

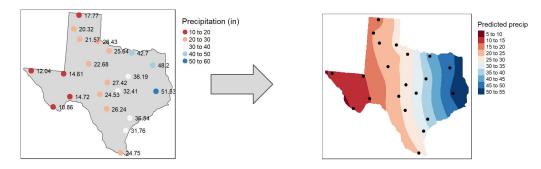
03bis Spatial Data Analysis

Todays contents

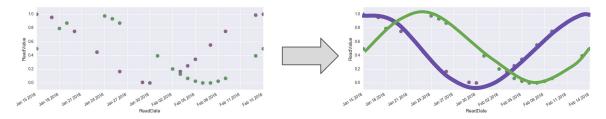
- Spatial interpolation
 - Thiessen polygons
 - o IDW
 - Kriging
- Spatial regression
- Spatial associations: co-location patterns
- Spatial trends

Spatial interpolation: definition

Given the value of an attribute for a set of spatial points,
 Compute the value of the attribute for all the points in space

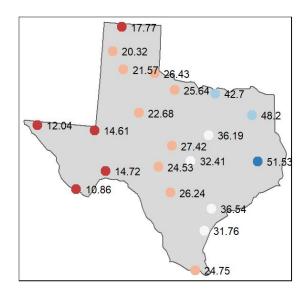


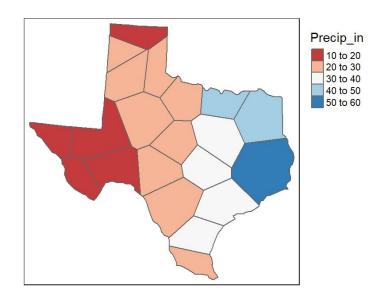
Analogy with time series: given a subset of points, reconstruct the whole time series



Thiessen polygons or Proximity interpolation

- The value of a point is the same as the closest input sample
 - Each point is associated to its Nearest Neighbor
 - That yields a Voronoi tessellation around each input point





Inverse Distance Weighted (IDW) interpolation

- The value of a point is computed as a weighted average of the other points
- Weights are defined as inverse distance:

$$\hat{Z}_j = rac{\sum_i Z_i/d_{ij}^n}{\sum_i 1/d_{ij}^n}$$

Z_j = value at location "j" d_{ij} = distance between locations n = power (input parameter)

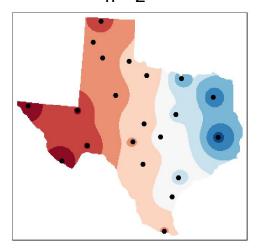
- Basic features:
 - Closer points influence more the value estimate
 - \circ All estimates are between min Z_i and max Z_i

Inverse Distance Weighted (IDW) interpolation

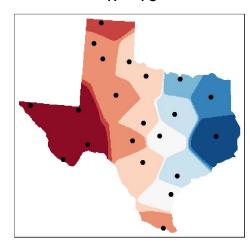
- The effect of *n*
 - The higher, the more emphasis to closer points

$$\hat{Z}_j = rac{\sum_i Z_i/d_{ij}^n}{\sum_i 1/d_{ij}^n}$$

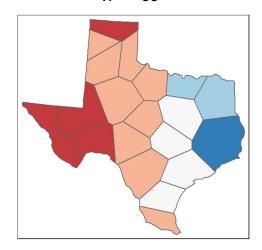
$$n = 2$$



n = 15



 $n \rightarrow \infty$



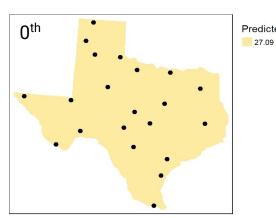
Surface interpolation

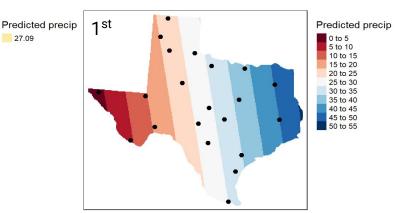
- Basic statistical approach: fit an equation expressing Z_i as function of its coordinates
 - The "trend surface"

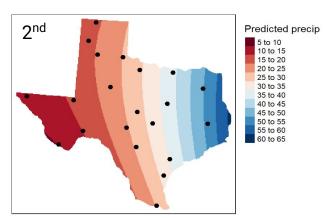
• 0th order trend surface: Z = const.

• 1st order trend surface: Z = aX + bY + const.

• 2^{nd} order trend surface: $Z = aX^2 + bY^2 + cXY + dX + eY + const.$





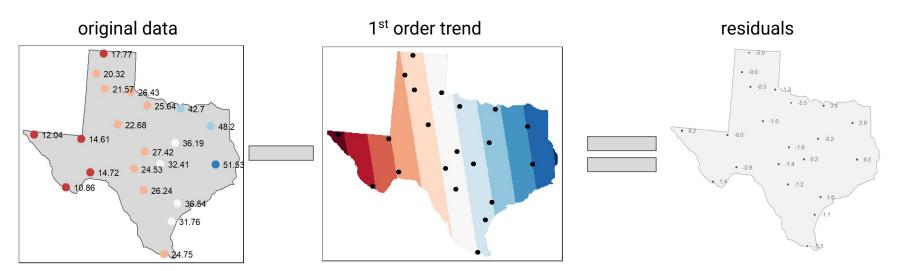


Spatial InterpolationKriging

- As for IDW, the value of Z_i is estimated as weighted average of its neighbors
 - The difference is in how to compute weights...
- Kriging assigns to each point a different set of weights, based on local conditions
- It is a 4-step process:
 - de-trend (if needed)
 - experimental variogram
 - variogram model (inferred from experimental values)
 - interpolation

Kriging - step 1: de-trend

- An assumption of kriging is that data should have no trend (= constant mean)
- We can apply any trend model seen before and "subtract" it from data



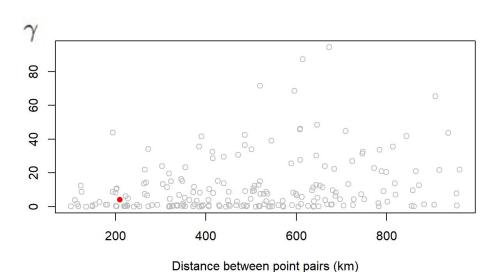
- From now on, we work on residuals
 - At the end, Prediction = Trend + Predicted residuals

Kriging - step 2: experimental (semi)variogram

• For each pair of points Z_1, Z_2 in the dataset compute (semi)variance γ :

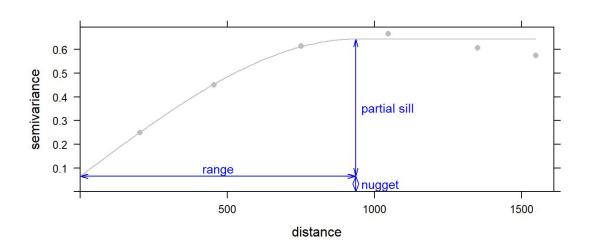
$$\gamma = \frac{(Z_2 - Z_1)^2}{2}$$

- Collecting all pairs < distance(Z_1, Z_2), γ > we obtain the experimental (semi)variogram
 - Usually simplified by binning and computing average γ in each bin



Kriging - step 3: (semi)variogram model

- The empirical variogram is modelled by a simple function $\gamma(h)$ (h = distance)
 - Most variograms have a general common shape



Several variants exist, main ones: Gaussian, Linear, Spherical

Kriging - step 4: interpolation

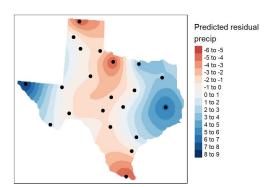
- Key question: how to compute the weights between a point and its neighbors?
- Complex approach:
 - based on solving a set of "n" equations, if we have "n" neighbors
 - Example for n=3, computing the value for point "0" from neighbors "1", "2", "3"

$$W_1\gamma(h_{11}) + W_2\gamma(h_{12}) + W_3\gamma(h_{13}) + \lambda = \gamma(h_{10})$$
 $W_1\gamma(h_{21}) + W_2\gamma(h_{22}) + W_3\gamma(h_{23}) + \lambda = \gamma(h_{20})$
 h_{ij} = distance between points "i" and "j" $W_1\gamma(h_{31}) + W_2\gamma(h_{32}) + W_3\gamma(h_{33}) + \lambda = \gamma(h_{30})$

• Then, the (residual) for point "0" will be:

$$z_0 = z_1 W_1 + z_2 W_2 + z_3 W_3$$

 $W_1 + W_2 + W_3 + 0 = 1.0$



Kriging - step 4: interpolation

Predicted residuals and the trend are summed up:

Kriging: Remarks

- Most of the interpolation methods studied today have a common schema: compute a weighted average of neighbors
- They only differ by how the weights are computed:
 - Thiessen polygons: w=1 for the NN, w=0 for the others
 - IDW: 1/distance (normalized)
 - Kriging: complex system based on local variance
- Many other methods exist, mainly playing on the weights
 - e.g. Minxing Zhang, Dazhou Yu, Yun Li, and Liang Zhao. Deep geometric neural network for spatial interpolation. In SIGSPATIAL 2022. https://doi.org/10.1145/3557915.3561008
 - Machine learning approach: learns to estimate weights through an MLP based on distance and direction of neighboring points

Spatial regression

Regression vs. Interpolation

- Generalization of objectives
- The (non-spatial) attribute values of points are predicted based on
 - Predictive attributes (regressors) of the point
 - o Predictive attributes of the neighbors
- The spatial component is used to link points and share their information
 - Interpolation, instead, makes predictions directly from location (the coordinates)

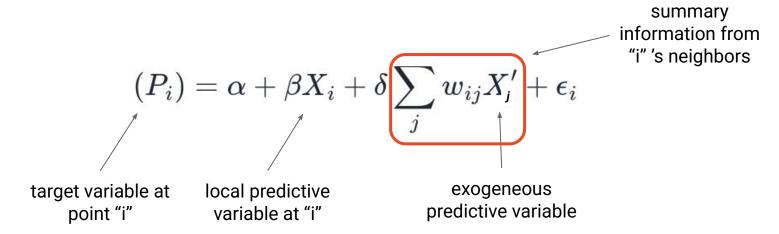
Extend common regression tasks:

$$(P_i) = \alpha + \beta X_i + \epsilon_i$$
 $(P_i) = \alpha + \beta X_i + \delta \sum_j w_{ij} X_j' + \epsilon_i$ (Standard regression model)

Spatial Regression

Spatially lagged exogenous regressors

- "Spatial lag" of variable X w.r.t. point "i": (weighted) average of X over "i"s neighbors
 - Basically, a spatial interpolation of X

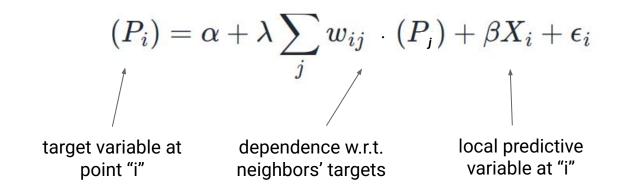


Weights w_{ii} are a parameter, as in interpolation methods

Spatial Regression

Spatially lagged endogenous regressors

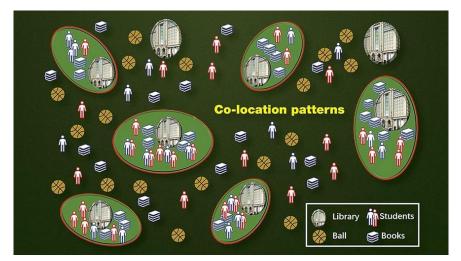
- Integrate the spatial dependence among target values of neighboring points
 - Basically, a spatial interpolation component over the target variable



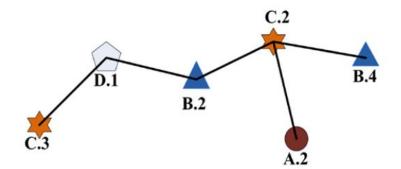
- IMPORTANT: it means predictions are inter-related, it is not a recursive function
 - We cannot apply simple interpolation → more complex methods are needed (omitted here)

Spatial associations: co-location patterns

- Similar to frequent pattern analysis
 - "find sets of items that occur together in several transactions"
- Items are replaced by spatial points
 - Issue: what is a "transaction"?
 - Answer: any set of points that are close to each other
- The concept of frequency needs to be revisited
 - a point/item might participate to multiple instances of the same pattern

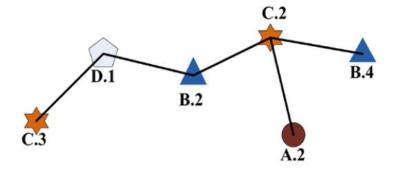


- Given
 - A set of **features (types)** $F = \{f_1, ..., f_m\}$
 - E.g. F = { restaurant, bar, hotel, barber, supermarket }
 - \circ A set of **spatial instances O** = {o₁, ..., o_n} of features F
 - E.g.: O = { restaurant#1, bar#1, bar#2, bar#3, hotel#1, barber#1, barber#2, supermarket#1, supermarket#2}
 - A neighbor relation R between pairs of instances
 - I.e. $R(o_1,o_2) \Leftrightarrow distance(o_1,o_2) < threshold (or equivalent)$



```
F = {circle, triangle, pentagon, star}
O = {A.2, C.2, C.3, ..., D.1}
R(C.3, D.1) = True
R(D.1, B.2) = True
R(C.3, B.2) = False
```

- Definitions
 - A co-location pattern CL = $\{f_1, ..., f_{\nu}\}$ is a subset of features, i.e. CL \subseteq F
 - The aim is to find those where the features appear together very often
 - An **instance I** = $\{o_1, ..., o_k\}$ of pattern CL is a subset of O (namely, I \subseteq O) such that
 - for each feature $f \in CL$ there is exactly one instance $o \in I$ of type f, and viceversa
 - I forms a clique w.r.t. R, i.e. $o_1, o_2 \in I \Rightarrow R(o_1, o_2)$



Example:

- CL = {triangle, star}
- $I = \{B.2, C.2\} \text{ or } \{B.4, C.2\}$

 $I = \{B.2, C.3\}$ is not an instance $I = \{C.3, D.1\}$ is not an instance

- Pattern quality measures
 - **Participation Ratio** of a feature within a pattern

$$PR(Cl, f_i) = \frac{|\pi_{f_i}(table_instance(Cl))|}{|table_instance(\{f_i\})|}$$

Participation Index of a pattern

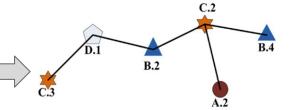
how many different instances of f, appear in the set of instances of CI

how many different instances of f are in the whole dataset

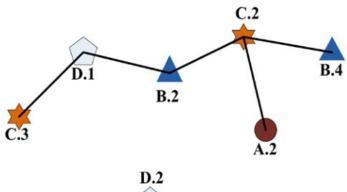
$$PI(Cl) = \min_{i=1}^{k} \left\{ PR(Cl, f_i) \right\}$$

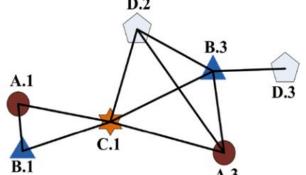
Example:

- PR({B,C}, B) = 2 / 2
 PR({B,C}, C) = 1 / 2
 PI({B,C}) = 1 / 2



A larger example





	A B 1	A C 1 1	A D 3 2
2	$\frac{3}{2/3} \frac{3}{(2/4)}$	$\begin{array}{ccc} 2 & 2 \\ 3 & 1 \\ \hline 3/3 & (2/3) \end{array}$	1/3 (1/3)
	$\frac{PI(\{\dot{\mathbf{A}},\mathbf{B}\})}{\begin{array}{ccc} \mathbf{B} & \mathbf{C} \\ \hline 1 & 1 \\ \hline \end{array}$	B D 2 1	C D 1 2
	2 2 3 1 4 2 4/4 (2/3)	3 2 3 3 2/4) 3/3	$\frac{3}{2/3}$ $\frac{1}{(2/3)}$

S	A	В	C	A	В	D	A	C	D
ze	1	1	1	3	3	2	3	1	2
ယ်	$\frac{3}{2/3}$	<u>3</u> 2/4	(1/3)	1/3	(1/4)	1/3	1/3	(1/3)	1/3

S.	A	В	C	D
Ze	3	3	1	2
4	1/3	(1/4)	1/3	1/3

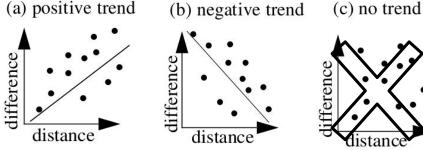
Spatial Trends Detection

Spatial Trends

- Idea: extend the concept of trends in time series
 - A sequence of points having a (non-spatial) attribute that changes following a trend
- The linear direction of time is replaced by many possible paths in space
- Focus on paths that
 - Start from a common location (e.g. the center of a city)
 - Have meaningful shapes (e.g. quasi-straight lines, not random walks)
 - Show a (statistically) significant trend

Sample path shapes allowed starlike variable starlike vertical starlike

Trends need an high correlation



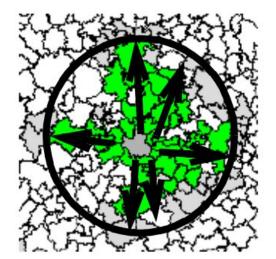
Spatial TrendsDefinition

- Let g be a neighborhood graph
 - o paths move from an object to one of its neighbors
- Let o be an object in g
 - this is the starting point of paths
- Let a be a subset of all non-spatial attributes
 - this is where we search for trends
- Let t be a type of function, e.g. linear or exponential, used for the regression
- The task of **Spatial Trend Detection** is to discover the set of all neighborhood paths in g starting from o and having a trend of type t in attributes a with a correlation of at least *min-conf*

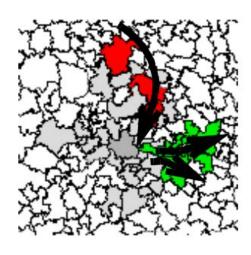
Spatial Trends

Examples

- Global negative trend of variable "average rent" from the Regensburg city center
- A few other single, local trends
 - Less surprising, yet correlation is higher



Global trend (min-conf:0.7)



Local trends (min-conf:0.9)

direction of decreasing attribute values

Food for thought

- Co-location Patterns: why not to use just the frequency of patterns?
 (Namely, number of instances of the colocation pattern)
- Spatial Trends: why not to just take the peak values maybe after a spatial interpolation, if needed? The other values around them will obviously follow a decreasing trend
- Spatial Classification [yes, it is outside the program of this course]: let say we
 have a training set of polygons of buildings, each associated to the class
 "public building" or "private building". Then we have a set of polygons of other
 buildings of unknown label, which we would like to classify as public or
 private. How would you do that?

to study for the exam

Material

- [book chapter] Introduction to geographic information systems, Kang-Tsung Chang, McGraw-Hill
 - Chapter 15: Spatial Interpolation
- [book chapter] Intro to GIS and Spatial Analysis, Manuel Gimond, online: https://mgimond.github.io/Spatial
 - Chapter 14: Spatial Interpolation
- [book chapter] Spatial data science for sustainable development, Henrikki Tenkanen, online: https://sustainability-gis.readthedocs.io/en/latest/
 - Tutorial 3: Spatial Regression in Python

to study for the exam

Material

- [paper] A MapReduce approach for spatial co-location pattern.
- mining via ordered-clique-growth, Yang-Wang-Wang, 2020 https://doi.org/10.1007/s10619-019-07278-7
 - Section 3.1: Co-location pattern mining
- [paper] Algorithms for Characterization and Trend Detection in Spatial Databases, Ester-Frommelt-Kriegel-Sander https://www.lri.fr/~sebag/Examens/Ester_KDD98.pdf
 - Section 4: Spatial Trend Detection
 - Have a quick look also to the rest of the paper