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Fundamental Concepts

This morning, the authors of this book begins their day in different parts of
the province of Pisa, Italy, each making their way to their offices in the CNR
campus. At lunchtime, they join colleagues at the institute’s canteen, a daily
ritual embedded in the rhythms of scientific life at CNR. In the afternoon, they
both move to a meeting at the University of Pisa, in the city centre. Then, their
evening activities diverged entirely: one attended a classical music concert, the
other visited a gym on the city’s outskirts before heading to a pub in the historic
center.

These movements can be formally described as mobility trajectories, se-
quences of spatial positions traced over time (see ??). Each spatial position
along the way corresponds to a geographic coordinate: a pair of latitude and
longitude values that precisely locates a point on Earth’s surface. When such
coordinates are chronologically ordered, they capture the structure of an indi-
vidual’s movements. Thousands of individuals move daily through the city of
Pisa, each tracing their unique mobility trajectory.

To systematically study mobility trajectories — their origins, destinations,
lengths — we typically divide geographic space into spatial units using spatial
tessellations. These can take the form of administrative divisions, such as
neighbourhoods or municipalities, or follow geometric schemes like squares or
hexagons. Within this partitioned space, we can define mobility flows, which
quantify the number of individuals moving from one tile to another within a
given time frame (see ??b).

This chapter introduces the essential concepts and tools for analysing human
mobility. We begin by describing the geographic coordinate system, then move
to the definition of individual trajectories. We then show how spatial tessellations
allow us to aggregate these trajectories into mobility flows, providing a structured
way to interpret the patterns that shape how people move through space.
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Mid-Game Chessboard — White Knight (C4) Highlighted

Figure 2.1 Example of a mid-game chessboard configuration. The board shows both
white and black pieces positioned dynamically, with the white knight highlighted
near the center at C4. The diagram illustrates how spatial positions can be represented
using a coordinate system (A—H, 1-8), a useful analogy for describing discrete
spatial locations in mobility analysis.

2.1 Geographic coordinates

Where are you now? Although this question sounds simple, a precise answer
depends on the coordinate system at hand.

In games like Battleship or chess, location is unambiguous: letters label one
axis, numbers the other, and the ordered pair (x, y) identifies a single square on
a flat board. That grid is a complete, fixed reference frame (Figure 2.1).

Real spaces are less obliging. Even within a room there is no canonical
coordinate system. One must choose a local frame — for example, select a corner
as the origin, define two perpendicular axes along the walls, and express position
as “x centimetres from one wall and y centimetres from the other.” Many such
frames are possible, each adequate once its origin, axes, units, and orientation
are specified.

The Earth is neither a board nor a flat room. It is (approximately) a spheroid,
and we occupy a curved surface embedded in three dimensions. A grid of equal
squares that works on a plane will distort — stretch, skew, or tear — when imposed
on a globe. Any rigorous statement of position on Earth therefore requires a
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Figure 2.2 Latitude and longitude in the geographic coordinate system. Left:
Angular measurements of latitude and longitude on a spherical model of Earth.
Latitude measures the angular distance north or south of the equator, while longitude
measures the angular distance east or west of the prime meridian. Right: Diagram
of meridians and parallels. Parallels are horizontal lines parallel to the equator
and represent lines of equal latitude; meridians are vertical lines connecting the
poles and represent lines of equal longitude. Sources. Left: Peter Mercator, Own
work, derived from Sphere wireframe 10deg 10r.svg, Public Domain. Available at:
https://commons.wikimedia.org/w/index.php?curid=12226167 Right: Unknown
author, vector version of a U.S. government image, Public Domain. Available at:
https://commons.wikimedia.org/w/index.php?curid=92353626

properly defined geographic coordinate system (GCS), not merely a planar
grid. A GCS is a reference framework used to specify the location of objects on
the Earth’s surface. It relies on angular measurements — latitude and longitude
— which represent angles measured from the Earth’s center to locations on its
surface (see Figure 2.2).

These coordinates enable the unique identification of locations on the Earth’s
curved, three-dimensional surface. Latitude refers to the angular distance of a
location north or south of the equator, which is defined as 0° latitude. Lines
of equal latitude, called parallels, run horizontally around the Earth and are
always parallel to the equator. Latitude values range from 0° to 90°, and must
be specified as either north (N) or south (S) of the equator. Longitude is the
angular measurement that defines a location’s position east or west of the prime
meridian, an imaginary line set at 0° longitude that passes through Greenwich,
UK. Lines of equal longitude, known as meridians, extend from the North Pole
to the South Pole and converge at both poles. Longitude values range from 0° to
180°, and each must be designated as either east (E) or west (W) of the prime
meridian.

Since latitude and longitude are angles, they are described in degrees-minutes-
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seconds (DMS) format. However, the decimal degrees (DD) format is more
common in practice. Coordinates in DMS format can be converted in DD format
using the formula:
) min s
decimal degrees = deg + 60 + 3600 2.1
where deg indicate the degrees, min the minutes and s the seconds of the
angle. If the coordinate lies in the southern or western hemisphere, the resulting
value should be made negative. For example, 45° 30’ 00" S corresponds to
—(45+ % + F%o) = —(45+0.5+40) = —45.5 decimal degrees. The minus sign
reflects the fact that the location lies south of the equator and therefore represents
a negative latitude. Coordinates in DD format are typically presented in the
order (latitude, longitude). For example, the coordinates of Paris are commonly
written as (48.8566, 2.3522), where 48.8566 represents the latitude and 2.3522
the longitude.

In some cases, coordinates are expressed in radians rather than decimal
degrees. Since one degree corresponds to 755 radians, the conversion from DMS
to radians is given by

min s n

radians = |deg + 60 + 3600|130 2.2)

Again, the result should be made negative if the direction is South or West.
For instance, 45° 30’ 00” S corresponds to —(45 + 23 + 705 - & ~ —0.7941
radians.

@ CURIOSITY 2.1

Discovering the Longitude

For centuries, determining longitude at
sea was one of the greatest scien-
tific and navigational challenges (Sobel,
1996). While latitude could be estimated
with reasonable ease by measuring the
angle of the Sun or stars above the hori-
zon, longitude required knowing the time
difference between a reference location
and the local time. Since the Earth ro-
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tates 15° per hour, every hour of time

difference corresponds to 15° of longitude.

But in the 17th and 18th centuries, keeping accurate time on a moving
ship was nearly impossible. Pendulum clocks were unreliable at sea due to
constant motion and variations in temperature and humidity. This uncertainty
made longitudinal navigation so difficult that “searching for the longitude”
became a proverbial expression for attempting the impossible — so much
so that Swift's Gulliver’s Travels lists the “discovery of the longitude” among
fanciful, world - perfecting inventions we would achieve if immortal (Part Ill,
Ch. X) (Swift, 2025).

The breakthrough came in the 18th century, when English clockmaker
John Harrison developed the first highly accurate marine chronometers,
culminating in the celebrated H4 timekeeper. Harrison's work, funded in
part by the British government’s Longitude Act of 1714, eventually allowed
sailors to compare local solar time with Greenwich Mean Time (GMT) and
thus compute their longitude with precision.

The problem of finding the longitude not only revolutionized navigation and
global exploration, but also spurred innovations in astronomy, timekeeping,
and geodesy. Today, we take for granted the instantaneous precision of
GPS, but it was the centuries-long “search for the longitude” that paved
the way.

Image used under Creative Commons Attribution-ShareAlike 3.0 Unported license.

2.1.1 World Geodetic System 1984

Defining the origin lines for latitude and longitude — the equator and the prime
meridian — is a necessary step in establishing a GCS, but it is not sufficient. To
fully describe the position of a point on the Earth’s surface, a geodetic datum
must be specified.

A geodetic datum is a mathematical model that defines how the Earth’s
surface is represented in the GCS. It consists of three components:

(1) The latitude and longitude of an initial reference point (the origin of the
system);
(i1) A reference ellipsoid that approximates the shape of the Earth;

(iii) The vertical separation between the ellipsoid and the geoid (i.e., the Earth’s
actual physical surface) at the origin.
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The second component is necessary because the Earth is not a perfect sphere.
Due to its rotation, the Earth is slightly flattened at the poles and bulges at
the equator, a shape more accurately modelled as an ellipsoid defined by its
semi-major axis a (the radius at the equator) and semi-minor axis b (the radius
from the center to the poles). The flattening parameter, defined as f = (a — b)/a,
quantifies how much the ellipsoid deviates from a perfect sphere and is crucial
for accurately modelling global positions.

The third component of the datum concerns the alignment of the ellipsoid rel-
ative to the Earth’s surface. Because the Earth’s shape is irregular (characterised
by mountains, valleys, depressions and gravitational anomalies), this alignment
determines how closely the ellipsoid matches the real-world terrain. Traditional
local datums (such as the European Datum 1950 or the Indian Datum) were
designed to provide high positional accuracy within a specific geographic region.
To achieve this, the ellipsoid was often shifted and tilted to fit the local geoid
better, resulting in excellent local precision but poor global consistency.

Modern global applications, such as GPS, satellite imagery, and international
mapping, require a consistent, Earth-centred reference system. This need led
to the adoption of the World Geodetic System 1984 (WGS84), a globally
standardised datum developed by the U.S. Department of Defense for the
Global Positioning System.' WGS84 defines an Earth-centred ellipsoid with the
following parameters:

e Semi-major axis: a = 6,378, 137 meters;
e Semi-minor axis: b = 6, 356, 752.3142 meters;
o Flattening parameter: f ~ 0.003352810664747.

The prime meridian in WGS84 corresponds to the IERS Reference Meridian,
which closely aligns with the historical Greenwich Meridian and defines
longitude 0°.

2.1.2 Geodesic Distance

Since the Earth is a three-dimensional, curved surface rather than a flat plane,
traditional Euclidean distance formulas are not suitable for measuring distances
between points on its surface. Instead, we must use the geodesic distance, which
accounts for the Earth’s curvature and provides a more accurate representation of
spatial separation. The most straightforward method for computing the geodesic
distance between two points uses the haversine formula, assuming Earth is

! Department of Defense World Geodetic System 1984: Its definition and relationships with local
geodetic systems (TR8350.2). Bethesda, MD: NIMA; 2000.
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spherical (Inman, 2012; Shylaja, 2015). Mathematically, given two spatial points
Iy = (x1,y1) and I, = (x2, y2), the geodesic distance is computed as:

d(ly,1) = 2R arcsin \/sinz (%) + cos ¢ cos @2 sin® (%) 2.3)

where R is the Earth’s radius (mean radius R = 6371 km); ¢ and ¢, are the
latitudes of /1 and /, inradians; A¢ = ¢, — ¢ is the difference in latitudes; A; and
A, are the longitudes of /1 and /, in radians; and A1 = A, — A, is the difference
in longitudes. See Advanced Topics 2.A for details on how equation (2.3) is
derived from the haversine formula.

Note that, since Earth is not a sphere (but an ellipsoid), using the haversine
formula introduces a relative error that can reach at most approximately 0.5%
of the actual distance (Earle, 2006). More accurate geodesic methods, such as
Vincenty’s algorithm, Karney’s algorithm or solutions based on the WGS84
ellipsoid (Karney, 2013), account for this shape and provide improved precision.
While spherical approximations are sufficient for many applications, they may
yield significant errors over long distances or when high spatial accuracy is
required (Earle, 2006). As an example, consider the computation of the distance
between Paris (latitude 48.8566, longitude 2.3522) and New York City (latitude
40.7128, longitude —74.0060). If we apply the haversine formula, the resulting
distance is approximately 5, 837,241 meters. Using Karney’s algorithm, the
computed distance is higher, approximately 5, 852, 935 meters. This yields an
absolute difference of 15, 694 meters (roughly 15.7 kilometres) and a relative
error of about 0.27%. This discrepancy underscores the importance of selecting
an appropriate distance computation method, especially in applications where
precision is critical.

2.1.3 Visualizing geographic coordinates on your screen

When we visualise geographic locations, we almost always do so on a flat
medium — paper maps, computer monitors, smartphone screens. Converting
positions expressed as latitude and longitude on an ellipsoidal Earth into planar
(x, y) coordinates is the role of a map projection.

A map projection systematically transforms parallels and meridians to a plane,
enabling two practical advantages: (i) we can use two-dimensional maps and (ii)
perform calculations in a planar coordinate system rather than angular units. The
trade-off is unavoidable distortion: no projection can simultaneously preserve
area, shape, distance, and direction everywhere. Consequently, hundreds of
projections exist, each optimised for certain properties and regions; the Mercator
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projection, for example, preserves local shape but greatly inflates area at high
latitudes.

Because the choice of projection depends on purpose and place, a detailed
treatment lies beyond the scope of this book; readers seeking a fuller discussion
should consult standard GIS texts, e.g., Chapter 2 in Chang (2018).

@ CURIOSITY 2.2

What if...Earth were flat?

If Earth were flat, the Euclidean dis-
tance would be the correct measure of
the distance between any two points.
Given two points [} = (x,y;) and
Iy = (x2, y2), their Euclidean distance
is provided by:

d(l1, 1) = V(x1 —x2)% + (y1 — y2)*.

However, the Earth is not flat and, con-

trary to a common misconception, an-
cient and medieval scholars knew this.

Since the time of the Ancient Greeks, the Earth's sphericity was widely
accepted; most famously, Eratosthenes measured its circumference in the
3rd century BCE.

Neither did educated individuals
in the Middle Ages subscribe to
the notion of a flat Earth. This mis-
conception was largely invented
in the 19th century to portray the
medieval period as a time of igno-
rance and superstition. The spher-
ical nature of the Earth—though
we now know the planet is more
accurately described as an el-
lipsoid—was well understood by
medieval scholars, who drew on
classical knowledge preserved
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through figures such as Isidore of Seville, Bede the Venerable, and Thomas
Aquinas.

A compelling visual testament to this understanding appears in countless
medieval paintings and sculptures across Europe, where monarchs, em-
perors, and religious figures are depicted holding the globus cruciger (a
globe surmounted by a cross) symbolising both the Earth's spherical shape
and Christ's dominion over the world. Although medieval cosmology placed
Earth at the centre of the universe (a geocentric model), it still conceived
of the Earth as a sphere.

The flat-Earth myth gained traction in the 1800s through writers like Wash-
ington Irving and John William Draper, but it has no basis in historical fact.

fEH Behind the Curve (Netflix, 2018), a documentary
exploring contemporary Flat Earthers and their belief
in a conspiracy to hide the “truth” that the Earth is flat -
behindthecurvefilm.com.

In the previous page, above: Rowbotham’s Map of the Earth, from Earth Not a Globe.
Below: Frederick Il surrounded by his subjects. Detail from a miniature in the “Exultet”, first
half of the 13th century. Picture taken from the Museo Diocesano in Salerno, Italy.

2.2 Trajectories, Tessellations and Flows

The study of human mobility relies on a small set of foundational objects that
serve as building blocks for modelling, analysing, and interpreting movement
patterns. Three concepts are particularly central:

e Mobility trajectories describe individuals’ movements through space and
time.

e Spatial tessellations partition the geographic space into discrete regions.

e Mobility flows represent the aggregated movements between such regions.

Most of the literature in human mobility is structured around these three
elements, which are used either independently or in combination to characterise
human mobility at different scales and resolutions.
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2.2.1 Mobility trajectories

Definition 2.1 (Mobility Trajectory) A trajectory T is a temporally ordered
sequence of spatio-temporal points T = (py, p2, ..., Pn), Where each point
p; is defined as a tuple p; = (x;,y;,1;), with (x;, y;) representing the spatial
coordinates, and #; denoting the corresponding timestamp. The sequence is
strictly ordered in time: ¢ < t, < --- < t,, which ensures that the points in
the trajectory are chronologically arranged. Equivalently, the trajectory can be
written as: T = ((x1, y1,£1), (X2, Y2, 12), -« +» (X, Yns ).

A trajectory captures the movement of an entity, such as a human, animal,
vehicle, object, or particle, through space over time. In the context of human
mobility, spatial coordinates are typically limited to two dimensions: latitude
(x) and longitude (y). A third dimension (z), corresponding to altitude, is often
omitted due to its limited availability or relevance in most mobility datasets. As
a result, trajectories in mobility studies are frequently represented as sequences
of 3-tuples (x;, y;, ;) or even 2-tuples if the temporal dimension is separately
encoded.

Mobility trajectories are often visualised in two dimensions — longitude
and latitude — while ignoring altitude and time. Figure 2.3 (left) shows a
trajectory T = (p1, p2, - - ., Pg) Tepresenting a sequence of places visited in
Pisa, Italy, plotted in two dimensions. Each point is recorded at a constant
temporal interval of five minutes. Figure 2.3 (right) displays the same trajectory
in three dimensions by adding the temporal axis. Although the two-dimensional
representation is more commonly used in the scientific literature, the three-
dimensional visualisation offers a more complete and informative view of the
trajectory, capturing both spatial and temporal aspects.

As we will discuss in Chapter 3, the structure and informativeness of a mobility
trajectory are influenced by the characteristics of the underlying data, particularly
the sampling rate and spatial-temporal granularity. High-resolution data sources,
such as GPS, provide frequent and precise location updates, enabling detailed
analysis of mobility trajectories, including velocity and acceleration. In contrast,
sparse and irregular data like mobile phone records or social media check-ins
offer limited temporal resolution and often require data preprocessing techniques
(discussed in Chapter 4) to reconstruct meaningful trajectories. The choice of
sensing modality entails trade-offs between accuracy, coverage, and privacy,
ultimately shaping the insights that can be drawn from the resulting mobility
traces. Note that a mobility trajectory can represent the movement of an object
with varying degrees of detail. For instance, it might depict an individual’s
complete daily trajectory, which likely includes periods of immobility, such as
time spent at an office. This semantic information is not directly ascertainable
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Figure 2.3 Visualising a mobility trajectory in space and time. Left: The trajectory
T = (pl, p2, , p6) is plotted in two dimensions (longitude and latitude), as
commonly done in mobility studies. Each point is sampled at a constant interval of
5 minutes. Right: The same trajectory is shown as a spatiotemporal curve in three
dimensions, with time (in seconds since the start) added as the vertical axis. This
3D representation reveals the temporal structure of the movement, offering a more
complete view of the trajectory’s evolution over time.

from the raw mobility trajectory. Data preprocessing steps, as discussed in
Chapter 4, are required to extract such semantic insights from the trajectory

dai

ta.
A mobility trajectory reveals indirect aspects of mobility behaviour. For

example, from a trajectory we can extract the following features:

Velocity: the average velocity can be computed by measuring the spatial
distance between consecutive points and dividing it by the time interval
between them. For a pair of points p; = (x;, y;,¢;) and piv1 = (Xi41, Viels Livl),
with t;41 > t;, the average velocity is given by

v = d(pi, pi+1)

Liv1 — i

where d(p;, pi+1) denotes the geodesic distance between the two points.
Directionality: The heading or direction of movement can be derived from
the orientation of consecutive trajectory segments p; and p;4;. It is typically
computed as the angle of the vector between p; and p;, relative to a reference
axis:

0; = arctan 2(yir1 — Vi, Xisl — Xi)

where (x;, y;) and (x;41, yi+1) are the coordinates of p; and p;, respectively.
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Figure 2.4 Cave Canem (Beware of dog), a Roman mosaic from Pompeii, now at the
Archaeological Museum of Naples, Italy. Roman mosaics were made throughout the
Roman Republic and later Empire, and were used in a variety of private and public
buildings, on both floors and walls [9]. They are constructed from geometrical
blocks called tesserae, placed together to create the shapes of figures, motifs and
patterns. Figure from this link under the Creative Commons Attribution-Share
Alike 3.0 Unported license.

The resulting angle 6; expresses the instantaneous direction of movement,
providing insight into the preferred travel orientations of the individual.

Duration: The duration of the movement captured by the trajectory is simply
the time elapsed between the first and last points in the sequence, i.e., t,, — 1,
or between two consecutive points, i.e., f; — t;_1. Duration helps characterise
the temporal extent of the mobility trajectory.

Total distance: The sum of distances between consecutive points along a
trajectory. The total distance of the trajectory, computed as the distance
between consecutive points of the trajectory

n—1

Zd(Pi’PiH)

i-1

where d(p;, pi+1) is the geodesic distance.

Personal preferences: By analysing the recurrence patterns in a mobility
trajectory, such as frequently visited locations, time spent at specific places,
or preferred travel times, one can infer individual preferences and habits. For
example, the most frequently visited location may correspond to home, and
temporal regularities may suggest commuting routines. This will be covered
in Chapter ??.
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2.2.2 Spatial Tessellations

In many mobility tasks, the geographic space is discretised by mapping the
coordinates to a spatial tessellation, i.e., a covering of the two-dimensional space
using a countable number of geometric shapes called tiles, with no overlaps and
no gaps (Griinbaum and Shephard, 1986). The term tessellation derives from
the Latin word tessella, which referred to a small square tile used in mosaic
work. Tessella is a diminutive of fessera, meaning “tile” or “cube”.

Definition 2.2 (Spatial tessellation) Given a geographic area A, a set of
geographic polygons S =s; : i = 1,...,n is a spatial tessellation of A if:

(i) Each s; is a polygon called a tile.
(ii) The tiles are non-overlapping, i.e., s; N's; = 0,Vi # j.
(iii) The tiles completely cover the area: U}_,s; = A.

Spatial tessellations can be broadly classified into regular and irregular types,
based on the geometry of their tiles and the rules by which they are constructed.

Regular Tessellations
A regular tile is one with equal side length and equal internal angles. Examples
are the equilateral triangle, with three equal sides and 60° internal angles; the
square, with four equal sides and 90° angles; and the regular hexagon, with six
equal sides and 120° angles.

Although there are infinitely many spatial tessellations made from a single
type of regular tile, only few of them meet the stricter condition that every point
in the tessellation is of the same type, i.e., the arrangement of tiles around each
point is identical. These are known as uniform tessellations (Griinbaum and
Shephard, 1986). Among them, the tessellations composed entirely of equilateral
triangles, squares, or regular hexagons are called regular tessellations, as they
use a single regular polygon that fits together without gaps or overlaps.

The geometric simplicity, ease of implementation, and computational effi-
ciency of regular tessellations have made them a common choice in human
mobility studies, particularly when dealing with large-scale data. However, their
regularity comes at a cost, as they impose a rigid and arbitrary spatial struc-
ture whose boundaries rarely align with natural features, urban infrastructure,
or meaningful patterns of human mobility. Among regular tessellations, the
most widely used in mobility analysis are square tessellations and hexagonal
tessellations.

Square tessellations. Also named square grids, they divide the spatial domain
into a lattice of equally sized square cells (see ??a). They are straightforward to
construct, easy to index, and computationally efficient, all properties that make
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Figure 2.5 Different types of tessellation over the same geographic area (City of
Rome)

them attractive for data storage and spatial queries. However, square tessellations
do have a main limitation: the unequal distance between adjacent and diagonal
neighbours (see Figure 2.6) can affect spatial smoothing, interpolation, and
mobility modelling, leading to results that may reflect the shape of the grid
more than the underlying phenomena.

Hexagonal tessellations. Also known as hexagonal grids, they use regular
hexagons to tile the space (see ??b). They are often preferred in spatial analysis
due to their geometric advantages, as they possess the following two properties:

e Uniform adjacency, whereby distances between the centroid of a given
tile and those of neighbouring tiles are the same. Each hexagonal tile has
six neighbours at equal distance from its centre (see Figure 2.6). This
ensures isotropic connectivity, i.e., there is no preferred direction, and spatial
relationships are more balanced.
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Figure 2.6 Adjacency distances in square (a) vs hexagonal (b) tessellations.

e Uniform orientation, which means that all tiles in the tessellation are aligned
in the same direction, none are rotated or flipped relative to the others.

Square tessellations possess the uniform orientation property but not uniform
adjacency. Hexagons also more closely approximate circular areas of influence,
which can be a more realistic representation of how individuals interact with
space. Their compact and symmetrical shape helps reduce angular distortion.
Despite these benefits, like square grids, they are context-blind: their cell
boundaries are externally imposed and independent of the actual distribution of
people, activities, or places.

An advantage of all regular tessellations is their flexibility in spatial resolution.
We can easily adjust the size of tiles to match the scale of interest. Yet this
flexibility also introduces a trade-off: larger cells may obscure fine-grained
spatial and mobility dynamics, while smaller ones can lead to sparse data,
increased noise, and unstable estimates (Openshaw, 1984; Gehlke and Biehl,
1934). Thus, while regular grids offer practical advantages, they require careful
calibration to avoid misrepresenting the very spatial patterns they are meant to
capture.



2.2 Trajectories, Tessellations and Flows 17

Irregular Tessellations
Irregular tessellations divide space into units of varying shapes and sizes, often
shaped by pre-existing geographical, social, or administrative boundaries. Unlike
regular tessellations, which impose a uniform and artificial structure on space,
irregular tessellations aim to capture more nuanced or context-sensitive spatial
divisions. In human mobility analysis, two types of irregular tessellations are
common: administrative unit tessellations and Voronoi tessellations.

Administrative unit tessellations. These types of tessellations arise from
political, institutional, or historical processes and include spatial divisions
such as countries, municipalities, districts, and census tracts (see ??d). Their
widespread use is largely due to their familiarity and the availability of socio-
economic data aggregated at these levels. These tessellations also present several
limitations. Administrative boundaries often encompass areas with contrasting
land uses, population densities, and socio-economic characteristics, resulting in
heterogeneous zones that can distort aggregate measures. Analytical outcomes
may therefore vary significantly depending on the size, shape, and configuration
of the units used. Furthermore, administrative units are rigid and predefined,
offering limited adaptability to the spatial processes being studied. Their scale
and geometry can differ considerably even within the same urban area, which
complicates cross-regional comparisons. As a result, researchers must interpret
findings with caution, as observed patterns may stem from zoning artefacts
rather than genuine mobility behaviours.

Voronoi tessellations. Voronoi diagrams partition space according to a set
of seed points (or generators), with each resulting tile containing all locations
that are nearer to its seed point than to any other (see ??c). Mathematically, let
P = py,...,p, be afinite set of n distinct seed points located in geographic
area A, and let d(p, p;) be the geodesic distance between a location p and seed
point p;. We define a region given by

V(pl) = {P|P Eﬂ,d(P,Pi) < d(p’p])sj * l’] = 1""»”}

as the Voronoi tile (or Voronoi polygon) associated with point p; and the
set given by v(P) = {V(p1),...,V(px)} as the Voronoi diagram of P. The
tiles of V(p;) contain all locations in the geographic area ‘A which are closer
to p; than any other seed point, while the lines and the vertices of V(p;)
represent those locations which are equidistant from two or more seed points.
Voronoi tessellations are inherently adaptive: their geometry reflects the spatial
distribution of the seed points. When seed points correspond to meaningful
features (such as mobile phone towers or urban amenities), the resulting cells can
approximate zones of influence or service areas, making Voronoi tessellations a
powerful tool for modelling spatial accessibility or flow. Compared to regular
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Voronoi Tessellation of Portskoken Postcodes (City of London) Voronoi Tessellation of Monuments in Florence

» Postcodes

€178 £y « Monuments

ega A
‘D/ BT Y,
ges )~/ 1268 /

7 e gk €/

S QA{‘AU & PR

S Land o] —
/ ieal

Vel e

£180E e
b |

\ecagres| E1asx\  /
o N\

.
1719

€108
&

g

[E7E U

Figure 2.7 (Left) Voronoi tessellation based on postcode centroids in the Portsoken
ward (City of London). (Right) Voronoi tessellation over the municipality of
Florence, generated using main tourist attractions as seed points.

grids, they offer a more flexible and heterogeneous representation of space, one
that can better align with underlying phenomena.

A common application of Voronoi tessellations is to reconstruct spatial
divisions when explicit boundaries are missing or incomplete. For instance, in
the UK, the postcode system is widely used to georeference socio-economic
data. However, individual unit postcodes do not have officially defined bound-
aries, which creates challenges when integrating such data with census-based
geographic units. A practical solution is to generate Voronoi polygons around
each address point within a postcode, thereby approximating the spatial extent
of each unit (see Figure 2.7a). Another example, illustrated in Figure 2.7b,
involves creating zones of influence around tourist attractions. Each Voronoi
tile represents the area that is geographically closest to a specific attraction,
effectively partitioning space into catchment areas based on proximity. This
method is particularly useful for analysing spatial accessibility or estimating the
spatial reach of points of interest.

Note that the adaptability of Voronoi tessellations comes with caveats. The
quality and interpretability of the tessellation depend entirely on the seed points.
Sparse distributions lead to oversized and coarse partitions, while poorly placed
or arbitrarily generated seeds can produce cells that do not reflect any meaningful
spatial structure. Additionally, Voronoi tessellations assume space is continuous
and isotropic — i.e., that movement or influence spreads equally in all directions
— a condition that rarely holds in real-world urban environments characterised
by physical barriers, infrastructure, or zoning constraints. While Voronoi-based
partitions can reduce the artificiality of regular grids and mitigate some of their
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biases, they remain sensitive to design assumptions and data limitations. The
selection of an appropriate spatial tessellation is a critical step in any human
mobility study, as it directly influences the insights gained and the conclusions
drawn from the analysis. Each type offers unique advantages and disadvantages,
making the choice dependent on the specific context and objectives of the

research. Table 2.1 summarises the pros and cons of each tessellation type.

Tessellation type Reg./Irreg. Pros Cons Best used when

Square Regular Simple to Unequal You need simple
implement and neighbor spatial
index; flexible in  distance; partitioning.
spatial context-blind.
resolution.

Hexagonal Regular Uniform More complex to  You want
adjacency and implement; isotropic tiles for
orientation; context-blind. uniform spatial
better coverage.
approximates
circular areas.

Administrative Irregular Familiar and Rigid and You are working
interpretable; predefined; can  with official
available be misaligned statistics.
socio-economic  with mobility
data. patterns.

Voronoi Irregular Adapts to spatial Dependent on You need to
data; reflect seeds; ignore model zones of
influence zones; real barriers; influence.

data driven.

complex
computation.

Table 2.1 Pros and cons of tessellation types.
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@ CuRIOSITY 2.3

Voronoi tessellations are everywhere

From the irregular spots on a giraffe's
coat to the delicate vein structure in
a dragonfly’'s wing, many natural pat-
terns resemble Voronoi tessellations.
Even something as familiar as a hon-
eycomb hints at this structure when
the hive cells are viewed as regular
Voronoi partitions.

Researchers have leveraged this idea to predict the surprising geometry of
epithelial cells, i.e., those lining our skin, organs, and blood vessels. Their
models anticipated a peculiar, previously unknown shape now dubbed the
"scutoid”, which was subsequently found to be ubiquitous in human biology,
thanks in part to its Voronoi-like organizing principles.

We also use Voronoi tessellations everyday, even without realizing it. When
we seek the nearest café, or when urban planners determine service area

for hospitals, and when regional planners outline school districts, we all
consider Voronoi tessellations. Each café, school, or hospital is the seed
point from which a Voronoi tessellation is generated.

E Voronoi tessellations and scutoids are everywhere,
(Scientific American blog post).

fEH One algorithm can describe Giraffe skin, Leaf struc-
ture, and Cracked earth? Voronoi! (video on YouTube).

In the previous page: bee on his alvear - (Scientific American). Image licensed under
Creative Commons.


https://www.scientificamerican.com/blog/observations/voronoi-tessellations-and-scutoids-are-everywhere/
https://www.youtube.com/watch?v=zL7vq_xomGw
https://www.scientificamerican.com/blog/observations/voronoi-tessellations-and-scutoids-are-everywhere/
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2.2.3 Mobility Flows

Mobility flows describe the movement of groups of people between pairs of
locations on a geographic area. A typical example is migratory flows among
countries or within statistical units within countries. The description of mobility
flows requires the geographic area to be divided into meaningful spatial units
using a spatial tessellation.

& DEFINITION 2.1

Mobility Flow

LetS = s1, ..., S, be a spatial tessellation of a geographic area A, where
each s; € A is a tile. A mobility flow from tile s; to tile 5 is the count of
movements observed from individuals travelling from s; to s ; within a given
time window A.

A mobility flow represents the movement of individuals from one tile in the
spatial tessellation to another. For example, if we apply an irregular spatial
tessellation to New York City, such as one based on neighbourhoods, a mobility
flow could capture how many people travel from Manhattan to Queens over the
course of a day.

To systematically capture all mobility flows within a geographic area, we use
a mobility flow matrix.

& DEFINITION 2.2

Mobility flow matrix

A mobility flow matrix MW e R™ " where n is the number of tiles in the
spatial tessellation and each element m; ; € M™ denotes the mobility
flow from tile s; to s; within a given time window A. The matrix My is
generally asymmetric, i.e., m; j # mj ;.

The mobility flow matrix M), also known as the origin-destination (OD)
matrix, is a square matrix where each row and column corresponds to a tile in the
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Figure 2.8 IMAGE OF FLOW NETWORK and the corresponding ADJACENCY
MATRIX.

spatial tessellation. The entry m; ; € M (A) indicates the number of individuals
moving from tile s; to tile s; during a given time window A. Since the temporal
window is typically understood from context, it is common to omit it from the
notation and refer to the matrix simply as M.

The mobility flow matrix can be represented in two equivalent ways: as a
directed, weighted network, where nodes correspond to spatial units and edges
indicate flows between them; and as an adjacency matrix, where each entry m; ;
records the number of movements from tile s; to tile s;. These representations
enable the application of network theory and matrix-based analysis to the study
of human mobility.

From trajectories to flows

Intuitively, to compute a mobility flow matrix from individual mobility trajecto-
ries, we need to translate raw movement paths into aggregated flows between
spatial units. By associating each point in a trajectory with a tile from a given
spatial tessellation, we can identify movements from one tile to another. Counting
these transitions across all trajectories yields the entries of the flow matrix.

Mathematically, the mobility flow matrix can be computed from a collection
of individual mobility trajectories as follows. Let S = {s1, ..., s,} be a spatial
tessellation of a geographic area, where each s; is a tile in the tessellation. Let
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T ={TD,...,T"™} be a collection of individual mobility trajectories that
occur within a time window. Here, we assume that each trajectory 7*) describes
a single semantic trip of an individual, i.e., the user starts at the first point
of the trajectory and ends its trip at the last point of it. We assume that each
trajectory TK) represents a single semantic trip of an individual, wherein the
user commences at the initial point of the trajectory and concludes the journey
at its final point.
To compute the flow matrix M € R™*", we perform the following steps:

(i) Take the starting and ending point of each trajectory. For each T®) € 7, take
the first point (xék), y(()k>, t(()k)) and the last point (xi,k), yslk), tf,k)). These are

the origin and destination point of the trajectory, respectively.

(i) Map origin and destination points to the corresponding tile: For each

trajectory 7%), take the origin point (x(()k), y(()k), ték) ) and determine which
tile Sorigin € S contains the spatial location (x(()k), yék)). Analogously, take the

destination point (x,(,k), yﬁlk), t,(qk)) and determine which tile Sqestination € S

contains the spatial location (x,(lk), yi,k)). Sorigin aNd Sdestination are the origin

and destination tiles of the trajectory 7%,

(iii) Count transitions between origin and destination tiles: Create a flow matrix
M € R™" where all elements have value 0. For each trajectory T'¥),
increment the value of the element m; ; of the matrix if 7 and j are the origin

+=1.

Sdestination

and destination tiles of 7%, i.e., Msiin,

Note that while a mobility flow matrix can be derived from a collection of
individual mobility trajectories, the reverse is not possible. This is because the
flow matrix provides an aggregate view of movements between spatial units
without retaining any information about the temporal ordering, intermediate
locations, or individual-level trajectories. As a result, it lacks the granularity
needed to reconstruct complete trajectories, making it a one-way transformation
from detailed to aggregated data.

The mobility flow matrix derived from a given set of individual mobility
trajectories can vary significantly depending on the spatial tessellation employed.
In the case of regular tessellations, the size of the tiles further influences the
resulting flow patterns (see Figure 2.9). As such, the choice of tessellation
(and, where applicable, its resolution) is a critical methodological decision. It
directly affects the structure of the resulting flow matrix and, consequently, the
interpretation of any analytical results derived from it.
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2000m grid 1000m grid

Figure 2.9 IMAGE OF A SET OF INDIVIDUAL TRAJECTORIES (on the
left) AND THE CORRESPONDING MOBILITY FLOWS varying the type of
tessellation.

2.3 Homeworks and exercises

»? EXERCISE 2.1

Why does longitude range from 0° to 180°, while latitude only ranges
from 0° to 90°? Consider this question by reflecting on the geometric
meaning of longitude and latitude on the Earth's surface, what these angular
measurements represent, and how they are defined. Once you have formed
your explanation, compare it with the answers provided by large language
models such as ChatGPT and Google Gemini.



2.3 Homeworks and exercises

»? EXERCISE 2.2

Compute the distance from your home to the five largest capitals in the
European Union (EU), using both the geodesic distance and the Euclidean
distance. The website https://www.itilog.com/ provides the latitude and
longitude of any address. Create a bar chart comparing geodesic and Eu-
clidean distances for each capital. Are the geodesic and Euclidean distances
coherent?

»? EXERCISE 2.3

What is the most “central” capital in the EU, i.e., the one with the lowest
average geodesic distance to the other EU capitals? Create a bar chart with
the average distance for each EU capital, sorted in increasing order Repeat
the exercise for at least another continent

»? EXERCISE 2.4

Ask ChatGPT to find at least three examples of regular or irregular tessella-
tions in natural or artificial ecosystems (other than those presented in this
chapter). Why do the tiles have precisely that shape?

»? EXERCISE 2.5

Visualize your own trajectory. Track your movements for an entire week,
tracking all points of interest you visited (e.g., home, friends' home, uni-
versity, supermarket, gym, bars). Use https://www.itilog.com/ to detect
the latitude and longitude of places based on their address. Visualise your
trajectory using any package in Python.

25
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»? EXERCISE 2.6

What is the theoretical upper bound of the mapping error of a trajectory of
n points into a square tessellation where each side of the tile is s meters?
And what is this upper bound for a hexagonal or triangular tessellation with
a side of s meters? Use a real trajectory dataset and map the trajectory
into a tessellation. Compute the error. Is it lower than the theoretical upper
bound?

»? EXERCISE 2.7

Compute the probability of a randomly generated latitude and longitude
pair falling on the land. Generate n=10k points randomly Select only the
points that fall on the land and compute the probability that a random point
falls into the land. Repeat this experiment 100 times and make a box plot
showing the distribution of probabilities. What is the mean and the standard
deviation of these probabilities? Does the average probability decrease if
you execute 1000 experiments?

»? EXERCISE 2.8

To plan a reduction of the environmental impact of the Champions League,
the Union of European Football Associations (UEFA) aims to compute the
total distance travelled by all clubs during the matches in the first round of
the competition. Take the position of the city of each club qualified for the
Champions League this year Compute the sum of the distances travelled by
each club to play its matches Make a bar chart to show the total distance
travelled by each club What's the club that travels the most? And the club
travelling the least? Compute and visualise the mobility flows generated by
the first round of the competition
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2.4 Advances Topics

2.4.1 Derivation of the geodesic distance from the haversine formula

In 1835, Sir James Inman introduced the haversine function in his book
“Navigation and Nautical Astronomy for the Use of British Seamen” (Inman,
2012; Shylaja, 2015). This function was specifically designed for calculating
distances on the surface of a sphere (assuming the Earth was such).

The distance d between two any points p; and p; along a great circle of a
sphere is given by d = r6, where 6 is the central angle between p; and p; on the
sphere, and r is the radius of the sphere (the mean radius of Earth is r ~ 6371
km). The haversine formula allows the haversine of 6 to be computed directly
from the latitude (represented by ¢) and longitude (represented by A1) of p; and

Pj:

hav (?) = hav(A@) + cos ¢ cos gprhav(AQ) 2.4)

where:

e ¢ and ¢, are the latitudes of p; and p, in radians;
A1 and A are the longitudes of p; and p, in radians;
A¢ = ¢ — ¢ is the difference in latitudes;

A = A; — A, is the difference in longitudes;

hav(®) = sin? (%) is the haversine function.

Substituting the haversine function into Equation (2.4) gives:

o (d (A o (A4
51n2 (5) = s1n2 (7¢) + Ccos ¢] Cos ¢2szn2 (7)

To isolate sin® (%), take the square root of both sides:

sin (%) = \/sz'n2 (%) +COS ¢ COS P sin? (%)

To eliminate sin from the left-hand side, apply the function arcsin (the inverse
of sin) to both sides:

d arcsin 4 [sin? A¢ +COSs ¢ COS Prsin? A4
— = sin? [ = sin? | =
2r 2 e 2

Finally, multiply both sides of the equation by 2r to solve for the distance d:
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A Ad
d = 2r arcsin \/sin2 (7¢) + COS ¢ cOS Posin? (7)

(2.5)
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