avg. speed
7 L Append p; to T’;

8

Plast < Pis

9 return7’;

To start with, the algorithm assumes the first point p; is correct. Then, each
other point is scanned in chronological order and compared to the last correct
point p;4s:, checking that the estimate average speed between them is lower than
a user-provided threshold o. Notice that points labeled as noise (thus violating
the condition checked in line 6 on the algorithm) are not only discarded from
the output, but also not used for checking the next point in the trajectory. That

means, for instance, that when point 4 is checked against point 3 and discovered
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to need an excessive average speed, at the next iteration of the the cycle point 5
will be compared against point 3 instead of point 4, since the latter has been
skipped. Distance between 5 and 3 is clearly larger than the average in the
trajectory, yet so is also the time interval between them, making the average
speed normal.

Before leaving this section, it is useful to point out two limitations of this
approach that the reader should remember. First, what can happen if the initial
point p; of the trajectory is noisy, e.g. what if our sample trajectory in Figure 4.2
actually started from point 4? The short answer is: almost all the trajectory
disappears. Indeed, p; = ‘pont 4’ will be used as reference (p;45,) throughout the
execution, and every other point appears too far from it to be correct (excepted
maybe points 9 and 10). The output in most cases like this will be just 7" = [p1].
If that is a significant possibility', the analyst should adopt some countermeasure,
such as removing p; when too many initial points are filtered out and re-run the
algorithm. Second limitation: speed-based filtering can be not very effective if
the errors are moderate — yet large enough to be annoying. For instance, if points
5 and 6 were switched, the estimate speeds would be still moderate, and yet the
resulting movement looks rather incoherent. More sophisticated approaches able
to capture these aspects should be developed, if considered important for the
analysis, for instance by constraining the direction changes (basically avoiding
U-turns and similar).

4.2 Matching points and paths to a map

In the section about context-filtering we saw that road networks and similar
context knowledge can help improving the quality of data by enforcing some
commonsense constraints, such as restricting points to be not too far from
roads. Here we go beyond filtering, and focus on aligning the input data to such
constraints, with the ultimate objective of correcting the location noise and
reconstructing portions of movements that were not covered in the data. As we
will see, these two tasks are tightly connected.

4.2.1 Point map matching

If a location point of some vehicle lies outside of a road, it is clear that our input
data are affected by some source of noise, and we expect that the real position

! Rather than being just a matter of bad luck, the event outlined above could be very likely in some
scenarios. For instance, most GPS devices suffer from cold start errors, i.e. the location
estimates in the first instants after switching on are rather noisy, yet in some systems they are
recorded as good ones without any labeling.
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of the point should be somewhere on a road segment. But, which segment, and
where exactly on the segment should the point be moved to fix the error?

Closest segment mapping. The simplest answer is that the best candidate

location is the closest point on the road network. That means that for each point

p; of a trajectory we should consider the portion of space R covered by the

roads and identify the single point p” € R that minimizes the distance from p;.
We can summarize the idea with a single formula:

match(p;) = arg min dist(p’, p;)
p’€ER

How to compute it. Although from an abstract geometric viewpoint R contains
infinite points, the computation can be achieved quite easily with a limited
number of basic operations. Indeed, we recall that the road network R is just the
union of its segments ry, ..., ry, and we can break down the minimization as
match(p;) = argmin, ec dist(p’, p;), where C contains for each segment its
closest point to p;, namely C = {arg min,¢,, dist(p, p;)|j = 1,..., N}. Since
single segments r; are typically represented as (or can be broken down to)
a simple straight line, we can use high-school geometry formulas to directly
compute the projection of p; on segment r;, which will be our candidate —
unless it falls outside the segment, in which case we will take instead one of its
endpoints (the closest one to p;, clearly).

An example. Figure 4.3 depicts the general idea of point mapping, together
with a sample trajectory mapped to the road network. We can see how points 1
and 3 are mapped to internal points of a segment, whereas point 2 is mapped to
a “corner”, namely the endpoint joining two segments.

Figure 4.3 actually shows also an example of what could go wrong with
a simple approach like this. Indeed, if the three points depicted are parts of
the same trajectory we would expect them to be mapped on roads that form a
reasonable path on the network. Here, instead, point 3 is assigned to a road that
has no connection with the others, and thus it is quite unlikely that it is visited
right after the first two. Introducing this kind of reasoning, yet, requires to know
how to infer a reasonable path along a road network starting from just a few
points. We will briefly recall a few elements of path optimization, and later on
come back to the original problem.
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Figure 4.3 Point mapping schema (left) and example (right) with noisy points (teal)
and their map matching (red). (Original figures)

4.2.2 Path optimization

Trajectories describe a path connecting two points, usually corresponding to
what the individual believes to be the best way to reach the destination. For
instance, if there exists a straight main road that we can follow to reach our
destination we most likely prefer it to a longer path that performs several detours
and takes much more time. Path optimization means to identify the path over
the road network that optimizes a given preference criterion. We introduce
the problem in a formal way, making use of the graph representation of road
networks and encapsulating the path preferences into a cost function.

Formal definition. Let consider a graph representation G of the road network,
where G =< N, E,cost >. N is the set of nodes, corresponding to road
intersections, E is the set of edges, each representing the road segment that
connects two intersections, and cost is a function associating a cost to each
edge/segment. For instance, cost(e) could be computed as the length of the road
segment e. Then, the shortest path problem consists in finding the minimum-cost
sequence of connected segments that leads from a given origin node o to a given
destination node d, namely:
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SP(0,d) = arg plggil,d Z cost(e)

eep
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where P, 4 is the set of all possible finite paths over G that start from
node o and end in node d: Po.a = {< (po,p1), (P1,P2) ..., (Pn-1,Pn) >

| Vi (pi»pis1) EENO=poAd=py}.

Examples. Figure 4.4 illustrates an instance of the problem where the origin

and destination are the highlighted nodes, resp. in yellow and white.
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Figure 4.4 Three sample paths connecting the same pair of origin and destination

nodes. (Background map taken from OpenStreetMap, MapTiler OMT layer)

The figure shows three of the several possible ones:

e The violet solution follows a straight path from the origin to the destination,
crossing just 9 road segments: pyipler =< €1, €2, €3, €4, €5, €6, €7, €3, €9 >

e The green solution is similar to the previous one, yet it makes a deviation after
road es, basically skipping segments eg and e7. This introduces two additional
segments to the count: DPgreen =< €1, €2, €3, €4, €5, €10, €11, €12, €13, €8, €9 >

e The orange path goes in a completely different direction, making an appar-

ently much longer tour to reach the destination, traversing 15 segments in total:

Porange =< €14, €15, €16, €17, €18, €19, €20, €21, €22, €23, €24, €25, €26, €27, €28 >

Which one is the optimal path? To answer this question we need to specify

what is the cost function we want to use. Let see three examples:
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Trip length: as the name of the problem (shortest path) suggests, this is the
most intuitive criterion for optimization. Here, cost(e) is the length of the
road segment, and the overall SP(o, d) will be the path with minimum total
length. In our example we can easily see that the violet path will be the
winning option, as a straight line is the shortest path you can follow to reach
a destination.

Travel time: this is the most common criterion that travelers try to optimize
in real file, especially on daily routine trips. Here, cost(e) should express
the time needed to traverse the segment e. This information is much harder
to obtain since the speed on roads can be variable and depend on several
factors, yet we might obtain a first reasonable approximation by taking the
speed limit of the segment. This allows us to compute the traversal time as
cost(e) = length(e)/max_speed(e). In our example, assuming that segments
on the South (e4 to e25) have a much higher speed limit than the Northern
ones (e to e;3), the orange path could be the best solution, since the time
saved on the East-to-West portion of trip overbalances the added time caused
by the deviation.

Number of segments/intersections: while not very intuitive, we can see this
as an alternative measure that quantifies the complexity of the trip, since
traversing intersections is typically more distressing than driving along a
simple road. In this case, the violet path would be again the winner. A similar
concept could involve the number of turns (in our example: O for the violet
path, 4 for the green one, and 3 for the orange) or the number of traffic lights
crossed (however, this information is typically much more difficult to obtain).

Computing optimal paths. Once defined the cost function cost(), computing
the shortest path over graph G becomes a very standard and deeply studied
problem. For those who are unfamiliar with the topic, here we briefly discuss the
best known and most traditional solution® which brings the name of its inventor,
Dijkstra’s algorithm. Algorithm 4.3 provides the pseudocode of the method,
which is rather simple and compact. It comprises two phases: the first one, from
line 1 to 12, is the core where the path is actually discovered; the second one,
from line 13 on, just reconstructs the path found to return it.

2 As old as computer science would be a more appropriate expression: indeed, the algorithm was

published in 1956, around the same period the term ‘computer science’ was coined.
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Algorithm 4.3: Dijkstra’s Algorithm
Input: Graph G = (V, E), origin node o, destination node d
Output: Shortest distance dist[d] from o to d, shortest path P
1 foreach v € V do

2 L dist[v] « oo;

w

prev|[v] < undefined;

4 dist[o] « 0;

50«7V,

6 while Q is not empty do

7 u « extract node in Q with minimum dist[u];

8 if u = d then break // Stop when d is reached
9 foreach neighbor v of u in Q do

10 if dist{u] + cost(u,v) < dist[v] then

11 dist[v] « dist[u] + cost(u,v);

L prev[v] « u;

// Reconstruct shortest path from o to d
13 P« [d];
14 u « prev[d];
15 while u is defined do
16 prepend u to P;
L u «— previul;

18 return dist[d], P;

For the sake of simplicity, let assume that our cost(.) function represents
the travel time. The algorithm starts its exploration from the origin point o
and builds and updates step-by-step two arrays that describe for each node v
reached so far at what time it was reached through the best path (disz[v]) and
which is the previous node traversed to reach it (prev[v]). At the beginning
(lines 1-3) all travel times are set to infinity and there is no previous node
(prev[v] == undefined). Only o is updated (line 4) with travel time 0, since the
path starts from it and thus it is reached instantaneously. The queue Q represents
the set of nodes yet to process, that at the beginning consists of all nodes in
the graph. Now, the main cycle in lines 6—12 will actually visit all the nodes
in chronological order, i.e. each time we move to the unvisited node u which
can be reached sooner than anyone else through its best path (line 7). At the
very first iteration, such node will be o, since all the others have infinite arrival
time. Then, the arrival times of all #’s neighbors v are updated: this is done by
computing the arrival time of v passing through u and checking if this option
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is better than the best one found so far (line 10), which is contained in dist[v].
If that is the case, this becomes the new best path for v (lines 11-12). At the
first iteration, this means that all nodes directly reachable from o with one step
are updated, and their cost will be exactly the traversal time of the edge (o, v).
At the second iteration, the algorithm will pop from the queue Q the closest
node to o, since we are sure that no longer path will be able to reach it with less
time. The same steps are repeated as above, and at each iteration we remove
from Q one node, till Q is empty or the current best node is our destination d, in
which case there is no need to go on with the exploration. Notice that neighbors
checked for the first time at line 10 will be for sure updated, since their initial
arrival time is infinite — namely, this is the first path that reaches it, though not
necessarily the best one overall. If instead the neighbor v was already checked
previously (and thus it has a finite arrival time), updating or not depends on
whether the new path is better than the previous ones.

The second phase of the algorithm is very simple: since prev[v] contains the
previous node traversed to reach v along its fastest path, we can walk back from d
(line 13) to o by jumping from d to prev[d], from prev|[d] to prev[prev[d]]
and so on (lines 14 and 17). At each step we add the currently visited node to an
array, in reverse order. Notice that origin o has no previous node defined, since
we started from it.

Example. The graph in Figure 4.5 on the left is an instance of shortest path
problem, where the origin is node A and the destination is node E. Costs (e.g.
traversal time) of road segments are reported on the corresponding edges. The
table on the right of the figure shows the sequence of operations performed by
the algorithm.

20

. ©/ > ®) A B _C D _E
5 Init 0 00 00 ) 0

\ step 1 @ S 20 o o

@ " @ step2 0 15 o 35
* step3 0 5 35 30
\2 stepd 0 5 15 35

5

Figure 4.5 Sample shortest path problem (left) and resolution with Dijkstra’s
algorithm (right). The table reports the cost dist[v] of each node v for each
iteration of the algorithm. Squares point to the nodes that are visited at each step,
while underlined numbers represent updates of dist values.

It is quite clear that the optimal path would be A - B — C — E. Indeed,
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while alternatives with less edges are available, e.g. A — C — E, the sum of
their costs is larger — in our example, 20 + 15 = 35, which is larger than the
optimal 5 + 10 + 15 = 30. After initialization (Init step), Dijkstra’s algorithm
starts by visiting node A, which had cost zero, and thus updates the nodes
directly reachable from it, namely B and C (step 1). Now B has become the
unvisited node with the smallest cost (5), thus it is visited at step 2. The cost of its
neighbor C is updated, since passing through B is cheaper than arriving directly
from A. Similarly, also the cost of E is updated. At step 3 the best unvisited
node is C (with cost 15), which leads to update both D (never checked before)
and E, which lowers the cost from 35 (the cost of the old path A — B — E) to
30 (corresponding to A — B — C — E). The next node to be visited is then E,
where the algorithm stops, since it is our destination.

Final notes on Dijkstra’s algorithm: first, if we do not stop when we reach the
destination node (i.e. remove line 8 of the code), the algorithm will compute the
optimal costs and paths for all the nodes of the graph, which can be useful in
some cases, yet also over-killing if we only need the path for a single destination.
Second, the efficiency of the algorithm greatly depends on how the queue Q is
implemented. A trivial implementation (as in Dijkstra’s original formulation)
makes its cost quadratic in the number of nodes, while efficient ones make it
quasi-linear — a big difference when dealing with large road networks! Last note,
Dijkstra’s algorithm works only when all edges have non-negative costs, i.e.
Ve € E.cost(e) > 0. If that does not hold, different solutions are needed, e.g.
the Bellman—Ford algorithm, which is computationally more expensive.
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@ CURIOSITY 4.1
A biographical intervallo: Edsger W. Dijkstra (1930-2002)

Dijkstra was a Dutch computer scien-
tist, programmer, software engineer,
systems scientist, and science essay-
ist, recipient of the 1972 Turing Award
for “fundamental contributions to de-
veloping programming languages”.
He is famous for the shortest-path al-
gorithm that brings his name, but also
his contributions to “self - stabilization
of program computation” (recipient
of the "ACM PODC Influential Paper
Award"”, later renamed "“Dijkstra Prize").
He is author of hundreds of papers on
computational and science philosophy
issues.

Curiosities: Dijkstra was also well known for some personal peculiarities
in his professional activity, like his habit of writing everything with paper
and fountain pen, his huge productivity which led him to write hundreds
of papers — many unpublished, now reachable at E. W. Dijkstra Archive;
he seldom provided references in papers, with statements like “For the
absence of a bibliography | offer neither explanation nor apology"; also, he
supported the idea that counting should start from 0, not 1.

Finally, he was a remarkable teacher: fond of using chalk and blackboard
also in recent times, with no projectors, he used not to adopt textbooks, and
often his classes were mostly improvised and featuring long pauses from
time to time. His exams were quite known and feared: each student was
examined in Dijkstra’s office or home, and an exam lasted several hours.

Image used under Creative Commons Attribution-ShareAlike 3.0.

4.2.3 Point mapping with route reconstruction

As already mentioned, in some cases simply mapping a GPS point to the closest
road segment could be the wrong way to improve its location accuracy, and it
might instead be useful to consider the effect that the point mapping has on
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the overall trajectory. The example shown in Figure 4.6 consists of a trajectory
with three points Py, P, P3 and a road network that we want to use for map
matching. The simplest closest-point association would be Py — C,, P, — C4
and P3 — (7, yet it seems unlikely that a user would go from C; to C4 and then
go in the opposite direction to reach C5.

Figure 4.6 Sample raw trajectory with three points (P;, P,, P3) and the correspond-
ing candidate projections on neighboring segments (Ci, . . ., C;). (Background
map taken from OpenStreetMap, MapTiler OMT layer)

Probabilistic matching: Newson-Crumm. Various methods exist to integrate
this trajectory-level vision in the point matching process, and many of them
implement the idea defining a probability or likelihood of a sequence of road
segments as compared to the original points. Most of them start from a common
preliminary step: assigning to each point a set of reasonable alternative candidate
road segments — and the corresponding projections of the point on each of them.
The typical approach to collect candidates consists in a range-based selection,
namely a distance threshold ¢ is fixed, and all segments e at distance not larger
than ¢ from input point p are taken: C,gnge(p) = {€ € E|d(p,e) < 6}. Notice
that the size of C(p) is variable, and it can also be empty if all roads are far from
p. Alternatively, the user fixes the number n of candidates to associate to point
p, and the n-nearest neighbors of p are selected, namely: |Cxnyn (p)| = n and
Vein € Cknn(P)seour € E\ Cknn(p) 2 d(p,ein) < d(p,eour). The example
in Figure 4.6 follows a range-based approach, assigning only close candidates
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to each point. In particular: C(p;) = {Ci,Ca}, C(p2) = {C3,C4,Cs} and
C(p3) ={Ce, C7}.

As a representative of probabilistic matching approaches, we describe here
the Newson-Crumm method, a simple solution based on Hidden Markov Models
(HMM). The process involves the estimation of two types of probabilities:

e p(p; — Ci), namely the probability that Cy is a good candidate mapping for
point p;, assuming that Cy € C(p;);

e p(Cr — C;), namely the probability that a trip passing through Cy could
later visit also Cj.

Newson-Crumm computes these probabilities through simple heuristics.
p(p; — Cy) is function of the distance between the two points, the farther
they are, the smaller the probability. In particular, it adopts a Gaussian decay
function, which reflects well the way GPS errors are distributed:

1 2
e_z(jd(p]’ck)

p(pi— Cy) =

k)

2no

where o is a parameter. Instead, p(Cy — C;) is based on how much the shortest
path connecting the two candidates over the road network deviates from a
straight line, the logic being that straight paths are more natural, and therefore
the sequence Cy — C; should be more likely. In particular, the method computes
P(Cy — C)) = ée‘A/ﬁ, where A = shortest_path_dist(Cy, C;) — d(Cy, C}) is
the deviation, and g is a parameter. Finally, these probabilities are used to find
the point mappings p; — C; for all p; that maximizes the following product of
probabilities: I1; p(p; + C;)p(C; — Ciy1).

As an example taken from Figure 4.6, the mapping p; — C, will likely be
preferred to p; — C; due to the distance of C;; however, p, — C4 probably
will not be chosen even if it is the closest candidate (thus yielding the highest
p(p1 — Cy)) because the shortest path between C, and C4 deviates a bit from
the straight line, while Cs would have a perfect A = 0 and thus p(C, — Cy) = 1.

Shortest path-based: Zhu-Honda-Gonder. We can approach the matching
problem exploiting shortest path also from the opposite direction: instead of
trying to map points and then see how good the overall mapped path looks, we
try to compute a promising shortest path and then see how well it matches the
single points.

This is indeed how the Zhu-Honda-Gonder method (among others) works:
(i) first, the origin and destination points are matched with corresponding road
segments, for instance by simply selecting the closest one; then, (ii) the shortest
path between the origin and destination segments is computed; after that, (iii) a
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fitness score is computed to check how well the remaining original points match
the segments of the shortest path; if the score satisfies a given threshold, (iv) the
shortest path is considered acceptable, the original points are mapped to their
corresponding segments along it and the algorithm stops; otherwise, (v) we
split the original trajectory into two or more parts, recursively run the algorithm
separately on each of them, and then join their outputs (the points matches).

Here, we need to better define a few details. The fitness score of a trajectory
vs. a path on the network is computed as the sum of the fitness of each trajectory
point vs. its best matching segment along the path®. The fitness of a single point
is a simple linear function of its distance from the segment, with value 1 when
the distance is zero, and zero when distance is larger than a spatial threshold e.
Similarly, another spatial threshold is used to identify candidate cutting points
in the trajectory: each subsequence of points that exceed such thresholds is
separated from the rest of the trajectory, forming the splits we want. Additionally,
the point with the worst fitting score is also used as split point. Final note: step
(i) of the procedure requires to choose a segment for start and end points. In
general, we can consider several candidate segments for each of them, let say
sets Corigin and Cyes:, as in the example of Figure 4.6, compute the shortest
path for each pair (0, d) € Cpyrigin X Cges: and select the one that maximizes
the fitting score.

A sample application of the algorithm is shown in Figure 4.7. Here, the
shortest path pathy computed between the (mapping of) points A and F fits
only part of the trajectory, and the portion between B and D needs splitting.
In addition, point D is particularly far off the shortest path, thus the original
trajectory is split into four portions: A— B, B—C — D, D — E and E — F. Then,
the algorithm is run on each of them, resulting in paths path;, path,, paths
and pathy. Since point C deviates too much from path,, the portion B—C — D
is further split into two parts, and the algorithm is run again on them.

4.3 Trajectory compression

Though slightly counter-intuitive, it can happen to have too much data for the
analysis. On one hand, sometimes the data is rather redundant or much more
detailed than what our objectives require. On the other hand, high-detail data
require higher computation times (or more computational power), potentially
creating a bottleneck. In the realm of movement data that means our trajectories
3 The actual implementation of this concept in Zhu-Honda-Gonder is slightly more involved,

though not too complex, making use of an optimization schema. We invite interested readers to
consult the original paper of the authors.
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E pathsg F

Figure 4.7 Sample point mapping according to Zhu-Honda-Gonder method. (Pic-
ture from the authors’ paper. Copyright to check.)

contain more points — namely, they are denser — than needed, and thus we might
want to simplify them by removing some points.

Simplifying the topic a bit, we will consider two kinds of data redundancy,
illustrated in Figure 4.8. The first type consists of a sequence of points in
the trajectory that make no significant movement; the second type moves
significantly, yet in a straightforward way (a straight line). In both cases, we
aim to identify the trajectory subsequence where the redundancy occurs, and
remove as many points as possible without affecting the overall trajectory shape,
as in the figure.

We introduce two well-known trajectory simplification/compression methods,
each aimed to treat one of the situations just illustrated. Both of them are based
on an input spatial threshold €, representing an error tolerance.

Driemel-HarPeled—Wenk (a.k.a. Driemel’s algorithm). This method is very
simple and efficient, requiring a single scan of the data. Algorithm 4.4 summa-
rizes it. Starting from the first point, the input trajectory is scanned sequentially,
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TYPE | TYPEII

Figure 4.8 Two types of redundancy in trajectory data: (left) negligible movement
and (right) straight-line movement. Below, an example of simplification of the
trajectory removing redundant points.

and each point is preserved and added to the output trajectory 7’ only if it is
significantly distant (> €) from the previous point in 7’. Rephrasing it, whenever
a point is added to the output we virtually draw a circle of radius € and remove
all following points till one of them exits the circle. Those within the circle are
basically considered similar enough to the last preserved point to be disposable.
Finally, the algorithm ensures that the last input point is preserved.

Algorithm 4.4: Driemel-HarPeled—Wenk’s Algorithm

Input: Trajectory T =< pj, ..., pn >, spatial threshold €
Output: Simplified trajectory 7’
1 T —<p|>;

20« 1;

3 whilei < ndo

4 q < Pi;

5 i < smallestindex j € [i +1,...,n] such that d(q, p;) > €;
6 if { is undefined theni < n // We reached end of T

7 Append p; to T’;

s return7’;

Driemel’s algorithm directly addresses redundancies of the first type shown
in our previous figure, yet it also provides a simple way to reduce the trajectory
sampling rate in general. Indeed, if we imagine a very dense trajectory T



52 Data Preprocessing

following a straight line, Driemel’s method will keep only a small subset of
points that form a sequence of jumps of length slightly larger than €. In this
ideal case, only a fraction ~ length(T)/(|T|€) of points would be retained.

Ramer-Douglas—Peucker (a.k.a. Douglas—Peucker or DP).

This algorithm aims to approximate a subsequence of points with a straight
line segment, provided that all points are close enough (distance < €) to
the segment, thus directly tackling redundacies of the second type shown in
Figure 4.8. Instead of scanning the input trajectory 7" points-by-point, the DP
method starts trying a “lucky shot”, namely checking if the segment connecting
the first point of 7' with the last one is already capable of approximating the whole
trajectory. That is realized by taking the farthest point p; from the segment (line
1) and comparing its distance with e. If that works, the algorithm can already
stop, achieving the maximum possible compression — just the two endpoints
are enough to represent the content of 7. If that fails, we split the problem into
smaller ones and call the algorithm recursively twice, once on the subtrajectory
that precedes the farthest point p;, and once on the remaining part. Notice that
this implicitly means that p; will be preserved, together with the first and the
last point of 7.

To the attentive reader, the DP algorithm will look rather familiar. Indeed,
the general idea and the recursive approach are very similar to the Zhu-Honda-
Gonder method for point matching discussed in this chapter, the main differences
being the usage of straight line approximations instead of shortest paths on the
road network, with obvious consequences on efficiency. Also, the final objective
is rather different.

Algorithm 4.5: Ramer—Douglas—Peucker’s Algorithm

Input: Trajectory T =< py, ..., pn >, spatial threshold €
Output: Simplified trajectory 7"

1 i «index j € [1,...,n] suchthat d(p;, p1, p) is maximized;

2 if d(p;, p1, pn) > € then // p: deviates too much, split!
3 Tl’eft<—DP(<p1,...,p,~ >);

4 Tr’l.ght — DP(< piy...,pn>);

5 return joined Tl’e fr and Tr’l.g e

6 else

7 L return T

Notes on information loss. The methods illustrated above are designed to
guarantee that the spatial footprint of the compressed trajectories is very similar
to that of the original ones, with an error bound of €. However, the temporal
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component of the movement is not considered, and consequently also all
derived information such as speed and acceleration. Simplified trajectories go
more straight than the original ones, thus in the same time interval they travel
apparently shorter distances, shifting the distribution of speeds towards lower
values. Distortions will generally appear also in the distribution of accelerations,
though with more complex patterns, since in some cases smaller speeds just
mean smaller speed variations, yet in others some smooth changes of speeds in
the original data could be simplified into more abrupt changes.

@ CURIOSITY 4.2

A hot research question on sampling rates: what is the speed
of acow?

Trajectory compression and sim-
plification techniques change data
sampling and consequently also
the scale of the analysis we can
do with it. Simplified data fits well
macroscopic analysis, whereas

detailed data is better fit for micro-

scopic analysis. Indeed, even basic movement statistics can be significantly
affected by the data sampling rate. For instance, computing the distribution
of speeds of cows can be rather complicated.

The research by Laube and Purves, having the rather evocative title "How
fast is a cow?”, shows indeed that several movement characteristics are
affected just by the temporal scale of data.



54 Data Preprocessing

speed [ms™] turning angle [°] sinuosity [-]
1.0 A 1804+ T T - 104
o 0.8 40 8 ':’
o 4 T ! 4
g oeliT . “IHoRL | dode
2|58zt |P0000 |SETE=
0 *t—F—F—F—T 0 e e 24—
1.0 1804+ T T T 104
© 08+ - 40 i 8 T
by - | - 1
= 85_@; QO‘Q—BT . ' 1.1
* ’ T _ T
s m/Shiu[ s P=
Ermees] P Pesd] eE TR
1.0 4 1804+ T T 10 -
© 081 _ I 8- |
= 4 T 4 T
e 5 o b [ P
* ’ T
0.2+ T 104 é 4
T smes| |08 | mE T e
— T T —TTTT
1.0 4 180+ T T 10
Q& 089 L 1 0 T 8- -
2 06 T T 6 1
b pe.] B Hadosas
. T T 1 L .
2] —Eess=| (HTT0EE 1= ===
T T T T T T 0 T T T T T T 2 T T T T T T
5 10 60 300 600 1200 5 10 60 300 600 1200 5 10 60 300 600 1200

temporal scale w [s]

As we already discussed, a movement described by fewer data points
means microscopic movements are lost and thus displacements (poten-
tially) look shorter than what they are. Hence, inferred speeds tend to be
underestimated.

Laube and Purves' paper confirms this (see the first column of the figure
above, showing box-plots of speed vs. temporal scale): speed becomes
lower and also much less diversified. Finally, other metrics like turning
angles of movements and their sinuosity are greatly affected, though with a
more irregular behaviour.

Above: Photo by Filip Bunkens, Freerange Stock.
Below: Figure from Laube and Purves (2011).

4.4 Semantic enrichment

Although raw movement data only specify the spatial location of moving
objects and how it changes in time, it is very often useful to associate them
with additional information that can be inferred either from the context or
through an analysis of the movement itself. This additional information aims to
better understand what is happening in the trajectory, adding semantics to our
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initial plain data. We will focus on two types of semantic information: stop vs.
movement status, and (an educated guess of) the human activity performed.

4.4.1 Stop detection / trajectory segmentation

Trajectories simply describe the position of objects in time, not distinguishing
the portions of trajectory that contain an actual movement and those that instead
correspond to a stop in some location, e.g. the stay period at the work place.
A well-established way to model this concept consists indeed in logically
partitioning the trajectory in intervals of time that belong to the categories stop
and move. If no external information is available about these intervals, we need
a methodology to identify them.

While the commonsense definition of stop is just a total lack of movement,
in practice that is not really applicable. First, we know that GPS and other
localization technologies typically introduce some noise, thus even if an object
remains perfectly still, its apparent position might change and total stops might
be only a purely theoretical concept. This calls for some tolerance. Second,
different contexts bring different notions of how large a displacement must be to
consider it non-negligible, not just because not instrumentally quantifiable, but
also because unimportant for the phenomenon under study. E.g. the movement
that a vehicle makes within a parking lot while searching for a parking slot is
not interesting for most applications, since the vehicle basically already reached
its destination. We provide next a very common definition of segmentation that
follows these general ideas.

Stop-and-move trajectory segmentation. Given a trajectory T, a spatial threshold
¢ and a temporal threshold 7, we say that a sub-sequence 77 =< py, ... prya >C
T represents a stop if all points of 7’ remain close to the first one (Vp €
T’ .dist(p, p;) < 6) and it covers a significant time interval (time(psiq) —
time(p;) = 7). A segmentation of 7 can be obtained by first identifying a set
of (maximal-duration) disjoint stops Tl‘m)p e, T,‘: P c T, and then define
move sub-trajectories as the 7;"°" exactly contained between two consecutive
stops 77?7 and 7,"” in T This produces a partitioning of 7, schematically
represented as below:

stop Stop
T] Tk

—~— —_———
T=p1,...,PLPK1-- > Pm,Pm+l>----Pu "** Pvs--->PwsPwtls--->Pn
N——— N————— ————

move move move
Ty L T
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Moves T/"°¥¢ represent the core movement components of the original
trajectory, in other terms trips that objects perform to relocate from one position
to another one. Stops T ;mp are stay periods, where the object remains around
(up do a distance ¢ from) the first point of the stop and thus can potentially be
represented by a single location in space with an approximation of ¢.

The formulation given above is an optimization problem that can be computa-
tionally expensive and might have several alternative solutions. A very common
solution to it is the greedy approach described in Algorithm 4.6. In summary,
points of the original trajectory are scanned in chronological order, and when
one point is found to be an eligible start of a stop period, it is directly selected
and the corresponding stop period is maximized. Then, the scan resumes by
skipping all the points captured by the stop.

Algorithm 4.6: Stop-and-move trajectory segmentation

Input: Trajectory T =< py, ..., pn >, spatial threshold ¢, temporal
threshold 7
Output: Set of trajectory segments trajs_list and stop periods stops_list
1 stops_list — 0;
2 trajs_list «— 0;

3a«1;

4t —<>;

5 while ¢ < ndo

6 a’ — max{i € [a,n] | dist(i,a) < 6};

7 if time(py) — time(p,) > T then // A stop: interrupt trip
8 stops_list «— stops_list U {< pa, Pat1s---»Pa’ >}

9 if + #<> then

10 trajs_list « trajs_list U {t};

11 te—<>;

12 a«—a’;

13 else // Normal point: continue trip
14 L Append p, to t;

15 a<—a+l;

16 if r #<> then
17 L trajs_list « trajs_list U {t};

18 return trajs_list, stops_list,

Figure 4.9 shows a small example where two stop periods are identified, which
break the trajectory into three segments: < pi, p2, p3 >, < P11, P12, P13, P14 >
and < pj9, poo >. Notice, in particular, that the second stop selected begins
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at p15, yet according to the problem definition also the stop beginning at the
next point p16 would be equally good, actually capturing one point more (from
P16 to pao). The greedy approach, however, prefers the first acceptable one
encountered, ignoring the second.

Figure 4.9 Example of stop-and-move trajectory segmentation. The algorithm
identifies two stop periods, resulting into three movement segments (points 1-3,
11-14 and 19-20).

Expanding trip endpoints. From the example in Figure 4.9 it will be clear to
the reader that the segments identified do not contain the start and end points
of the trip performed, as they are part of the stop periods. Thus, when that is
expected to be an issue it is common practice to extend each segment with an
additional starting point — corresponding to the last point of the previous stop
— and an additional ending point — corresponding to the first point of the next
stop. Clearly, the first and last segments of the sequence are exceptions to this
rule. The adjusted output for our example, then, would be: < py, p2, p3, ps >,

< P10, P11, P12, P13, P14, P15 > and < pig, p19, p2o >.

Transportation mode-based segmentation. When the mobility of a user is
performed through a combination of transportation means, such as cars, bus,
walking and bicycles, it might be useful to further split the trajectory based on
which means was used. The task is clearly difficult, since modes of transportation
have very variable characteristics and defining a general algorithm that works in
any context might be impossible. Yet, a simple heuristics could be implemented
by observing that speed is usually a good discrimination variable: walking and
running people usually move in a range of speed of 5-10 km/h; bicycles are
faster yet usually do not exceed 40 km/h; cars and other motorized vehicles
can go faster, usually aligning with the local speed limit. An example of this
approach is provided by the Spatio-Temporal Kernel Window statistics (STKW),
which indirectly measures for each point in the trajectory the average speed
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followed around it. More in detail, for each point p STKW measures the length
of the maximal subsequence of points following p that remain within a given
distance ¢ from it. The same thing is done for the points preceding p, and
the two measures are summed up. The intuition is that in many situations the
sampling rate of points is almost constant and the movements tend to be straight
(at least at the small scale), which makes the number of points obtained inversely
proportional to the speed of the object. Figure 4.10 plots the STKW value of
points of a long trajectory in chronological order. The high values represent
periods where the object moves slowly, and thus many points are needed to get
far from a given location. On the opposite, very low values correspond to high
speeds. We can also observe that the STKW tends to remain stable for some
periods of time, confirming the intuition that a given transportation mode has
its own characteristic speed.

200 slow

150

100 ISR — STKW

# POINTS

50

fast

time

Figure 4.10 Example of Spatio-Temporal Kernel Window statistics (STKW) values
for the points of a trajectory.

The STKW can be then used first to segment the trajectory by looking at the
breakpoints where the value drops/increases abruptly, and then try to assign
each segment to a class. This can be done either through some fixed rules
(e.g. values above a threshold are stops, and values above another threshold are
motor vehicles) or through some machine learning (as done in the paper which
proposed STKW, in that case through a very simple neural nework).

4.4.2 Adding semantics: Home location detection

Raw trajectory data can describe to a great detail the movement of an object,
and yet it lacks any explicit information about what the object is actually doing.
The segmentation task described above can be seen as a very basic example of
how to infer (with some approximation) some semantic information through
data analysis, in that case by labeling travel periods and separating them from



4.4 Semantic enrichment 59

stays. Here we go a step forward and try to identify the home location of an
individual in the context of human mobility. The idea is very simple: while the
mobility of a person can be very rich and visit (namely, stop at) several different
places, in most cases they have a single reference place where they go back
everyday and spend night time, typically corresponding to the main residence
of the individual — home. Thus, we just need to identify the locations that they
visit and then select the one that best fits the description we gave above.

From points to locations. A fist problem we have to face is the fact that if an
individual stops at a location several times, each stop might happen at a slightly
different GPS position. One reason is that the positioning devices bring an
error which scatters the sensed positions around the real one at some distance.
Another one could be that stops indeed happen at slightly different points, such
as when the device is onboard of a car, which is parked in different slots (at a
short distance) depending on parking availability.

Understanding that a set of different points are close enough to actually
represent the same place is clearly a clustering problem. We discuss here one of
the simplest ways to implement it, namely a radius-based grouping of points.
Algorithm 4.7 summarizes it.

Algorithm 4.7: Radius-based location identification
Input: List of stop points stops, spatial threshold 6
Output: Set of locations L and stops-to-location mapping f : stops — L
// Compute neighborhood size (freq) of stops

1 foreach pivot € stops do

2 L N «— {p € stops | dist(p, pivot) < 6};

3 freq(pivot) < |N|;
// Build locations in frequency order
4 while stops # 0 do
pivot < arg max pegiops freq(p);
P — {p € stops | dist(p, pivot) < 6};
stops < stops — P;
¢ < mean position of P;
L « append c;
10 foreach p P do

11 L f(p) «c;

12 return L, f;

o e 9 w»n

The expected input is the set of stops of a user, each represented by a point.
Notice that the stops provided by the segmentation in Algorithm 4.6 were
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actually stop periods, each containing several points (though performing no
significant movement), thus some preprocessing is needed if we want to use
them as input for location identification. For instance, the points of a stop period
could be simply replaced by their mean position and their mean timestamp. The
second parameter of the algorithm is a spatial threshold ¢, representing how far
can be stop points from the center of the location they belong to. The algorithm
starts computing for each stop point its local density, namely the number of
stops laying withing a distance 6. Then, it picks the stop with the highest density,
takes it as center of a new location and assigns to it all stops within radius ¢.
This process is repeated several times, at each iteration assigning to the new
location only points that were not previously involved in another location, till
all stop points have been processed. Notice that most peripheral stop points will
be processed for last, and might result in several single-point locations.

Frequency-based home detection. The number of stop points associated to a
location (|P| in Algorithm 4.7) represents the number of times the individual
stopped there. Since home is a place an individual systematically returns to visit,
in particular for resting during the night, we can typically adopt two simple
approaches to select the most likely home among the locations returned from
the algorithm above:

e Pure frequency selection: home is the location / € L with the largest number
of stops, namely home(L) = argmax;cr |{p € stops|f(p) =1}|;

e Night stops: home is the location / € L with the largest number of stops
whose timestamp falls in a specific interval of hours « within the day, namely:
home(L) = argmaxjey, |[{p € stops|f(p) =1, hod(p) € a}|, where hod(p)
returns the hour-of-day of point p. E.g. @ = [8 p.m.,6 a.m.] (or, more
formally, [0 a.m.,6 a.m.] U [8 p.m., 12 p.m.]).

While the two solutions produce the same outcome in most situations, there
can be cases where locations other than home are visited more frequently
than home itself, therefore the second approach is considered more robust. For
instance, during work days some individuals visit the workplace more than
once per day (maybe twice, due to the lunch break in the middle) which might
overcome the frequency of home visits. The time constraint would greatly reduce
the issue.

Individual Mobility Network. The location identification process can actually
be exploited to do more than just labeling home locations. Indeed, it directly
allows us to translate a trajectory into a time-ordered sequence of visits to
locations, each with its temporal information (stop time, departure time) and
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next-location information (where the user goes after visiting that location)
including features of the trips performed to move from consecutive locations
(distance, travel time). This vision can be very effectively formalized as a
graph where locations play the role of nodes and the trips between locations
become edges connecting (corresponding) nodes. We call this representation an
Individual Mobility Network (IMN), which is defined in a very generally way as
follows.

Definition 4.1 (Individual Mobility Network) Given a user « and their mobility
history H,,, we indicate with G,, = (L,,, M},) their individual mobility network
(IMN), where L, is the set of nodes corresponding to the locations of u, and
M, is the set of edges (M,, € L, X L,) corresponding to direct trips between
two locations. Nodes and edges are associated to a weight w:

e w(l) = number of trips in H, reaching location /;
e w(ly, 1) = number of trips in H,, starting from location /; and reaching /5;

Also, an extended individual mobility network is an IMN were additional features
are available, both for nodes and edges, computed through some predefined
aggregation operator agg:

6(1) = agg({durations of stops in /});

p(l) = agg({arrival times of trips reaching /});
7y (I) = agg({durations of trips reaching /});
wq(l) = agg({lengths of trips reaching /});

The same functions are also defined on edges (movements) (/1,/;) € M,, in a
similar way, this time considering only trips that start from /; and reach /;.

Most applications focus on the w functions, namely the frequency of nodes
(i.e. number of stops at a location) and of edges (i.e. number of trips connecting
two locations). We can see a few real examples of IMNs in Figure 4.11.

Here, we represent the frequency of stops at locations as nodes’ size, and the
frequency of trips as thickness of edges. Notice that IMNs are oriented graphs,
and edges flow in a clockwise direction. For instance, in the top-left IMN the
flow from ‘0’ to ‘1’ is slightly stronger than the flow from ‘1’ to ‘0’. Finally,
nodes are numbered in order of stop frequency and self-loops (i.e. trips that start
and end in the same location) are also represented. We can see that IMNs are
mostly characterized by a central, high-degree node (most likely corresponding
to the home location of users) connected to a large number of other nodes. Often
this location is connected to a second one (most likely the workplace) with
high-frequency edges. This overall view of the individual mobility allows us to
better understand its complexity and if/how much it is dominated by routinary
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Figure 4.11 Sample IMNs. The Individual Mobility Network of four sample users
along two months is shown. Size of nodes and thickness/darkness of edges represent
their frequency. Nodes are numbered in order of stop frequency. [Source: paper by
one of the authors.]

habits (high-frequency edges and nodes) vs. occasional events (low-frequency
ones).

4.4.3 Adding semantics: Activity recognition

A step forward in understanding the mobility of an individual consists in inferring
the purpose of trips and stops, namely the (most likely) activity performed
there. Clearly, this is an extremely difficult task which has no general solution,
and yet we can try to compute some estimates and educated guesses. A very
popular approach to the problem consists in a POI-based inference, namely
exploiting external information about the Points-of-Interests that are at hand
from a location: simply put, if a user stops in a place where there are only
restaurants it is likely that they went there for eating.
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Figure 4.12 POI-based activity recognition.

The process can be applied to each stop location / of a user u, and consists of

the following steps:

®

(ii)

(iii)

@iv)

Acquire the set R of all relevant POIs in the geographical area of interest.
Nowadays this can be conveniently realized thanks to open data sources like
OpenStreetMap, which provide crowdsourced lists of points of interest for
nearly everywhere in the world. These typically include position data, the
POI category (referred to a taxonomy of categories, e.g. bar and restaurant
could be both subcategories of eating) and sometimes opening hours.

Select the subset R| € Ry of POIs that are at a close distance from the stop
location, in most cases done by fixing a maximum distance ¢ that is either a
global parameter (e.g. something between 100 m and 500 m) or a specific
feature of user u. This ¢ can capture the uncertainty of position due to GPS
errors (e.g. when entering a mall) or a walking distance tolerance for the
cases where stops actually refer to a parked vehicle, not the user’s position.
If opening hours are known, further filter out POIs that are closed at the
time of the stop, resulting in Ry € R;. More sophisticated approaches might
even consider the time needed to reach the POI from the stop point, if § was
very large. Notice that while POI-specific opening hours might be difficult to
obtain, general educated guesses are usually easy to perform at the level of
category type. E.g., the Bakery category can be safely excluded during night
time.

For each possibly POI category type ¢ compute its frequency f(c) in R;.
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(v) Return either f (namely, the distribution of POI categories) or the most
frequent category c;,p = argmax. f(c).

In the example in Figure 4.12 we can see that several POIs were fetched for
the area of interest, classified into 12 categories. Among them, only four POIs
are within a reachable distance from the stop point (see the circle area). In this
case, we obtain that f(Dentists) = f(Churches) = 1/4 and f(Banks) = 1/2.
The most frequent category is then Banks. Results might differ is opening hours
were available, since some POIs might be non-compliant with the stop time.

4.5 Notes on mobile phone data preprocessing

Mobile phone data — more exactly: CDR, XDR and the other forms of data
directly collected by the mobile phone infrastructure, not through tracing apps —
usually provide a much sparser and spatially coarser representation of movement
trajectories. Therefore, we can expect that the preprocessing strategies discussed
in the previous sections can be applied only to a limited extent:

o filtering approaches based on speed are generally applicable, though speed
estimates are much coarser and thus only extreme speed errors can be detected;
context-based methods are less likely to have significant impact (e.g., data
points of moving cars related to phone cells that contain no roads are probably
errors, yet this might be an unlikely situation in dense urban areas);

e applying point mapping and route reconstruction might be reasonable if the
road network is relatively sparse, so that the set of candidate roads for each
input point remains tractable;

e compression methods are likely to be not needed/usable, due to the original
data sparseness;

e stop detection might be doable, yet it could be largely simplified, by just
looking for phone cells that repeat within a short time (no spatial thresholds
needed, since the cell granularity already plays that role);

e activity recognition might be adapted to the this context. We will discuss this
in more detail in this section.

In the following we discuss two significant and representative preprocessing
approaches tailored around mobile phone data: the first one is a filtering task
devoted to a kind of noise specific to the data type; the second one revisits (and
strongly simplifies) the home and work location detection problem.
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Figure 4.13 A toy example of ping-pong effect on mobile phone data. The sequence
of sensed cell towers (A, B, etc.) gets discontinuous close to cell borders.

4.5.1 Ping-pong effect

Mobile phone data describe position in terms of the antenna the phone is
connected to at each specific timestamp. The common assumption in analysis is
then that such antenna is the closest one to the phone — in other words, the phone
should always connect to the closest antenna. Actually, that is not completely
true, since several factors can enter the process: if an antenna is overloaded with
many connected phones it might reject other connections; obstacles between
the antenna and the phone might reduce the perceived signal power, which is a
key decision factor; antennas might have different capacities and power; finally,
weather and other environmental changing factors can influence the antenna
selection. The result is a much more complex process that can create instability
of connections, especially when different antennas are at similar distance from
the phone. In terms of Voroni tesselation that means we can expect instabilities
close to the borders of cells, where the phone might connect to either of the two
(or more) neighboring cells.

We illustrate this through the example in Figure 4.13, showing a tesselation
for a set of antennas and the movement trajectory of a phone. Areas close to
cell borders are depicted in white, and the small letters along the trajectory
represent the connected antenna at that time — assuming a rather high sampling
rate. For instance, while close to the center of cell C the phone is consistently
connected to it, whereas in the middle ground between C and D the sequence
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of connections is an alternation of C and D (*...CDCDC ...”). This is the
so-called ping-pong effect, and the single antenna changes due to it are called
ping-pong handovers. Relying on the raw trajectory to compute statistics and
other analyses might create significant biases, since these alternating connections
would be interpreted as instantaneous jumps back and forth between antennas.
For instance, the apparent average speed might be orders of magnitude larger
than the real one. For this reason, in some applications it is preferable to identify
ping-pong effects and remove them.

Speed-heading-based detection. A very simple heuristic to find ping-pong
handovers is the speed-heading approach, which compares each data point pg
with the previous one pj_; through two parameters:

e average speed between the two points, vi = dist(pg, px—1)/(timey —
timeg_1);

¢ heading change, namely how much the direction diry between the two points
differ from the previous pair, iy = |diry — dirg-1|.

Ping-pong handovers are then estimated as the points showing a high average
speed (larger than a threshold o) and a complete U-turn change of direction,
namely:

HO ={pr|vk >0 A h; =180

Notice that the condition on direction change is sightly more general than
checking a repetition of the same antenna. Indeed, usually several antennas are
installed on the same tower (thus at the same coordinates), typically to cover
different directions or to provide coverage redundancy, thus the antenna ID
would be not sufficient to spot repeated handovers. The set HO of ping-pong
handovers can then be removed from the dataset.

An example. Considering Figure 4.13, for instance, in the input sequence
of connected antennas CCCCDCDCDDDD between C and D all the points
in bold would marked as ping-pong handovers, assuming the time distance
between consecutive points is small. After removal we would obtain the sequence
CCCCDDDD, which contains no extra handover.

4.5.2 Anchor locations

Detecting some key locations like home with GPS data requires a relatively
complex process due to the need of clustering single points into more abstract
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areas. Exactly replicating this process to mobile phone data is usually not
possible, and some assumptions and approximations are needed.

First, positions are already expressed as larger areas, and thus the spatial
clustering phase performed on GPS points is not needed — in other words, phone
cells can be directly considered as locations, since they are already at a high
aggregation level.

Second, distinguishing points collected during a movement and points cor-
responding to stops is very difficult on mobile phone data. In particular, for
sparser sources like CDRs it is practically impossible in most cases. In these
situations we typically assume that all recorded points are stops, based on the
rationale that movement covers just a small portion of humans’ daily life and
thus movement points at low sampling rates are rather rare.

Following these premises, we can implement a few simple heuristics to
identify home (and, in one case, also work) locations.

Night activity-based approach for home detection. A very simple method
used in literature consists in filtering data points at the source through temporal
constraints, similar to the night stops approach we discussed for GPS data.
Indeed, in this case we just fix a daily time window corresponding to night (e.g.
between 10pm and the next 6am every day) and associate each phone cell the
number of its data points that fit the window, the rational being that users are
usually at home during night time. Thus, the cell with the highest frequency will
be elected as home location. Minimum frequency thresholds are also applied, in
order to avoid assigning the home label to locations with too little data to draw
meaningful conclusions.

Personal Anchor Points approach. This more general heuristics aims to identify
both home and work locations, and involves a few phases. We describe to some
detail the main ones.

First, the analysis focuses on the cells where the user has performed calls
on at least two separate days every month, considering the others as noise to
remove.

Second, it selects the top two cells in terms of number of distinct days that
contain calls of the user, and assumes that one of them is the home location and
the other is work, though not yet deciding the exact labels.

Then, time constraints are applied to distinguish home, based on average
start time (AST) of calls in each location and its deviation (std), through an
handcrafted rule:
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if AST(loc) < 7 and std(loc) < o
then WORK
else HOME

where 7 represents a critical hour of the day and o the maximum standard
deviation allowed. The basic idea is that work-related calls show lower temporal
variability than residential calls because work periods are more structured, while
home phone usage varies widely (nights, weekends, holidays). A limitation of
the approach is clearly that parameters T and o need to be estimated, and they
can be change over different datasets under analysis. Its authors first applied it
to an Estonian dataset, where the best values appeared to be 7 = 5:00pm and
o =0.175.

A case to consider is when the rule above assigns the same label to the two
high-frequency locations selected. Since this is often the result of cell switching,
namely phones connecting to different neighboring antennas from the same
location (the same phenomenon that causes ping-pong handovers), we can check
if these points are in neighboring cells. If that happens, the less frequently visited
location of the two (prioritizing by days visited, then call count) is removed,
and then tries again to label the third most frequent location. The same tests
are applied, and the process is repeated if the label assigned is still of the same
type. This repetition can go on for several iterations (e.g. the authors arrived
to consider up to the fifth most frequent cell) until finding the required anchor
point or when no more locations are left.

Figure 4.14 shows an example taken from the original paper, also comparing
the output of the method with real home and work places. We can appreciate the
effectiveness of the approach, since the estimated home and work locations are
close to the real ones (with errors of 830 and 300 meters, relatively small for the
city scale); but also the fact that their neighboring cells have higher frequencies
than others, suggesting that in some cases the mobile phone did not connect to
the closest antenna, probably preferring another antenna nearby.
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Figure 4.14 Sample user with their frequent locations and the identified home and
work anchors. Figure taken from Ahas et al., J. of Urban Technology, 2010.

4.6 Homeworks and exercises

»? EXERCISE 4.1

How fast are users?

Here we want to replicate the cow mobility experiment mentioned in this
chapter, this time on humans. To do that: (i) choose one of open mobility
dataset available on internet (e.g. San Francisco taxis, Geolife, etc.); (ii)
select at least 10 users/vehicles and compute their distributions of lengths;
(iii) Remove 10% of points in each trajectory, either through temporal sam-
pling (remove one point every ten) or applying a compression algorithm
and playing with the parameters, and then recompute the distributions
of lengths; (iv) repeat the operation above with different percentages of
sampling: 20%, 30%, ..., 90%. How does the length distribution change?
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»? EXERCISE 4.2

Estimating GPS errors

Choose a bounding rectangle covering San Francisco city. Download the
road network/graph of that area. Select the GPS points of taxis available
in the same area. Assign each point P to its closest road segment R. De-
fine pseudo_error(P) = dist(P, R). Analyze the overall distribution of
the pseudo-errors. Is it coherent with the official estimates of GPS errors
provided by GPS.gov? Are pseudo-errors the same in downtown area vs.
out of city?

»? EXERCISE 4.3

Your own “speed-aware” trajectory compression method

As we discussed in the chapter, compression methods typically do not
consider time, with the effect that the output trajectories have different
speed distributions compared to the original ones. Try to write your own
compression algorithm, for instance a variant of Driemel's or DP, which
aims to preserve speeds as much as possible. Test it on a dataset of your
choice, e.g. a subset of taxis or Geolife users. Explore visually the effects
of simplification on some sample trajectories, then study how the average
speeds of trajectories are affected.

»? EXERCISE 4.4

Your own collective filtering algorithm

Typical filtering algorithms rely on the sequence of points of the individual
or on static context, e.g. distance from roads. However, there might exist
areas that can in theory be visited by moving objects (e.g. a road) and
yet in practice they are not (e.g. the road is private or closed to traffic).
Define a new filtering algorithm that works under the following assumptions:
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any area or road visited by less than n distinct trajectories is actually not
accessible, and thus no real point can be there. Test it on a taxi dataset.

4.7 Bibliographical notes

The interested reader can find more details about the approaches discussed
in this chapter in the following papers, which were in most cases our source
material.

Trajectory data cleaning is an extremely common task that however is very
often treated through custom solutions by each practitioner. Beside the simple
methods discussed in this chapter various others can be found in the literature,
such as Kalman filters and Particle filters. A simple comparison of some of
them on several datasets is provided by Garcez Duarte and Sakr (2024).

The trajectory mapping (and reconstruction) methods described in the chapter
were introduced in Zhu et al. (2017) and Newson and Krumm (2009). The
former is based on the classical Dijkstra’ shortest path computation, which was
first described in Dijkstra (2022) (from a recent collection of his writings).

Ramer-Douglas-Peucker’s and Driemel-HarPeled—Wenk’s algorithms for
trajectory compression and simplification are provided by their respective
published papers, namely Douglas and Peucker (1973) and Driemel et al. (2010).
A wider survey of simplification approaches, including the previous two, is
provided in Amigo et al. (2021). The half-serious discussion on cows’ speed
comes from the (fully-serious) paper by Laube and Purves (2011).

The stop detection heuristics have been formulated in various ways in several
works, among which Bonavita et al. (2021) also discuss ways to automatically
infer the temporal threshold. The modality inference approach based on the
STKW statistics is instead discussed in Sila-Nowicka et al. (2016). A definition
and an application of Individual Mobility Networks can be found in Rinzivillo
et al. (2014), while the POI-based activity recognition approach was introduced
in Furletti et al. (2013).

The two methods for home/work location detection on mobile phone data are
described, respectively, in Deville et al. (2014) and Ahas et al. (2010), in both
cases with a focus on CDRs. The heuristics for identifying ping-pong handovers
comes from [ovan et al. (2013).
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