

Mobility Patterns

Consiglio Nazionale delle Ricerche

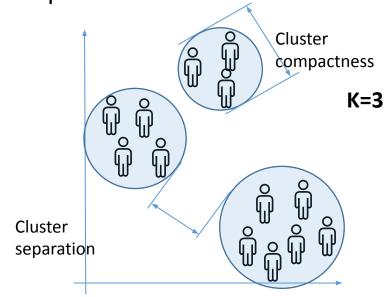
Content of this lesson

- Global patterns: Clustering
 - Trajectory distances
 - Trajectory clustering
- Local patterns
 - Flocks, Convoys & Swarms
 - Moving clusters
 - o T-Patterns

Global Patterns

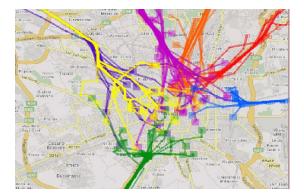
Clustering (sample K-means family)

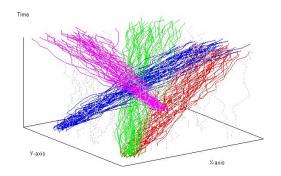
• Find k subgroups that form compact and well-separated clusters



Trajectory clustering

• Trajectories are grouped based on similarity



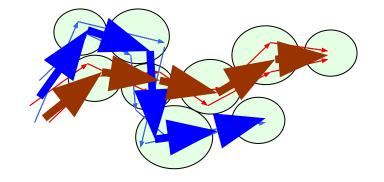


Nanni, Pedreschi. Time-focused clustering of trajectories of moving objects. J. of Intelligent Information Systems, 2006

Rinzivillo, Pedreschi, Nanni, Giannotti, Andrienko, Andrienko. Visually-driven analysis of movement data by progressive clustering. J. of Information Visualization, 2008

Trajectory Clustering

- Questions:
 - Which distance between trajectories?
 - Which kind of clustering?
 - What is a cluster 'mean' in our case?
 - A representative trajectory?



Trajectory Distances

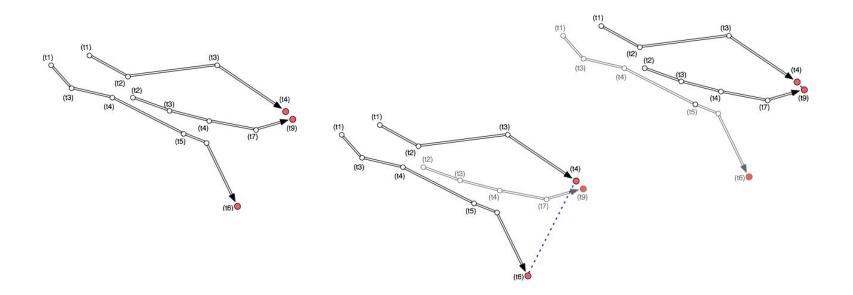
Families of Trajectory Distances

- Trajectory as **set** of points
 - Single-point approaches
 - Hausdorff distance
- Trajectory as **sequence** of points
 - Fréchet distance
 - Time series distances: Euclidean, DTW & LCSS
- Trajectory as time-stamped sequence of points
 - Average Euclidean distance

Reduce Trajectories to single points Common Destination

Select last point *Plast* for each trajectory

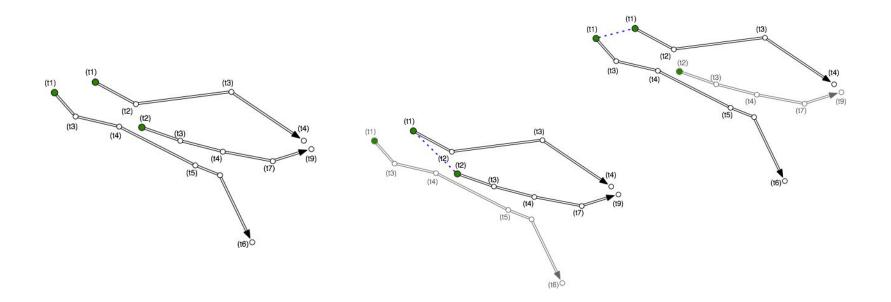
 \Box D(T,T') = Euclidean(Plast, P'last)



Reduce Trajectories to single points Common Origin

Select first point *Pfirst* for each trajectory

 \Box D(T,T') = Euclidean(Pfirst, P'first)



Trajectory as set of points Hausdorff distance

Α

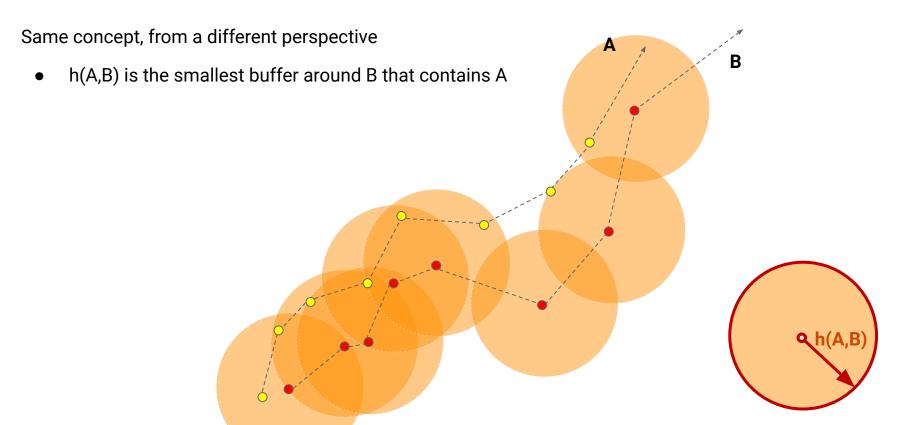
h(A,B)

В

Start from an example: distance between A and B

- Find minimum distance of each $a \in A$ from B
- Return the worst case

Trajectory as set of points Hausdorff distance

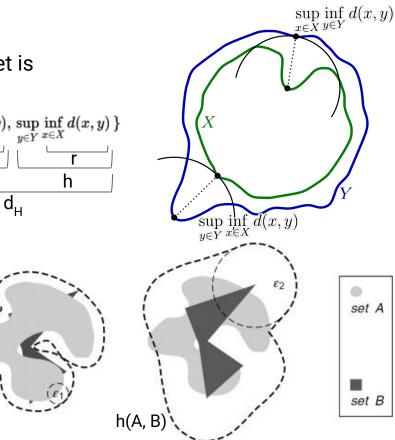


Trajectory as set of points Hausdorff distance

h

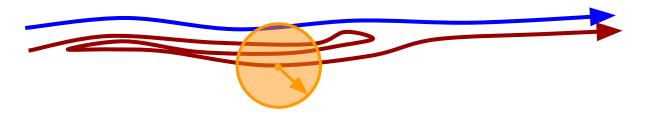
h(B, A

- Intuition: two sets are close if every point of either set is close to some point of the other set
- Formally, given sets A and B: $d_H(X,Y) = \max\{\sup_{x \in X} \inf_{y \in Y} d(x,y), \sup_{y \in Y} \inf_{x \in X} d(x,y)\}$
 - \circ r (x, B) = inf {d(x, b) : b ∈ B}
 - $h(A, B) = \sup\{r(a, B) : a ∈ A\}$
 - $\circ \quad \mathsf{d}_{\mathsf{H}}(\mathsf{A},\mathsf{B}) = \max \left\{ \, \mathsf{h}(\mathsf{A},\mathsf{B}), \, \mathsf{h}(\mathsf{B},\mathsf{A}) \, \right\}$
- Equivalently:
 - h(A, B) = minimum buffer radius around
 B that fully contains A
 - \circ d_H(A, B) = symmetric version of h()



Trajectory as sequence of points From Hausdorff to Fréchet distance

- Applied to trajectories, sometimes Hausdorff distance yields counter-intuitive results
- How far are these?



- Reasonable in a set-oriented view
- Wrong in terms of moving objects

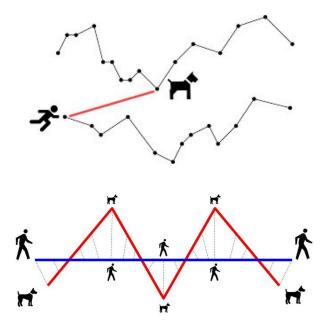
Trajectory as sequence of points Fréchet distance

- Intuition: equivalent of Dynamic Time Warping on continuous curves
- Formally:

$$F(A,B) = \inf_{lpha,eta} \max_{t\in [0,1]} \; iggl\{ d \Big(A(lpha(t)), \, B(eta(t)) \Big) \Big\}$$

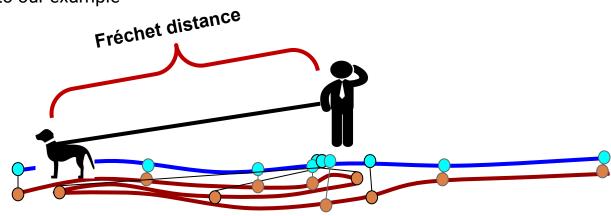
 α and β are non-decreasing mappings from [0,1] to the points along A and B in forward order

- Also described as "minimum leash length":
 - What is the minimum length of a leash needed to stroll around the dog, given the owner's and the dog's trajectories?



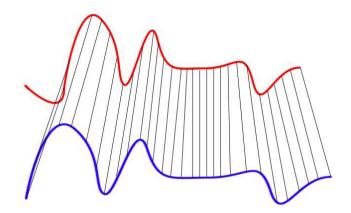
Trajectory as sequence of points Fréchet distance

• Back to our example



Trajectory as sequence of points Time series distances

- Just replace "difference of two values" with "spatial distance of two points"
- Examples:
 - Dynamic Time Warping
 - Very similar to Fréchet!
 - Edit Distance with Real values
 - Similar to DTW, but can remove points

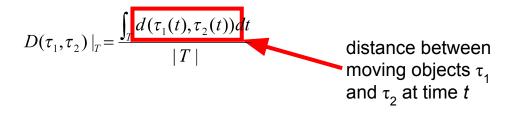


Dynamic Time Warping Matching

• IMPORTANT: most methods in this class assume constant sampling rates

Trajectory as time-stamped sequence of points Average Euclidean distance

- The trajectory is seen as a continuous spatio-temporal curve
- Positions between input points (the GPS fixes) linearly interpolated



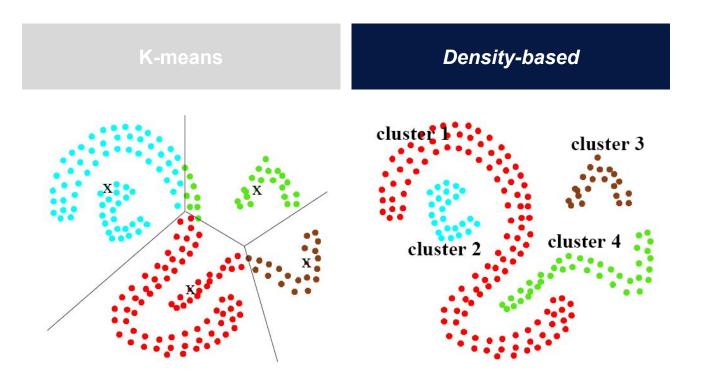
- "Synchronized" behaviour distance
 - Similar objects = almost always in the same place at the same time
- Computed on the whole trajectory

Clustering Algorithms

Which kind of clustering method?

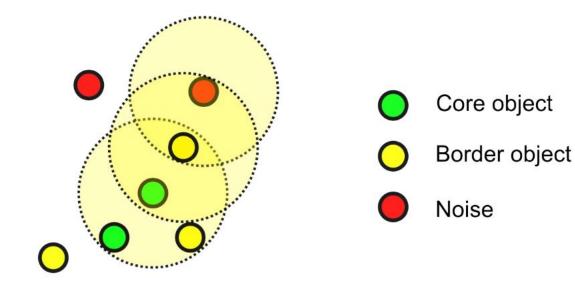
- In principle, any distance-based algorithm
- General requirements:
 - Non-spherical clusters should be allowed
 - E.g.: A traffic jam along a road = "snake-shaped" cluster
 - Tolerance to noise
 - Low computational cost
 - Applicability to complex, possibly non-vectorial data
- A suitable candidate: Density-based clustering
 - OPTICS (Ankerst et al., 1999)
 - Evolution of standard DBSCAN

Density Based Clustering A refresher

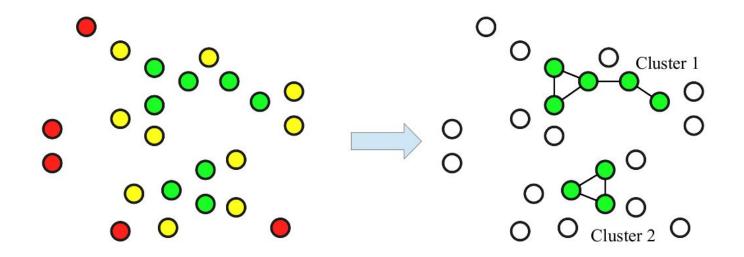


Step 1: label points as core (dense), border and noise

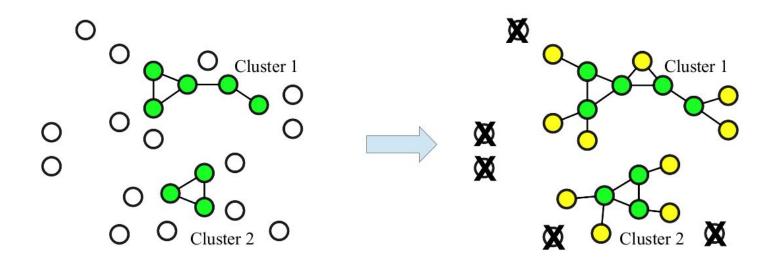
 Based on thresholds R (radius of neighborhood) and min_pts (min number of neighbors)

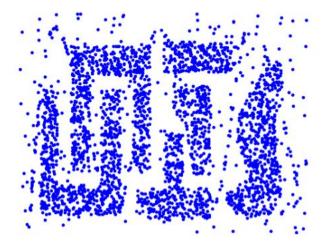


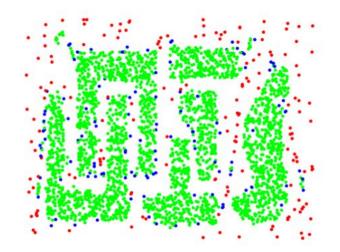
Step 2: connect core objects that are neighbors, and put them in the same cluster



Step 3: associate border objects to (one of) their core(s), and remove noise

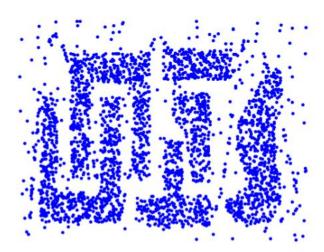


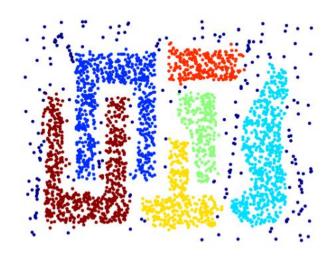




Original Points

Point types: core, border and noise





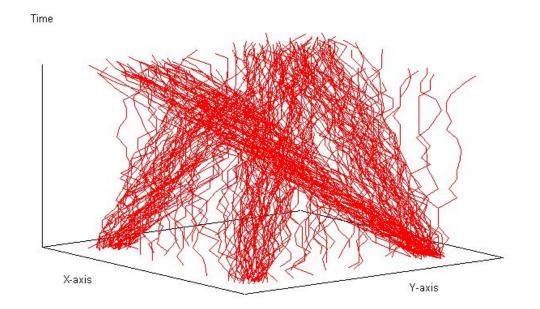
Original Points

Clusters

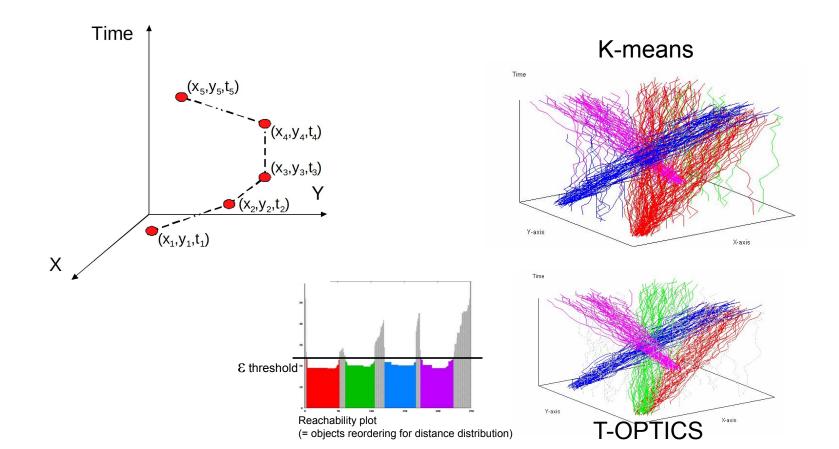
- Resistant to Noise
- Can handle clusters of different shapes and sizes

A sample dataset

• A set of trajectories forming 4 clusters + noise (synthetic)



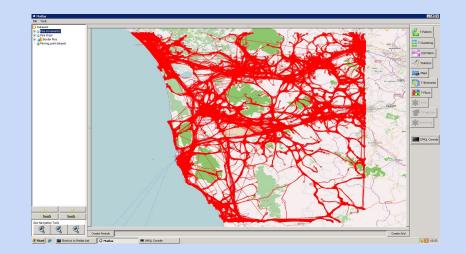
T-OPTICS vs. K-means



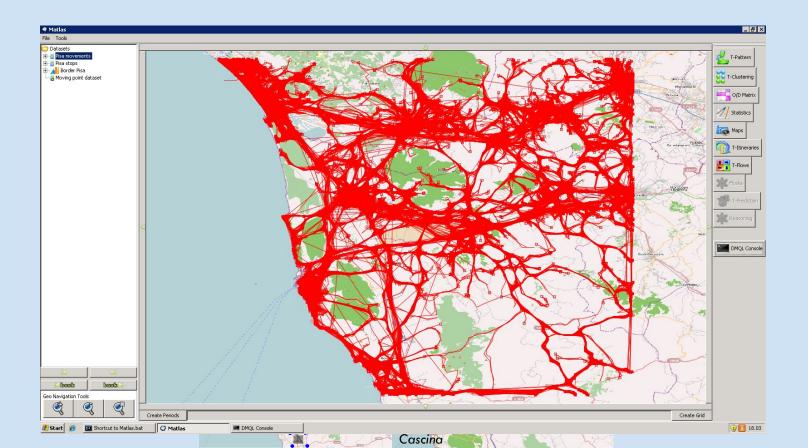
INTERVALLO

What's the source of traffic in Pisa?

Trajectory clustering at work



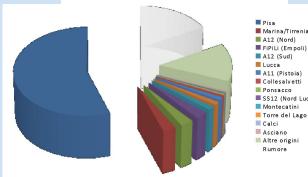
Access patterns using T-clustering

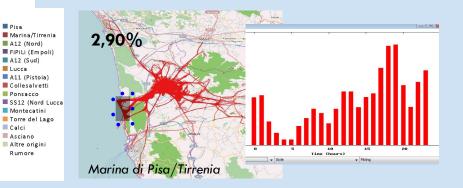


Characterizing the access patterns: origin & time

Rumore

Origin distribution

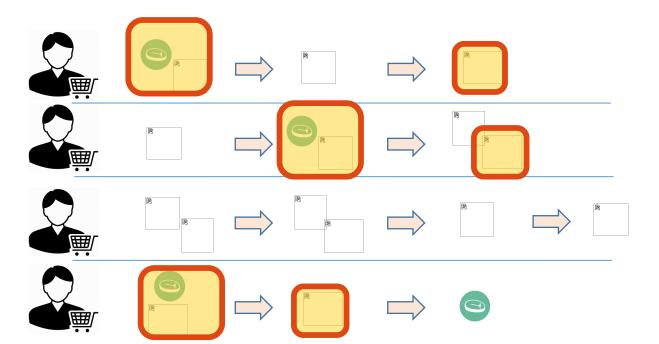




Local Trajectory Patterns

Frequent patterns in sequences

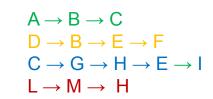
- Frequent sequences (a.k.a. Sequential patterns)
- Input: sequences of events (or of groups)



From trajectories to sequential patterns: the easy way

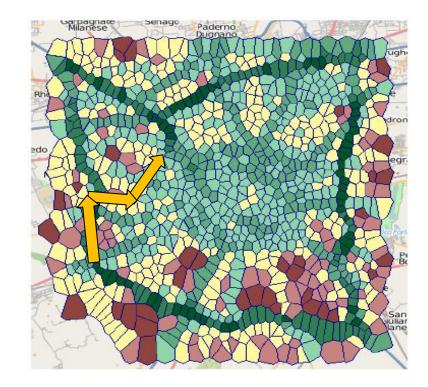
- Map each trajectory to a sequence of areas
 - Predefined or driven by data

0	Ι	F	Р	Q
Α	В	E	Н	М
N	D	С	G	L

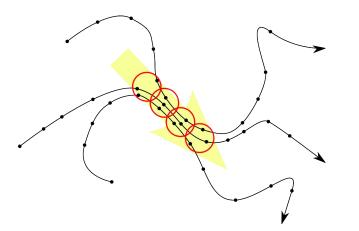


From trajectories to sequential patterns: the easy way

 A "Trajectory frequent pattern" can be defined as sequential pattern over traversed areas

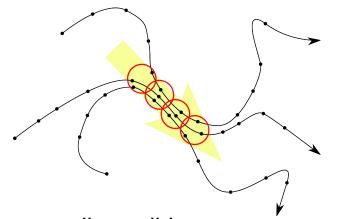


Moving Trajectory Flocks



 Group of objects that move together (close to each other) for a time interval

Moving Trajectory Flocks



 Group of objects that move together (close to each other) for a time interval

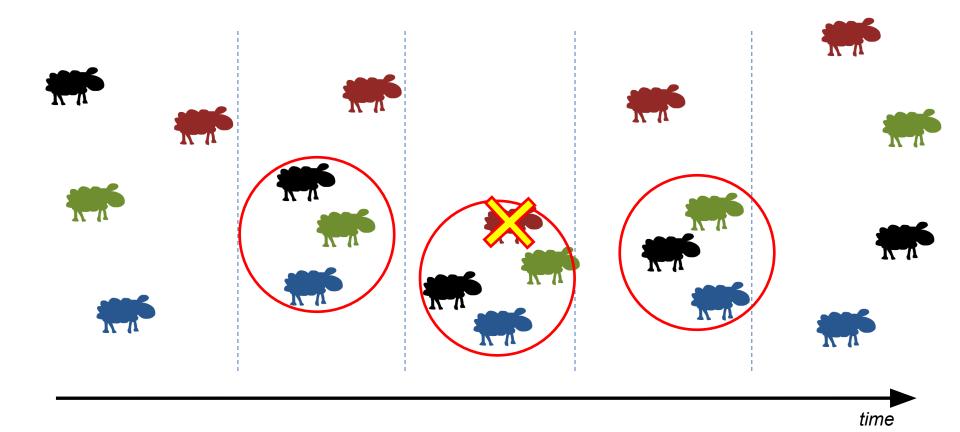
• Discover all possible:

- sets of objects O, with |O| > min_size and
- time intervals T, with |T| > min_duration

• such that for all timestamps t \in T the points in O|t are contained in a circle of radius *r*

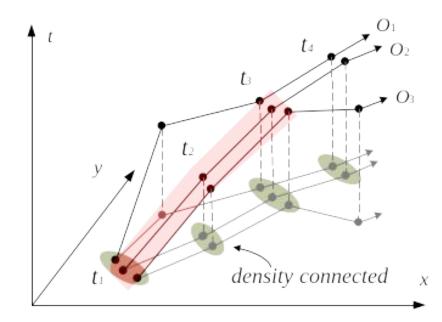
M. Wachowicz, R. Ong, C. Renso, M. Nanni: Finding moving flock patterns among pedestrians through collective coherence. IJGIS 25(11): 1849-1864 (2011)

Moving Trajectory Flocks



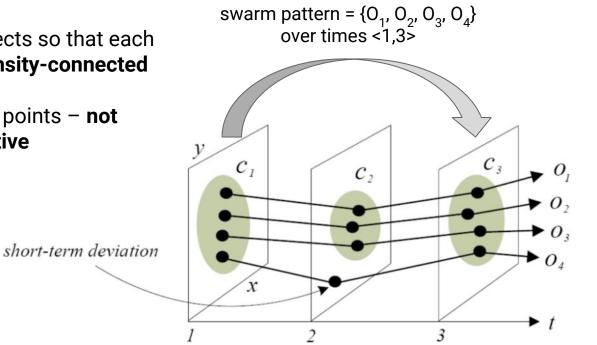
From Flocks to Convoys

- Given radius r, size m, and time threshold k
 - find all groups of objects so that each group consists of density-connected objects w.r.t. r and m
 - during at least k consecutive time points
- Basically replace circles with DBSCAN clusters



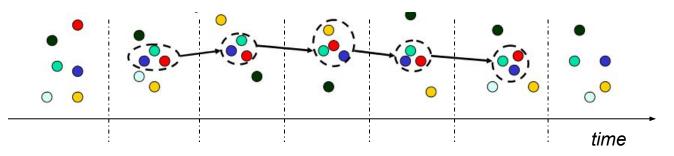
From Convoys to Swarms

- Given radius r, size m, and time threshold k
 - find all groups of objects so that each group consists of **density-connected objects** w.r.t. r and m
 - during at least k time points not necessarily consecutive



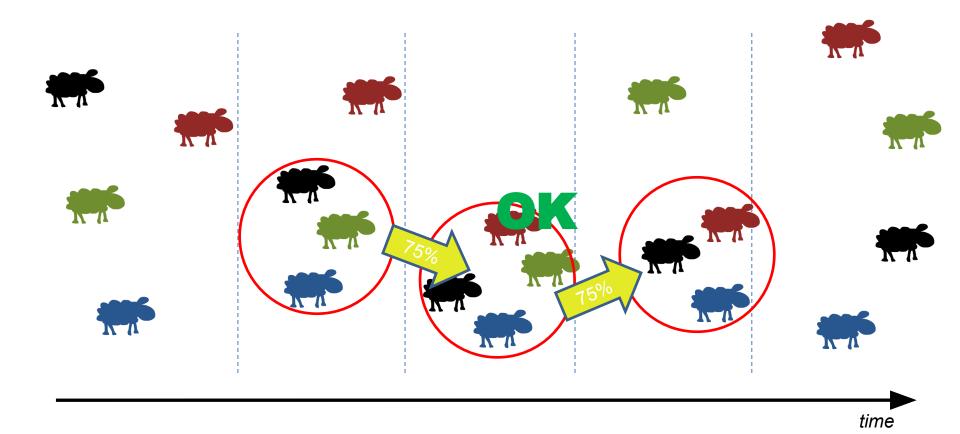
Moving Clusters

 A moving cluster is a set of objects that move close to each other for a long time interval



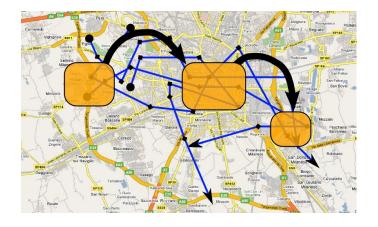
- Formal Definition [Kalnis et al., SSTD'05]:
 - A moving cluster is a sequence of (snapshot) clusters c1, c2, ...,
 ck such that for each timestamp i (1 ≤ i < k): Jaccard(c_i, c_{i+1}) ≥ θ
 - . Jaccard(c_i, c_{i+1}) = $|c_i \cap c_{i+1}| / |c_i \cup c_{i+1}|$
 - $\bullet \quad 0 < \theta \le 1$
 - Clustering computed with density-based method (DBSCAN)

Moving Clusters



T-Patterns

 A sequence of visited regions, frequently visited in the specified order with similar transition times

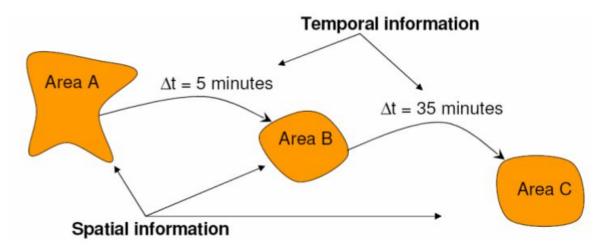


$$A_0 \xrightarrow{t_1} A_1 \xrightarrow{t_2} \dots A_{n-1} \xrightarrow{t_n} A_n$$

 t_i = transition time, A_i = spatial region

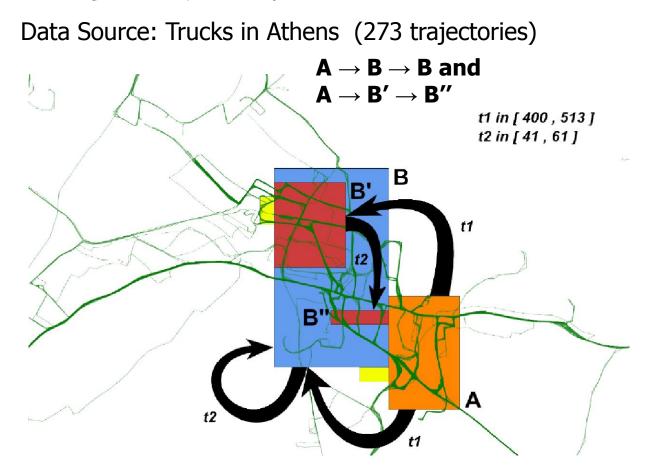
Giannotti, Nanni, Pedreschi, Pinelli. Trajectory pattern mining. Proc. ACM SIGKDD 2007

T-Patterns



- Key features
 - Includes typical transition times in the output
 - Areas are automatically detected not "the easy way"

Sample Trajectory Pattern

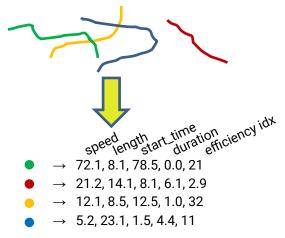


A quick peek into Deep Learning

Deep Learning approaches to Trajectory Clustering

Traditional approach

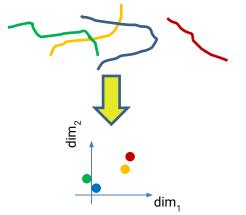
• Preprocess the data to obtain features



• Clustering over features

Deep learning approach

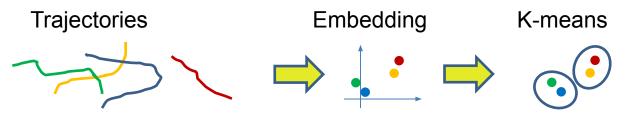
• Learning a latent representation (or embeddings)



• Clustering over embeddings

Deep Learning approaches to Trajectory Clustering

- Sample approach: DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis
- Basic idea:

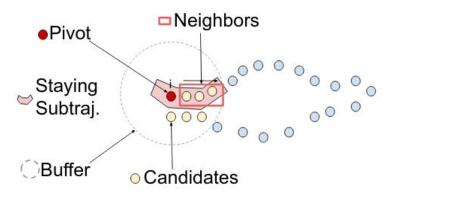


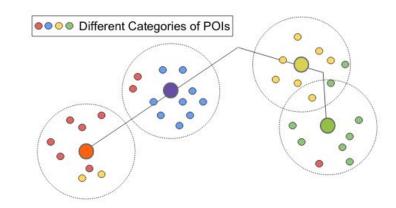
- Integrate the clustering step in the learning of embeddings
- Three steps:
 - Enrich trajectories with context
 - LSTM-based embedding of trajectories
 - Clustering on embeddings

M. Yue, Y. Li, H. Yang, R. Ahuja, Y. Chiang and C. Shahabi, "DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis," 2019 IEEE International Conference on Big Data (Big Data), 2019, pp. 988-997

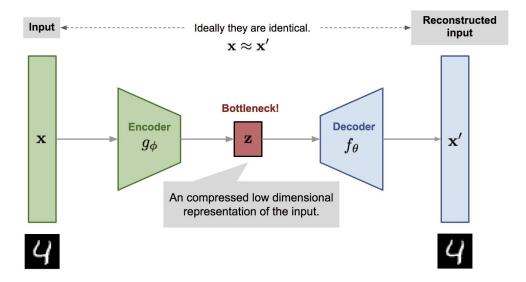
- Enrich trajectories with context
 - Identify stay areas = segment of trajectory where there is no movement, basically a stop
 - Create a buffer around the area
 - Select all points-of-interest located there (hotels, shops, etc.)
 - Compute a feature vector, one feature per Pol category
- Output

• Traj = < (x,y,[
$$f_1,..., f_n$$
]), (x',y',[$f_1',..., f_n$]), ... >



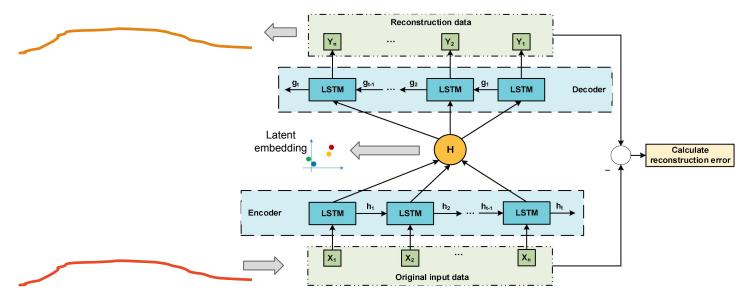


- LSTM-based embedding of trajectories
 - Apply a encoder-decoder schema to the enriched trajectories
 - Use LSTM as basic mechanism



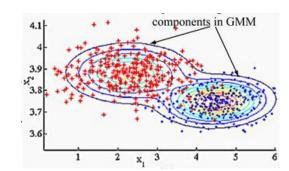
• Objective: minimize the difference between the encoder input and the decoder output

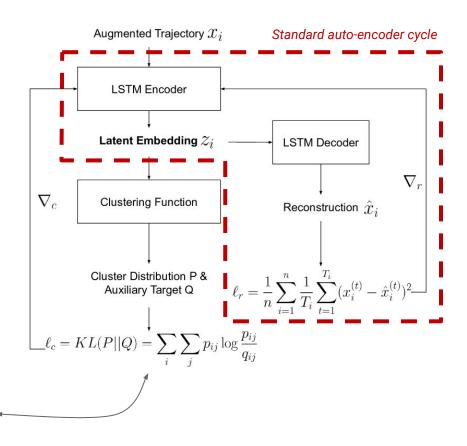
- LSTM-based embedding of trajectories
 - Apply a encoder-decoder schema to the enriched trajectories
 - Use LSTM as basic mechanism



• Objective: minimize the difference between the encoder input and the decoder output

- Clustering on embeddings
- Clustering error becomes one term of the overall loss function
- P & Q = points distribution
 - P = real data (embedded)
 - Q = clusters (Student t-distribution around centers)





Homeworks

Food for thought

- Hausdorff: let interpret trajectory T=<p₁, p₂, ..., p_n> as a polyline, thus containing also the segments (= infinite sets of points) between each pair p_i, p_{i+1}. How can you compute the Hausdorff distance between two trajectories?
- Local patterns in mobility: can you find some examples in urban mobility where local patterns might be useful? Frequent sequences? Flocks?
- Local or global: we discover that 90% of vehicles in a city pass through the same road segment (maybe a bridge). Is that a local or global pattern? Is there really a difference?
- The thin line between clusters and flows: if you take all the trajectories that form a specific flow (same origin and same destination), how many clusters do you expect to find? What is the difference between a flow and a (trajectory) cluster?

to study for the exam

Material

- [paper] Spatio-Temporal Trajectory Similarity Measures: A Comprehensive Survey and Quantitative Study, Danlei Hu et al., arXiv: <u>https://arxiv.org/abs/2303.05012v2</u>
 - Sections 1, 2, 3 (only the measures seen in these slides)
- [paper] Computing longest duration flocks in trajectory data, Joachim Gudmundsson and Marc van Kreveld (2006), GIS '06, <u>https://dl.acm.org/doi/10.1145/1183471.1183479</u>
 - Section 1 (definitions)
- [paper] Discovery of Convoys in Trajectory Databases, Hoyoung Jeung et al., VLDB 2008, <u>https://arxiv.org/abs/1002.0963v1</u>
 - Section 3 (definitions)

to study for the exam

Material

- [paper] On Discovering Moving Clusters in Spatio-temporal Data, Kalnis, P., Mamoulis, N., Bakiras, S. SSTD 2005. <u>https://doi.org/10.1007/11535331_21</u>
 Sections 1, 2, 4.1 (definitions and basic algorithm)
- [paper] Trajectory pattern mining, Giannotti, Nanni, Pedreschi, Pinelli. KDD 2007. <u>https://dl.acm.org/doi/10.1145/1281192.1281230</u>
 - Section 3 (definitions)
- [paper] DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis, M. Yue et al. Big Data 2019. <u>https://arxiv.org/abs/2003.0135</u>
 Section II (focus on definitions and overall approach, not details)