K-means Clustering

[ Partitional clustering approach

I Each cluster is associated with a (center point)
I Each point is assigned to the cluster with the closest
centroid

I Number of clusters, K, must be specified
1 The basic algorithm is very simple

: Select K points as the initial centroids.

: repeat

1
2
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

: until The centroids don’t change
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K-means Clustering - Details

I Initial centroids are often chosen randomly.
—  Clusters produced vary from one run to another.

I The centroid is (typically) the mean of the points in the
cluster.

I ‘Closeness’ is measured by Euclidean distance, cosine
similarity, correlation, etc.

I K-means will converge for common similarity measures
mentioned above.

I Most of the convergence happens in the first few
iterations.

—  Often the stopping condition is changed to ‘Until relatively few
points change clusters’

Complexity isO(n*K*1*d)

- n = number of points, K = number of clusters,
| = number of iterations, d = number of attributes

—
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Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Clusters vs. Voronoi diagrams
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Voroni cell = set of points that are closer
to a reference point than any other

http://www.cs.cornell.edu/home/chew/Delaunay.html
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Importance of Choosing Initial Centroids ...
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Importance of Choosing Initial Centroids ...
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Problems with Selecting Initial Points

[ If there are K ‘real’ clusters then the chance of selecting
one centroid from each cluster is small.

—  Chance is relatively small when K is large
—  |If clusters are the same size, n, then

p_ number of ways to select one centroid from each cluster K Inf K
B number of ways to select K centroids - (Kn)K KK

—  For example, if K= 10, then probability = 10!/10"™ = 0.00036

—  Sometimes the initial centroids will readjust themselves in
right’ way, and sometimes they don’t

—  Consider an example of five pairs of clusters
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10 Clusters Example
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10 Clusters Example
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10 Clusters Example
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10 Clusters Example
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Solutions to Initial Centroids Problem

[I Multiple runs
— Helps, but probability is not on your side

I Sample and use hierarchical clustering to
determine initial centroids

1 Select more than k initial centroids and then

select among these initial centroids . —

— Select most widely separated

I Postprocessing AR

I Bisecting K-means

— Not as susceptible to initialization issues
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Evaluating K-means Clusters

[J Most common measure is Sum of Squared Errors (SSE)
— For each point, the error is the distance to the nearest cluster
— To get SSE, we square these errors and sum them.

1.5

K
SSE=Y. D dist’(m, x)

i=1 xeC,

%[.2]

0.5

0.0

— X is a data point in cluster Cand m. is

=

the representative point for cluster C

011

— Given two clusters, we can choose the one with the smallest error

— One easy way to reduce SSE is to increase K, the number of
clusters

¢ A good clustering with smaller K can have a lower SSE than a poor
clustering with higher K
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Handling Empty Clusters

[1 Basic K-means algorithm can yield empty clusters

I Several strategies

— Choose a point and assign it to the cluster
* The point that contributes most to SSE
* A random point from the cluster with highest SSE

— If there are several empty clusters, the above can be
repeated several times.
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Pre-processing and Post-processing

I Pre-processing
— Normalize the data
— Eliminate outliers

I Post-processing
— Eliminate small clusters that may represent outliers

— Split ‘loose’ clusters, i.e., clusters with relatively high
SSE

— Merge clusters that are ‘close’ and that have relatively
low SSE

— Can use these steps during the clustering process
¢ |ISODATA
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Bisecting K-means

I Bisecting K-means algorithm

— Variant of K-means that can produce a partitional or a
hierarchical clustering

1: Initialize the list of clusters to contain the cluster containing all points.
2: repeat
3:  Select a cluster from the list of clusters

for i = 1 to number_of _iterations do

4

5 Bisect the selected cluster using basic K-means < Bisect => K=2
6: end for

7 Add the two clusters from the bisection with the lowest SSE to the list of clusters.

o)

- until Until the list of clusters contains K clusters
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Bisecting K-means Example

lteration 10
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Limitations of K-means

I K-means has problems when clusters are of
differing
— Sizes
— Densities
— Non-globular shapes

I K-means has problems when the data contains
outliers.
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Limitations of K-means: Differing Sizes
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Limitations of K-means: Differing Density
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Limitations of K-means: Non-globular Shapes
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Overcoming K-means Limitations
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One solution is to use many clusters.
Find parts of clusters, but need to put together.

K-means Clusters
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Overcoming K-means Limitations
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Overcoming K-means Limitations
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